| bibtype |
C -
Conference Paper (international conference)
|
| ARLID |
0635707 |
| utime |
20250603102408.3 |
| mtime |
20250530235959.9 |
| DOI |
10.21136/panm.2024.12 |
| title
(primary) (eng) |
A note on the OD-QSSA and Bohl-Marek methods applied to a class of mathematical models |
| specification |
| page_count |
10 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0635711 |
| ISBN |
978-80-85823-74-5 |
| title
|
Programs and Algorithms of Numerical Mathematics 22 : Proceedings of Seminar |
| page_num |
127-136 |
| publisher |
| place |
Praha |
| name |
Matematicky ustav AV CR, v. v. i. |
| year |
2025 |
|
| editor |
|
| editor |
|
| editor |
|
| editor |
|
| editor |
| name1 |
Vejchodský |
| name2 |
T. |
|
|
| keyword |
mathematical modelling |
| keyword |
chemical kinetic systems |
| keyword |
quasi-steady-state approximation |
| keyword |
M-Matrix |
| keyword |
quasi-linear formulation |
| author
(primary) |
| ARLID |
cav_un_auth*0404313 |
| name1 |
Papáček |
| name2 |
Štěpán |
| institution |
UTIA-B |
| full_dept (cz) |
Teorie řízení |
| full_dept (eng) |
Department of Control Theory |
| department (cz) |
TŘ |
| department (eng) |
TR |
| country |
CZ |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0100790 |
| name1 |
Matonoha |
| name2 |
Ctirad |
| institution |
UIVT-O |
| full_dept (cz) |
Oddělení umělé inteligence |
| full_dept |
Department of Artificial Intelligence |
| full_dept |
Department of Computational Mathematics |
| fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| abstract
(eng) |
The complex (bio)chemical reaction systems, frequently possess fast/slow phenomena, represent both diffculties and challenges for numerical simulation. We develop and test an enhancement of the classical QSSA (quasisteady-state approximation) model reduction method applied to a system of chemical reactions. The novel model reduction method, the so-called delayed quasi-steady-state approximation method, proposed by Vejchodsky (2014) and further developed by Papacek (2021) and Matonoha (2022), is extensively presented on a case study based on Michaelis-Menten enzymatic reaction completed with the substrate transport. Eventually, an innovative approach called the Bohl-Marek method is shown on the same numerical example. |
| action |
| ARLID |
cav_un_auth*0488072 |
| name |
Programs and Algorithms of Numerical Mathematics /22./ |
| dates |
20240623 |
| mrcbC20-s |
20240628 |
| place |
Hejnice |
| country |
CZ |
|
| RIV |
BC |
| FORD0 |
20000 |
| FORD1 |
20200 |
| FORD2 |
20205 |
| reportyear |
2026 |
| mrcbC47 |
UIVT-O 10000 10100 10101 |
| presentation_type |
PR |
| inst_support |
RVO:67985556 |
| inst_support |
RVO:67985807 |
| permalink |
https://hdl.handle.net/11104/0366741 |
| confidential |
S |
| arlyear |
2025 |
| mrcbU14 |
SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
WOS |
| mrcbU63 |
cav_un_epca*0635711 Programs and Algorithms of Numerical Mathematics 22 : Proceedings of Seminar Matematicky ustav AV CR, v. v. i. 2025 Praha 127 136 978-80-85823-74-5 |
| mrcbU67 |
Chleboun J. 340 |
| mrcbU67 |
Papež J. 340 |
| mrcbU67 |
Segeth K. 340 |
| mrcbU67 |
Šístek J. 340 |
| mrcbU67 |
Vejchodský T. 340 |
|