bibtype C - Conference Paper (international conference)
ARLID 0635707
utime 20250603102408.3
mtime 20250530235959.9
DOI 10.21136/panm.2024.12
title (primary) (eng) A note on the OD-QSSA and Bohl-Marek methods applied to a class of mathematical models
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0635711
ISBN 978-80-85823-74-5
title Programs and Algorithms of Numerical Mathematics 22 : Proceedings of Seminar
page_num 127-136
publisher
place Praha
name Matematicky ustav AV CR, v. v. i.
year 2025
editor
name1 Chleboun
name2 J.
editor
name1 Papež
name2 J.
editor
name1 Segeth
name2 K.
editor
name1 Šístek
name2 J.
editor
name1 Vejchodský
name2 T.
keyword mathematical modelling
keyword chemical kinetic systems
keyword quasi-steady-state approximation
keyword M-Matrix
keyword quasi-linear formulation
author (primary)
ARLID cav_un_auth*0404313
name1 Papáček
name2 Štěpán
institution UTIA-B
full_dept (cz) Teorie řízení
full_dept (eng) Department of Control Theory
department (cz)
department (eng) TR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0100790
name1 Matonoha
name2 Ctirad
institution UIVT-O
full_dept (cz) Oddělení umělé inteligence
full_dept Department of Artificial Intelligence
full_dept Department of Computational Mathematics
fullinstit Ústav informatiky AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/TR/papacek-0635707.pdf
cas_special
abstract (eng) The complex (bio)chemical reaction systems, frequently possess fast/slow phenomena, represent both diffculties and challenges for numerical simulation. We develop and test an enhancement of the classical QSSA (quasisteady-state approximation) model reduction method applied to a system of chemical reactions. The novel model reduction method, the so-called delayed quasi-steady-state approximation method, proposed by Vejchodsky (2014) and further developed by Papacek (2021) and Matonoha (2022), is extensively presented on a case study based on Michaelis-Menten enzymatic reaction completed with the substrate transport. Eventually, an innovative approach called the Bohl-Marek method is shown on the same numerical example.
action
ARLID cav_un_auth*0488072
name Programs and Algorithms of Numerical Mathematics /22./
dates 20240623
mrcbC20-s 20240628
place Hejnice
country CZ
RIV BC
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2026
mrcbC47 UIVT-O 10000 10100 10101
presentation_type PR
inst_support RVO:67985556
inst_support RVO:67985807
permalink https://hdl.handle.net/11104/0366741
confidential S
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0635711 Programs and Algorithms of Numerical Mathematics 22 : Proceedings of Seminar Matematicky ustav AV CR, v. v. i. 2025 Praha 127 136 978-80-85823-74-5
mrcbU67 Chleboun J. 340
mrcbU67 Papež J. 340
mrcbU67 Segeth K. 340
mrcbU67 Šístek J. 340
mrcbU67 Vejchodský T. 340