bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0635707 |
utime |
20250603102408.3 |
mtime |
20250530235959.9 |
DOI |
10.21136/panm.2024.12 |
title
(primary) (eng) |
A note on the OD-QSSA and Bohl-Marek methods applied to a class of mathematical models |
specification |
page_count |
10 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0635711 |
ISBN |
978-80-85823-74-5 |
title
|
Programs and Algorithms of Numerical Mathematics 22 : Proceedings of Seminar |
page_num |
127-136 |
publisher |
place |
Praha |
name |
Matematicky ustav AV CR, v. v. i. |
year |
2025 |
|
editor |
|
editor |
|
editor |
|
editor |
|
editor |
name1 |
Vejchodský |
name2 |
T. |
|
|
keyword |
mathematical modelling |
keyword |
chemical kinetic systems |
keyword |
quasi-steady-state approximation |
keyword |
M-Matrix |
keyword |
quasi-linear formulation |
author
(primary) |
ARLID |
cav_un_auth*0404313 |
name1 |
Papáček |
name2 |
Štěpán |
institution |
UTIA-B |
full_dept (cz) |
Teorie řízení |
full_dept (eng) |
Department of Control Theory |
department (cz) |
TŘ |
department (eng) |
TR |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0100790 |
name1 |
Matonoha |
name2 |
Ctirad |
institution |
UIVT-O |
full_dept (cz) |
Oddělení umělé inteligence |
full_dept |
Department of Artificial Intelligence |
full_dept |
Department of Computational Mathematics |
fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
source |
|
cas_special |
abstract
(eng) |
The complex (bio)chemical reaction systems, frequently possess fast/slow phenomena, represent both diffculties and challenges for numerical simulation. We develop and test an enhancement of the classical QSSA (quasisteady-state approximation) model reduction method applied to a system of chemical reactions. The novel model reduction method, the so-called delayed quasi-steady-state approximation method, proposed by Vejchodsky (2014) and further developed by Papacek (2021) and Matonoha (2022), is extensively presented on a case study based on Michaelis-Menten enzymatic reaction completed with the substrate transport. Eventually, an innovative approach called the Bohl-Marek method is shown on the same numerical example. |
action |
ARLID |
cav_un_auth*0488072 |
name |
Programs and Algorithms of Numerical Mathematics /22./ |
dates |
20240623 |
mrcbC20-s |
20240628 |
place |
Hejnice |
country |
CZ |
|
RIV |
BC |
FORD0 |
20000 |
FORD1 |
20200 |
FORD2 |
20205 |
reportyear |
2026 |
mrcbC47 |
UIVT-O 10000 10100 10101 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
inst_support |
RVO:67985807 |
permalink |
https://hdl.handle.net/11104/0366741 |
confidential |
S |
arlyear |
2025 |
mrcbU14 |
SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0635711 Programs and Algorithms of Numerical Mathematics 22 : Proceedings of Seminar Matematicky ustav AV CR, v. v. i. 2025 Praha 127 136 978-80-85823-74-5 |
mrcbU67 |
Chleboun J. 340 |
mrcbU67 |
Papež J. 340 |
mrcbU67 |
Segeth K. 340 |
mrcbU67 |
Šístek J. 340 |
mrcbU67 |
Vejchodský T. 340 |
|