bibtype J - Journal Article
ARLID 0636164
utime 20250620105931.6
mtime 20250610235959.9
DOI 10.1007/s00707-025-04385-8
title (primary) (eng) Parameter estimation in cyclic plastic loading
specification
page_count 18 s.
media_type E
serial
ARLID cav_un_epca*0256062
ISSN 0001-5970
title Acta Mechanica
publisher
name Springer
keyword Neural Network
keyword Cyclic Plastic Loading
keyword Parameter Estimation
keyword Non-gradient optimization
author (primary)
ARLID cav_un_auth*0488850
name1 Kovanda
name2 Martin
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
country CZ
share 40
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0283918
name1 Marek
name2 René
institution UT-L
full_dept (cz) D 4 - Rázy a vlny v tělesech
full_dept D 4 - Impact and Waves in Solids
country CZ
share 30
fullinstit Ústav termomechaniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
share 30
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2025/SI/tichavsky-0636164.pdf
source
url https://link.springer.com/article/10.1007/s00707-025-04385-8
cas_special
project
project_id GA23-05338S
agency GA ČR
ARLID cav_un_auth*0452392
project
project_id GA22-11101S
agency GA ČR
country CZ
ARLID cav_un_auth*0435406
project
project_id EH23_020/0008501
agency GA MŠk
country CZ
ARLID cav_un_auth*0477721
abstract (eng) The increasing complexity of modern constitutive models of cyclic metal plasticity requires more efficient ways to achieve their optimal calibration. Traditional approaches, such as random search combined with Nelder-Mead optimization, are computationally expensive. In addition, they struggle with highly non-convex functions that have numerous local minima and complex behavior, making these methods highly sensitive to initial conditions. While numerical refinement is key, a better prediction for its initial point directly saves costs. In this work, we focus only on the uniaxial cyclic loading, as it is the dominant part of a general calibration process for such a model and can also utilize a closed-form solution, further speeding up the procedure. We propose a neural network framework with a loss function that combines the loss on both the predicted parameters and the generated stress responses. This network is then used to predict an initial point for Nelder-Mead optimization. Our method was also compared to the non-gradient Tensor Train Optimization method on both synthetic data and measured experiments.
result_subspec WOS
RIV JL
FORD0 20000
FORD1 20300
FORD2 20301
reportyear 2026
num_of_auth 3
inst_support RVO:67985556
inst_support RVO:61388998
permalink https://hdl.handle.net/11104/0367699
mrcbC61 1
confidential S
mrcbC91 A
mrcbT16-e MECHANICS
mrcbT16-j 0.429
mrcbT16-s 0.558
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 767 kB
mrcbU63 cav_un_epca*0256062 Acta Mechanica 2025 0001-5970 1619-6937 Springer