bibtype K - Conference Paper (Czech conference)
ARLID 0636593
utime 20250620125648.6
mtime 20250616235959.9
title (primary) (eng) How Sir Harold Jeffreys would create a belief function based on data
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0636591
ISBN 978-80-7378-525-3
title Proceedings of the 13th Workshop on Uncertainty Processing (WUPES’25)
page_num 92-103
publisher
place Prague
name MatfyzPress
year 2025
editor
name1 Studený
name2 Milan
editor
name1 Ay
name2 Nihat
editor
name1 Capotorti
name2 Andrea
editor
name1 Csirmaz
name2 László
editor
name1 Jiroušek
name2 Radim
editor
name1 Kleiter
name2 Gernot D.
editor
name1 Shenoy
name2 Prakash P.
keyword belief function
keyword learning
keyword confidence interval
author (primary)
ARLID cav_un_auth*0100740
name1 Daniel
name2 Milan
institution UIVT-O
full_dept (cz) Oddělení složitých systémů
full_dept (eng) Department of Complex Systems
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2025/MTR/jirousek-0636593.pdf
source
url https://wupes.utia.cas.cz/2025/Proceedings.pdf#page=101
cas_special
abstract (eng) Not all normalized nonnegative monotone set functions are belief functions. This paper investigates ways to modify them to obtain a belief function that preserves some of their properties. The problem is motivated by an approach to data-based learning of belief function models. The approach is based on the idea that classical methods of mathematical statistics can provide estimates of lower bounds for unknown probabilities. Thus, methods of mathematical statistics can be used to obtain a reasonable rough estimate, which is further elaborated to obtain a desired belief function model.
action
ARLID cav_un_auth*0489177
name Workshop on Uncertainty Processing - WUPES 2025 /13./
dates 20250604
mrcbC20-s 20250607
place Třešť
country CZ
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2026
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
inst_support RVO:67985807
permalink https://hdl.handle.net/11104/0367706
confidential S
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0636591 Proceedings of the 13th Workshop on Uncertainty Processing (WUPES’25) 978-80-7378-525-3 92 103 Prague MatfyzPress 2025 719
mrcbU67 Studený Milan 340
mrcbU67 Ay Nihat 340
mrcbU67 Capotorti Andrea 340
mrcbU67 Csirmaz László 340
mrcbU67 Jiroušek Radim 340
mrcbU67 Kleiter Gernot D. 340
mrcbU67 Shenoy Prakash P. 340