bibtype |
K -
Conference Paper (Czech conference)
|
ARLID |
0636593 |
utime |
20250620125648.6 |
mtime |
20250616235959.9 |
title
(primary) (eng) |
How Sir Harold Jeffreys would create a belief function based on data |
specification |
page_count |
12 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0636591 |
ISBN |
978-80-7378-525-3 |
title
|
Proceedings of the 13th Workshop on Uncertainty Processing (WUPES’25) |
page_num |
92-103 |
publisher |
place |
Prague |
name |
MatfyzPress |
year |
2025 |
|
editor |
name1 |
Studený |
name2 |
Milan |
|
editor |
|
editor |
name1 |
Capotorti |
name2 |
Andrea |
|
editor |
name1 |
Csirmaz |
name2 |
László |
|
editor |
name1 |
Jiroušek |
name2 |
Radim |
|
editor |
name1 |
Kleiter |
name2 |
Gernot D. |
|
editor |
name1 |
Shenoy |
name2 |
Prakash P. |
|
|
keyword |
belief function |
keyword |
learning |
keyword |
confidence interval |
author
(primary) |
ARLID |
cav_un_auth*0100740 |
name1 |
Daniel |
name2 |
Milan |
institution |
UIVT-O |
full_dept (cz) |
Oddělení složitých systémů |
full_dept (eng) |
Department of Complex Systems |
fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101118 |
name1 |
Jiroušek |
name2 |
Radim |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0216188 |
name1 |
Kratochvíl |
name2 |
Václav |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
full_dept |
Department of Decision Making Theory |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
abstract
(eng) |
Not all normalized nonnegative monotone set functions are belief functions. This paper investigates ways to modify them to obtain a belief function that preserves some of their properties. The problem is motivated by an approach to data-based learning of belief function models. The approach is based on the idea that classical methods of mathematical statistics can provide estimates of lower bounds for unknown probabilities. Thus, methods of mathematical statistics can be used to obtain a reasonable rough estimate, which is further elaborated to obtain a desired belief function model. |
action |
ARLID |
cav_un_auth*0489177 |
name |
Workshop on Uncertainty Processing - WUPES 2025 /13./ |
dates |
20250604 |
mrcbC20-s |
20250607 |
place |
Třešť |
country |
CZ |
|
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10102 |
reportyear |
2026 |
num_of_auth |
3 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
inst_support |
RVO:67985807 |
permalink |
https://hdl.handle.net/11104/0367706 |
confidential |
S |
arlyear |
2025 |
mrcbU14 |
SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU56 |
pdf |
mrcbU63 |
cav_un_epca*0636591 Proceedings of the 13th Workshop on Uncertainty Processing (WUPES’25) 978-80-7378-525-3 92 103 Prague MatfyzPress 2025 719 |
mrcbU67 |
Studený Milan 340 |
mrcbU67 |
Ay Nihat 340 |
mrcbU67 |
Capotorti Andrea 340 |
mrcbU67 |
Csirmaz László 340 |
mrcbU67 |
Jiroušek Radim 340 |
mrcbU67 |
Kleiter Gernot D. 340 |
mrcbU67 |
Shenoy Prakash P. 340 |
|