bibtype J - Journal Article
ARLID 0636737
utime 20250620112058.7
mtime 20250619235959.9
SCOPUS 85204494007
WOS 001309809400001
DOI 10.1017/etds.2024.43
title (primary) (eng) Minimal and proximal examples of d̄-stable and d̄-approachable shift spaces
specification
page_count 31 s.
media_type P
serial
ARLID cav_un_epca*0252855
ISSN 0143-3857
title Ergodic Theory and Dynamical Systems
volume_id 45
volume 2 (2025)
page_num 396-426
publisher
name Cambridge University Press
keyword specification property
keyword topological entropy
keyword shift space
keyword Poulsen simplex
keyword Besicovitch pseudometric
author (primary)
ARLID cav_un_auth*0489436
name1 Can
name2 M. E.
country PL
author
ARLID cav_un_auth*0364287
name1 Konieczny
name2 J.
country PL
author
ARLID cav_un_auth*0219359
name1 Kupsa
name2 Michal
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0364286
name1 Kwietniak
name2 D.
country PL
source
url http://library.utia.cas.cz/separaty/2025/SI/kupsa-0636737.pdf
source
url https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/minimal-and-proximal-examples-of-bar-dstable-and-bar-dapproachable-shift-spaces/A32C9FF11308F7847A3F9F6BB051C011
cas_special
abstract (eng) We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein's (d) over bar metric ((d) over bar -approachable shift spaces). The class of (d) over bar -approachable shifts can beconsidered as a topological analog of measure-theoretical Bernoulli systems. The notionof (d) over bar -approachability, together with a closely connected notion of Itshows-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023),943-970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, includingthe classic one and the almost/weak specification property, ensure (d) over bar -approachability and (d) over bar -shadowing. Here, we study further properties and connections between (d) over bar -shadowing and (d) over bar -approachability. We prove that (d) over bar -shadowing implies (d) over bar -stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the (d) over bar -shadowingproperty the Hausdorff pseudodistance (d) over bar (H) between shift spaces induced by (d) over bar is the sameas the Hausdorff distance between their simplices of invariant measures with respect tothe Hausdorff distance induced by Ornstein's metric (d) over bar between measures. We prove thatwithout Itshows-shadowing this need not to be true (it is known that the former distance alwaysbounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the (d) over bar -shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that (d) over bar -shadowing indeed generalizes the specification property.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2026
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0367702
confidential S
mrcbC91 A
mrcbT16-e MATHEMATICS|MATHEMATICSAPPLIED
mrcbT16-j 0.892
mrcbT16-s 1.005
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2025
mrcbU14 85204494007 SCOPUS
mrcbU24 PUBMED
mrcbU34 001309809400001 WOS
mrcbU63 cav_un_epca*0252855 Ergodic Theory and Dynamical Systems 0143-3857 1469-4417 Roč. 45 č. 2 2025 396 426 Cambridge University Press