bibtype J - Journal Article
ARLID 0636756
utime 20250620145635.6
mtime 20250620235959.9
DOI 10.1007/s11760-025-04376-1
title (primary) (eng) Small-data image classification via drop-in variational autoencoder
specification
page_count 9 s.
media_type E
serial
ARLID cav_un_epca*0515755
ISSN 1863-1703
title Signal Image and Video Processing
volume_id 19
keyword Small data classification
keyword Variational autoencoder
keyword Supervised learning
author (primary)
ARLID cav_un_auth*0206076
name1 Mahdian
name2 Babak
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0489439
name1 Nedbal
name2 R.
country IT
source
url http://library.utia.cas.cz/separaty/2025/ZOI/mahdian-0636756.pdf
cas_special
abstract (eng) It is unclear whether generative approaches can achieve state-of-the-art performance with supervised classification in highdimensional feature spaces and extremely small datasets. In this paper, we propose a drop-in variational autoencoder (VAE) for the task of supervised learning using an extremely small train set (i.e., n = 1,..,5 images per class). Drop-in classifiers form a usual alternative when traditional approaches to Few-Shot Learning cannot be used. The classification will be defined as a posterior probability density function and approximated by the variational principle. We perform experiments on a large variety of deep feature representations extracted from different layers of popular convolutional neural network (CNN) architectures. We also benchmark with modern classifiers, including Neural Tangent Kernel (NTK), Support Vector Machine (SVM) with NTK kernel and Neural Network Gaussian Process (NNGP). Results obtained indicate that the drop-in VAE classifier outperforms all the compared classifiers in the extremely small data regime.
result_subspec WOS
RIV JC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2026
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0367720
cooperation
ARLID cav_un_auth*0439053
name Istituto Italiano di Tecnologia
confidential S
article_num 766
mrcbC91 A
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC|IMAGINGSCIENCEPHOTOGRAPHICTECHNOLOGY
mrcbT16-j 0.318
mrcbT16-s 0.558
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0515755 Signal Image and Video Processing 19 1 2025 1863-1703 1863-1711