bibtype J - Journal Article
ARLID 0638269
utime 20250902083802.8
mtime 20250821235959.9
SCOPUS 105005998860
WOS 001499517900006
DOI 10.1109/LCSYS.2025.3572074
title (primary) (eng) Solving Unbounded Optimal Control Problems With the Moment-SOS Hierarchy
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0543606
ISSN 2475-1456
title IEEE Control Systems Letters
volume_id 9
volume 1 (2025)
page_num 288-293
publisher
name Institute of Electrical and Electronics Engineers
keyword optimal control
keyword sum of squares
keyword polynomial optimization
author (primary)
ARLID cav_un_auth*0492160
name1 Sehnalova
name2 K.
country CZ
share 25
garant K
author
ARLID cav_un_auth*0015534
name1 Henrion
name2 D.
country FR
share 25
author
ARLID cav_un_auth*0468055
name1 Korda
name2 M.
country FR
share 25
author
ARLID cav_un_auth*0101142
name1 Kružík
name2 Martin
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
share 25
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/MTR/kruzik-0638269.pdf
source
url https://ieeexplore.ieee.org/document/11008548/
cas_special
project
project_id (ROBOPROX) CZ.02.01.01/00/22 008/0004590
agency GA MŠk
country CZ
ARLID cav_un_auth*0487206
project
project_id SGS25/145/OHK3/3T/13
agency GA ČVUT
country CZ
ARLID cav_un_auth*0492495
abstract (eng) The behaviour of the moment-sums-ofsquares (moment-SOS) hierarchy for polynomial optimal control problems on compact sets has been explored to a large extent. Our contribution focuses on the case of non-compact control sets. We describe a new approach to optimal control problems with unbounded controls, using compactification by partial homogenization, leading to an equivalent infinite dimensional linear program with compactly supported measures. Our results are closely related to the results of a previous approach using DiPernaMajda measures. However, our work provides a sound proof of the absence of relaxation gap, which was conjectured in the previous work, and thereby enables the design of a moment-sum-of-squares relaxation with guaranteed convergence.
result_subspec WOS
RIV BA
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2026
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0369143
confidential S
mrcbC91 A
mrcbT16-e AUTOMATION&CONTROLSYSTEMS
mrcbT16-f 2.2
mrcbT16-g 0.2
mrcbT16-h 2.9
mrcbT16-i 0.01448
mrcbT16-j 0.928
mrcbT16-k 4962
mrcbT16-q 47
mrcbT16-s 1.064
mrcbT16-y 23.15
mrcbT16-x 2.42
mrcbT16-3 4424
mrcbT16-4 Q1
mrcbT16-5 1.800
mrcbT16-6 568
mrcbT16-7 Q3
mrcbT16-C 48.9
mrcbT16-M 0.52
mrcbT16-N Q2
mrcbT16-P 48.9
arlyear 2025
mrcbU14 105005998860 SCOPUS
mrcbU24 PUBMED
mrcbU34 001499517900006 WOS
mrcbU63 cav_un_epca*0543606 IEEE Control Systems Letters Roč. 9 č. 1 2025 288 293 2475-1456 Institute of Electrical and Electronics Engineers