| bibtype |
J -
Journal Article
|
| ARLID |
0638271 |
| utime |
20250902084831.2 |
| mtime |
20250821235959.9 |
| SCOPUS |
105008335546 |
| WOS |
001517652500002 |
| DOI |
10.1016/j.matpur.2025.103751 |
| title
(primary) (eng) |
Positive temperature in nonlinear thermoviscoelasticity and the derivation of linearized models |
| specification |
| page_count |
62 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0253884 |
| ISSN |
0021-7824 |
| title
|
Journal de Mathematiques Pures et Appliquees |
| publisher |
|
|
| keyword |
Viscoelasticity |
| keyword |
Frame-indifferent viscous stresses |
| keyword |
Third law of thermodynamics |
| author
(primary) |
| ARLID |
cav_un_auth*0451915 |
| name1 |
Badal |
| name2 |
R. |
| country |
DE |
| share |
25 |
|
| author
|
| ARLID |
cav_un_auth*0327068 |
| name1 |
Friedrich |
| name2 |
M. |
| country |
DE |
| share |
25 |
|
| author
|
| ARLID |
cav_un_auth*0101142 |
| name1 |
Kružík |
| name2 |
Martin |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| share |
25 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0492163 |
| name1 |
Machill |
| name2 |
L. |
| country |
DE |
| share |
25 |
| garant |
K |
|
| source |
|
| source |
|
| cas_special |
| project |
| project_id |
GF21-06569K |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0492164 |
|
| project |
| project_id |
GA23-04766S |
| agency |
GA ČR |
| country |
CZ |
| ARLID |
cav_un_auth*0492165 |
|
| project |
| project_id |
DAAD-22-03 |
| agency |
AV ČR |
| country |
CZ |
| country |
DE |
| ARLID |
cav_un_auth*0424487 |
|
| abstract
(eng) |
According to the Nernst theorem or, equivalently, the third law of thermodynamics, the absolute zero temperature is not attainable. Starting with an initial positive temperature, we show that there exist solutions to a Kelvin-Voigt model for quasistatic nonlinear thermoviscoelasticity at a finite-strain setting [45], obeying an exponential-in-time lower bound on the temperature. Afterwards, we focus on the case of deformations near the identity and temperatures near a critical positive temperature, and we show that weak solutions of the nonlinear system converge in a suitable sense to solutions of a system in linearized thermoviscoelasticity. Our result extends the recent linearization result in [4], as it allows the critical temperature to be positive. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2026 |
| num_of_auth |
4 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0369144 |
| confidential |
S |
| article_num |
103751 |
| mrcbC91 |
A |
| mrcbT16-e |
MATHEMATICS.APPLIED|MATHEMATICS |
| mrcbT16-f |
2.4 |
| mrcbT16-g |
0.5 |
| mrcbT16-h |
11.9 |
| mrcbT16-i |
0.00909 |
| mrcbT16-j |
2.124 |
| mrcbT16-k |
5065 |
| mrcbT16-q |
77 |
| mrcbT16-s |
2.833 |
| mrcbT16-y |
41.52 |
| mrcbT16-x |
2.52 |
| mrcbT16-3 |
724 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
2.200 |
| mrcbT16-6 |
66 |
| mrcbT16-7 |
Q1 |
| mrcbT16-C |
90.5 |
| mrcbT16-M |
1.62 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
94.7 |
| arlyear |
2025 |
| mrcbU14 |
105008335546 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
001517652500002 WOS |
| mrcbU63 |
cav_un_epca*0253884 Journal de Mathematiques Pures et Appliquees Č. 1 2025 0021-7824 1776-3371 Elsevier |
|