bibtype C - Conference Paper (international conference)
ARLID 0638576
utime 20250918073959.4
mtime 20250903235959.9
DOI 10.1007/978-3-031-87213-6_14
title (primary) (eng) Inverse Problems in Image Restoration
specification
page_count 7 s.
media_type P
serial
ARLID cav_un_epca*0638911
ISBN 978-3-031-87212-9
title Inverse Problems: Modelling and Simulation : Extended Abstracts of the IPMS Conference 2024
page_num 107-113
publisher
place Cham
name Springer
year 2025
editor
name1 Hasanoğlu
name2 A. H.
editor
name1 Novikov
name2 R.
editor
name1 Van Bockstal
name2 K.
keyword Inverse problems
keyword Image restoration
keyword Deep learning
keyword Regularization
author (primary)
ARLID cav_un_auth*0379363
name1 Kerepecký
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/ZOI/kerepecky-0638576.pdf
source
url https://link.springer.com/book/10.1007/978-3-031-87213-6
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
abstract (eng) This work addresses inverse problems in image restoration, focusing on recovering high-quality images from degraded observations, a critical task in fields like microscopy and digital photography. We examine both traditional variational methods and modern deep learning techniques, highlighting hybrid approaches that merge mathematical modeling with data-driven learning. Classical model-based methods use explicit regularization, like total variation, to incorporate prior knowledge and stabilize the inversion process. Meanwhile, deep learning approaches, both supervised and self-supervised, leverage implicit regularization, where network architectures capture and learn prior information from data. We present our recent advancements in this field and discuss the effectiveness of these complementary approaches in solving complex image restoration problems in theory and practice.
action
ARLID cav_un_auth*0493164
name Inverse Problems: Modelling and Simulation 2024 (IPMS 2024)
dates 20240526
mrcbC20-s 20240601
place Paradise Bay Resort Hotel
country MT
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2026
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0369466
confidential S
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0638911 Inverse Problems: Modelling and Simulation : Extended Abstracts of the IPMS Conference 2024 Springer 2025 Cham 107 113 978-3-031-87212-9
mrcbU67 Hasanoğlu A. H. 340
mrcbU67 Novikov R. 340
mrcbU67 Van Bockstal K. 340