bibtype J - Journal Article
ARLID 0638624
utime 20251006141028.4
mtime 20250904235959.9
SCOPUS 105007148009
WOS 001443918000001
DOI 10.3934/dcdsb.2025044
title (primary) (eng) Young differential equations driven by Besov–Orlicz paths
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0257845
ISSN 1531-3492
title Discrete and Continuous Dynamical Systems-Series B
volume_id 30
volume 11 (2025)
page_num 4296-4311
publisher
name AIMS Press
keyword Besov–Orlicz space
keyword rough path
keyword Young regime
keyword Hermite process
author (primary)
ARLID cav_un_auth*0356972
name1 Čoupek
name2 P.
country CZ
author
ARLID cav_un_auth*0494629
name1 Hendrych
name2 F.
country CZ
author
ARLID cav_un_auth*0370372
name1 Slavík
name2 Jakub
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/SI/slavik-0638624.pdf
cas_special
project
project_id GA22-12790S
agency GA ČR
country CZ
ARLID cav_un_auth*0449240
abstract (eng) In the article, we consider nonlinear differential equations driven by paths from the exponential Besov–Orlicz space $B^\alpha_{\Phi_\beta,q}$ for $\alpha \in (1/2, 1)$, $\Phi_\beta(x) \sim e^{x^\beta} - 1$ with $\beta \in (0, \infty)$, and $q \in (0, \infty]$. By appealing to the recently obtained sewing lemma for such paths, we construct a Young-type integral and show that such equations admit a unique solution that is again of exponential Besov–Orlicz regularity. The results cover equations driven by paths of a large number of stochastic processes that exhibit long-range dependence, e.g. fractional Brownian motion with Hurst parameter $H \in (1/2, 1)$ or, more generally, any Hermite process.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2026
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0370051
confidential S
mrcbC91 C
mrcbT16-e MATHEMATICS.APPLIED
mrcbT16-f 1.3
mrcbT16-g 0.1
mrcbT16-h 6.2
mrcbT16-i 0.00682
mrcbT16-j 0.552
mrcbT16-k 4181
mrcbT16-q 65
mrcbT16-s 0.735
mrcbT16-y 36.02
mrcbT16-x 1.33
mrcbT16-3 1091
mrcbT16-4 Q1
mrcbT16-5 1.200
mrcbT16-6 187
mrcbT16-7 Q2
mrcbT16-C 63.4
mrcbT16-M 0.71
mrcbT16-N Q2
mrcbT16-P 63.4
arlyear 2025
mrcbU14 105007148009 SCOPUS
mrcbU24 PUBMED
mrcbU34 001443918000001 WOS
mrcbU63 cav_un_epca*0257845 Discrete and Continuous Dynamical Systems-Series B Roč. 30 č. 11 2025 4296 4311 1531-3492 1553-524X AIMS Press