bibtype J - Journal Article
ARLID 0638625
utime 20251006142256.5
mtime 20250904235959.9
SCOPUS 105015048097
WOS 001562541400019
DOI 10.1126/sciadv.adw6404
title (primary) (eng) Path integration impairments reveal early cognitive changes in subjective cognitive decline
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0480043
ISSN 2375-2548
title Science Advances
volume_id 11
publisher
name American Association for the Advancement of Science
keyword Subjective cognitive decline
keyword Alzheimer’s disease
keyword Bayesian computational model
author (primary)
ARLID cav_un_auth*0494631
name1 Segen
name2 V.
country DE
author
ARLID cav_un_auth*0494632
name1 Kabir
name2 M. R.
country US
author
ARLID cav_un_auth*0494633
name1 Streck
name2 A.
country DE
author
ARLID cav_un_auth*0370372
name1 Slavík
name2 Jakub
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0494636
name1 Glanz
name2 W.
country DE
author
ARLID cav_un_auth*0494637
name1 Butryn
name2 M.
country DE
author
ARLID cav_un_auth*0494638
name1 Newman
name2 E.
country US
author
ARLID cav_un_auth*0494639
name1 Tiganj
name2 Z.
country US
author
ARLID cav_un_auth*0494640
name1 Wolbers
name2 T.
country DE
source
url https://library.utia.cas.cz/separaty/2025/SI/slavik-0638625.pdf
cas_special
abstract (eng) Path integration, the ability to track one’s position using self-motion cues, is critically dependent on the grid cell network in the entorhinal cortex, a region vulnerable to early Alzheimer’s disease pathology. In this study, we examined path integration performance in individuals with subjective cognitive decline (SCD), a group at increased risk for Alzheimer’s disease, and healthy controls using an immersive virtual reality task. We developed a Bayesian computational model to decompose path integration errors into distinct components. SCD participants exhibited significantly higher path integration error, primarily driven by increased memory leak, while other modeling-derived error sources, such as velocity gain, sensory, and reporting noise, remained comparable across groups. Our findings suggest that path integration deficits, specifically memory leak, may serve as an early marker of neurodegeneration in SCD and highlight the potential of self-motion–based navigation tasks for detecting presymptomatic Alzheimer’s disease–related cognitive changes.
result_subspec WOS
RIV FH
FORD0 30000
FORD1 30100
FORD2 30103
reportyear 2026
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0370054
confidential S
article_num eadw6404
mrcbC91 C
mrcbT16-e MULTIDISCIPLINARYSCIENCES
mrcbT16-f 14.1
mrcbT16-g 2.4
mrcbT16-h 4.1
mrcbT16-i 0.36789
mrcbT16-j 4.859
mrcbT16-k 181324
mrcbT16-q 288
mrcbT16-s 4.324
mrcbT16-y 69.4
mrcbT16-x 12.06
mrcbT16-3 80733
mrcbT16-4 Q1
mrcbT16-5 12.300
mrcbT16-6 2263
mrcbT16-7 Q1
mrcbT16-C 92
mrcbT16-M 2.82
mrcbT16-N Q1
mrcbT16-P 91.5
arlyear 2025
mrcbU14 105015048097 SCOPUS
mrcbU24 PUBMED
mrcbU34 001562541400019 WOS
mrcbU63 cav_un_epca*0480043 Science Advances Roč. 11 č. 36 2025 2375-2548 2375-2548 American Association for the Advancement of Science