bibtype C - Conference Paper (international conference)
ARLID 0639114
utime 20251007075159.0
mtime 20250922235959.9
title (primary) (eng) Learning Belief Functions from Data via Polyhedral Methods
specification
page_count 12 s.
media_type E
serial
ARLID cav_un_epca*0639113
title Proceedings of the 25th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
page_num 9-20
publisher
place Osaka
name Osaka Metropolitan University
year 2025
editor
name1 Kusunoki
name2 Yoshifumi
editor
name1 Kratochvíl
name2 Václav
keyword belief functions
keyword linear programing
keyword polytop
author (primary)
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0100740
name1 Daniel
name2 Milan
institution UIVT-O
full_dept (cz) Oddělení složitých systémů
full_dept Department of Complex Systems
fullinstit Ústav informatiky AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/MTR/kratochvil-0639114.pdf
cas_special
abstract (eng) We present a polyhedral framework for learning belief functions from data when empirical lower and upper probability bounds are obtained from Jeffreys’ binomial confidence intervals. Such bounds, interpreted as empirical belief and plausibility values for all subsets of the outcome space, generally yield a pseudo-belief function that may not correspond to any valid basic probability assignment (BPA) satisfying the axioms of Dempster–Shafer theory. \nOur approach formulates the correction problem as a system of linear constraints in the BPA space, where the feasible solutions form a convex polyhedron of belief functions consistent with the empirical bounds. We investigate several linear optimization criteria for selecting a representative BPA from this feasible set, including L1-projection to the empirical lower bounds, Dubois–Prade entropy maximization, sparsity-oriented objectives, and cardinality-weighted allocations.
action
ARLID cav_un_auth*0493525
name Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 2025 /25./
dates 20250909
mrcbC20-s 20250912
place Otsu City, Siga
country JP
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2026
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
inst_support RVO:67985807
permalink https://hdl.handle.net/11104/0370095
confidential S
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 www 6MB
mrcbU63 cav_un_epca*0639113 Proceedings of the 25th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty Osaka Metropolitan University 2025 Osaka 9 20
mrcbU67 Kusunoki Yoshifumi 340
mrcbU67 Kratochvíl Václav 340