bibtype J - Journal Article
ARLID 0639180
utime 20251006133316.9
mtime 20250923235959.9
SCOPUS 105016479141
WOS 001579057000004
DOI 10.1016/j.irfa.2025.104642
title (primary) (eng) Autoencoder asset pricing models and economic restrictions — international evidence
specification
page_count 9 s.
media_type E
serial
ARLID cav_un_epca*0367044
ISSN 1057-5219
title International Review of Financial Analysis
volume_id 107
publisher
name Elsevier
keyword Asset pricing
keyword Economic restrictions
keyword Anomalies
keyword Machine learning
author (primary)
ARLID cav_un_auth*0468864
name1 Nechvátalová
name2 Lenka
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
country CZ
share 100
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/E/nechvatalova-0639180.pdf
cas_special
project
project_id GA24-11555S
agency GA ČR
country CZ
ARLID cav_un_auth*0472836
abstract (eng) We evaluate the performance of the Conditional Autoencoder (CAE) model by Gu et al. (2021) across U.S. and international datasets, considering economic constraints such as the exclusion of microcap and illiquid firms and the inclusion of transaction costs. The CAE model captures nonlinear relationships between returns and firm characteristics by jointly estimating latent factors and conditional betas while enforcing the no-arbitrage condition. The original study demonstrated significant reductions in out-of-sample pricing errors from both statistical and economic perspectives in the U.S. context. We validate these findings on the original U.S. dataset and show that the model generalises well to a U.S. dataset with a broader set of firm characteristics and to international markets. When economic constraints are introduced, portfolio profitability declines substantially. Profitability drops by 60%–85% when shifting from the full sample to the liquid sample before trading costs. However, after costs, only the liquid strategies remain profitable. In particular, long-only strategies on the liquid sample are the only ones to consistently outperform market benchmarks across all datasets, achieving Sharpe ratios between 0.65 and 0.78 for both equal- and value-weighted portfolios. Overall, the findings underscore both the limitations and the practical potential of the CAE model under realistic market frictions.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50201
reportyear 2026
num_of_auth 1
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0370040
cooperation
ARLID cav_un_auth*0344084
name Institut ekonomických studií, Fakulta sociálních věd, Univerzita Karlova
institution IES FSV UK
country CZ
confidential S
article_num 104642
mrcbC91 C
mrcbT16-e BUSINESS.FINANCE
mrcbT16-f 9.8
mrcbT16-g 1.6
mrcbT16-h 2.9
mrcbT16-i 0.01843
mrcbT16-j 1.573
mrcbT16-k 19032
mrcbT16-q 110
mrcbT16-s 2.288
mrcbT16-y 65.36
mrcbT16-x 10.52
mrcbT16-3 11773
mrcbT16-4 Q1
mrcbT16-5 8.600
mrcbT16-6 731
mrcbT16-7 Q1
mrcbT16-C 99.4
mrcbT16-M 2.56
mrcbT16-N Q1
mrcbT16-P 99.4
arlyear 2025
mrcbU14 105016479141 SCOPUS
mrcbU24 PUBMED
mrcbU34 001579057000004 WOS
mrcbU63 cav_un_epca*0367044 International Review of Financial Analysis 107 1 2025 1057-5219 1873-8079 Elsevier