bibtype J - Journal Article
ARLID 0640435
utime 20251107114426.1
mtime 20251025235959.9
SCOPUS 105019109156
WOS 001602908700002
DOI 10.1016/j.eneco.2025.108988
title (primary) (eng) Learning the probability distributions of day-ahead electricity prices
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0250426
ISSN 0140-9883
title Energy Economics
volume_id 152
publisher
name Elsevier
keyword Distributional forecasting
keyword Deep learning
keyword Probabilistic
keyword Electricity
keyword Energy time series
author (primary)
ARLID cav_un_auth*0462008
name1 Hanus
name2 Luboš
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/E/hanus-0640435.pdf
cas_special
project
project_id GA24-11555S
agency GA ČR
country CZ
ARLID cav_un_auth*0472836
abstract (eng) We propose a novel machine learning approach for probabilistic forecasting of hourly day-ahead electricity prices. In contrast with the recent advances in data-rich probabilistic forecasting, which approximates distributions with few features (such as moments), our method is nonparametric and selects the distribution from all possible empirical distributions learned from the input data without the need for limiting assumptions. The model that we propose is a multioutput neural network that accounts for the temporal dynamics of the probabilities and controls for monotonicity using a penalty. Such a distributional neural network can precisely learn complex patterns from many relevant variables that affect electricity prices. We illustrate the capacity of the developed method on German hourly day-ahead electricity prices and predict their probability distribution via many variables, revealing new valuable information in the data.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2026
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0371248
confidential S
article_num 108988
mrcbC91 C
mrcbT16-e ECONOMICS
mrcbT16-f 13.2
mrcbT16-g 2.6
mrcbT16-h 3.8
mrcbT16-i 0.04641
mrcbT16-j 2.28
mrcbT16-k 53243
mrcbT16-q 230
mrcbT16-s 3.919
mrcbT16-y 64.57
mrcbT16-x 15.43
mrcbT16-3 27784
mrcbT16-4 Q1
mrcbT16-5 12.300
mrcbT16-6 747
mrcbT16-7 Q1
mrcbT16-C 99.9
mrcbT16-M 4.59
mrcbT16-N Q1
mrcbT16-P 99.9
arlyear 2025
mrcbU14 105019109156 SCOPUS
mrcbU24 PUBMED
mrcbU34 001602908700002 WOS
mrcbU63 cav_un_epca*0250426 Energy Economics 152 1 2025 0140-9883 1873-6181 Elsevier