bibtype J - Journal Article
ARLID 0640703
utime 20251103075439.0
mtime 20251103235959.9
SCOPUS 105010739860
WOS 001528199400006
DOI 10.22111/ijfs.2025.51019.9017
title (primary) (eng) A classification using mixture of concordance measures
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0623155
ISSN 1735-0654
title Iranian Journal of Fuzzy Systems
volume_id 22
volume 3 (2025)
page_num 139-149
keyword Optimization
keyword Concordance measure
keyword Copula
keyword Classification
keyword Correlation
keyword Association measure
author (primary)
ARLID cav_un_auth*0436913
name1 Sheikhi
name2 A.
country IR
garant K
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/E/mesiar-0640703.pdf
cas_special
abstract (eng) In the realm of classification studies, existing literature indicates that, when the relationships among exploratory variables extend beyond linear functions, nonlinear classifiers tend to outperform their linear counterparts. This study employs concordance measures to attain optimal outcomes in a classification task. In this regard, we examine the connection copula among the exploratory variables, as well as the copula linking the exploratory attributes to the target attribute are taken into consideration. As a major novelty, our classification approach utilizes a convex combination of the pairwise Spearman's rank correlation coefficient rho and the pairwise Kendall's association tau. Through a simulation analysis, we assess the performance of our algorithm, which demonstrates its superiority over alternatives, including copula-based classification methods as well as machine learning classification models. We also, provide an application of our method to the classification of COVID-19 dataset for more illustration.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2026
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0371064
confidential S
mrcbC91 A
mrcbT16-e MATHEMATICS.APPLIED|MATHEMATICS
mrcbT16-f 1.1
mrcbT16-g 0.4
mrcbT16-h 5.3
mrcbT16-i 0.00071
mrcbT16-j 0.224
mrcbT16-k 821
mrcbT16-q 39
mrcbT16-s 0.34
mrcbT16-y 38.05
mrcbT16-x 1.55
mrcbT16-3 351
mrcbT16-4 Q2
mrcbT16-5 1.000
mrcbT16-6 66
mrcbT16-7 Q1
mrcbT16-C 70.9
mrcbT16-M 1.12
mrcbT16-N Q1
mrcbT16-P 82.7
arlyear 2025
mrcbU14 105010739860 SCOPUS
mrcbU24 PUBMED
mrcbU34 001528199400006 WOS
mrcbU63 cav_un_epca*0623155 Iranian Journal of Fuzzy Systems 22 3 2025 139 149 1735-0654 2676-4334