bibtype J - Journal Article
ARLID 0640704
utime 20251103080432.6
mtime 20251103235959.9
SCOPUS 85206645259
WOS 001338864500001
DOI 10.1016/j.fss.2024.109153
title (primary) (eng) Uncertainty merging with basic uncertain information in probability environment
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 498
publisher
name Elsevier
keyword Aggregation
keyword Basic uncertain information
keyword Uncertainty merging
keyword Probability merging
keyword Probabilistic uncertainty
keyword Information fusion
author (primary)
ARLID cav_un_auth*0496132
name1 Jin
name2 L. S.
country CN
author
ARLID cav_un_auth*0045803
name1 Yang
name2 Y.
country CN
garant K
author
ARLID cav_un_auth*0474976
name1 Cheng
name2 Z. S.
country CN
author
ARLID cav_un_auth*0474977
name1 Deveci
name2 M.
country TR
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/E/mesiar-0640704.pdf
cas_special
abstract (eng) Basic uncertain information is a recently introduced and significant type of uncertainty that proves particularly valuable in decision-making environments with inherent uncertainties. In this study, we propose the concept of uncertainty cognition merging, which effectively combines basic uncertain information granules with probability measures to generate new probability measures within the same probability space. Additionally, we present a degenerated method that merges basic uncertain information granules with unit intervals to create new subintervals. We introduce four distinct uncertainty cognition merging methods and thoroughly compare and analyze their respective properties, limitations, and advantages. To demonstrate the practical application potential of our proposals, we provide numerical examples alongside further mathematical results.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2026
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0371065
confidential S
article_num 109153
mrcbC91 C
mrcbT16-e COMPUTERSCIENCE.THEORY&METHODS|STATISTICS&PROBABILITY|MATHEMATICS.APPLIED
mrcbT16-f 2.6
mrcbT16-g 0.9
mrcbT16-h 19.7
mrcbT16-i 0.0062
mrcbT16-j 0.612
mrcbT16-k 14846
mrcbT16-q 191
mrcbT16-s 0.754
mrcbT16-y 37.34
mrcbT16-x 2.7
mrcbT16-3 2335
mrcbT16-4 Q1
mrcbT16-5 2.200
mrcbT16-6 229
mrcbT16-7 Q1
mrcbT16-C 82
mrcbT16-M 1.44
mrcbT16-N Q1
mrcbT16-P 91.4
arlyear 2025
mrcbU14 85206645259 SCOPUS
mrcbU24 PUBMED
mrcbU34 001338864500001 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems Roč. 498 č. 1 2025 0165-0114 1872-6801 Elsevier