bibtype J - Journal Article
ARLID 0640705
utime 20251103081715.8
mtime 20251103235959.9
SCOPUS 85208193348
WOS 001354223900001
DOI 10.1016/j.fss.2024.109178
title (primary) (eng) Some notes on the coincidence of the Choquet integral and the pan-integral
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 499
publisher
name Elsevier
keyword Monotone measures
keyword (M)-property Weak
keyword (M)-property
keyword Pan-integral
keyword Choquet integral
author (primary)
ARLID cav_un_auth*0475908
name1 Kang
name2 T.
country CN
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0258953
name1 Ouyang
name2 Y.
country CN
author
ARLID cav_un_auth*0348640
name1 Li
name2 J.
country CN
source
url https://library.utia.cas.cz/separaty/2025/E/mesiar-0640705.pdf
cas_special
abstract (eng) In this note, we provide an example to show the weak (M)-property is really weaker than the (M)-property for some finite monotone measure defined on infinite space, and hence answer an open problem which was proposed in the paper (Li et al. (2023) [9]). We prove that if a monotone measure μ is autocontinuous, then the weak (M)-property and the (M)-property of μ are equivalent. We propose the concept of (C-P)-property of monotone measures and show a set of sufficient and necessary conditions that the Choquet integral coincides with the pan-integral. We further study the relationships between the Choquet integral and the pan-integral in the setting of the ordered pairs of monotone measures, and obtain some interesting properties.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2026
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0371068
confidential S
article_num 109178
mrcbC91 C
mrcbT16-e COMPUTERSCIENCE.THEORY&METHODS|STATISTICS&PROBABILITY|MATHEMATICS.APPLIED
mrcbT16-f 2.6
mrcbT16-g 0.9
mrcbT16-h 19.7
mrcbT16-i 0.0062
mrcbT16-j 0.612
mrcbT16-k 14846
mrcbT16-q 191
mrcbT16-s 0.754
mrcbT16-y 37.34
mrcbT16-x 2.7
mrcbT16-3 2335
mrcbT16-4 Q1
mrcbT16-5 2.200
mrcbT16-6 229
mrcbT16-7 Q1
mrcbT16-C 82
mrcbT16-M 1.44
mrcbT16-N Q1
mrcbT16-P 91.4
arlyear 2025
mrcbU14 85208193348 SCOPUS
mrcbU24 PUBMED
mrcbU34 001354223900001 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems Roč. 499 č. 1 2025 0165-0114 1872-6801 Elsevier