| bibtype |
J -
Journal Article
|
| ARLID |
0640706 |
| utime |
20251103082448.0 |
| mtime |
20251103235959.9 |
| SCOPUS |
85215392471 |
| WOS |
001407354800001 |
| DOI |
10.1016/j.fss.2025.109283 |
| title
(primary) (eng) |
Abstractly homogeneous aggregation functions with respect to a given continuous t-norm |
| specification |
| page_count |
7 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0256642 |
| ISSN |
0165-0114 |
| title
|
Fuzzy Sets and Systems |
| volume_id |
505 |
| publisher |
|
|
| keyword |
Aggregation function |
| keyword |
Homogeneity |
| keyword |
t-Norm |
| author
(primary) |
| ARLID |
cav_un_auth*0368546 |
| name1 |
Wang |
| name2 |
T. |
| country |
CN |
|
| author
|
| ARLID |
cav_un_auth*0496133 |
| name1 |
Zong |
| name2 |
W. |
| country |
CN |
|
| author
|
| ARLID |
cav_un_auth*0286350 |
| name1 |
Su |
| name2 |
Y. |
| country |
CN |
| garant |
K |
|
| author
|
| ARLID |
cav_un_auth*0101163 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| full_dept (cz) |
Ekonometrie |
| full_dept |
Department of Econometrics |
| department (cz) |
E |
| department |
E |
| full_dept |
Department of Econometrics |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| abstract
(eng) |
The homogeneity and its extensions reflect the regularity of aggregation functions with respect to the inputs with the same ratio and play an essential role in decision making, economics and image processing. In this paper, the relationships among generalized homogeneities and characterizations of abstractly homogeneous aggregation functions with respect to a given continuous t-norm are presented. |
| result_subspec |
WOS |
| RIV |
BB |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10103 |
| reportyear |
2026 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0371069 |
| confidential |
S |
| article_num |
109283 |
| mrcbC91 |
C |
| mrcbT16-e |
COMPUTERSCIENCE.THEORY&METHODS|STATISTICS&PROBABILITY|MATHEMATICS.APPLIED |
| mrcbT16-f |
2.6 |
| mrcbT16-g |
0.9 |
| mrcbT16-h |
19.7 |
| mrcbT16-i |
0.0062 |
| mrcbT16-j |
0.612 |
| mrcbT16-k |
14846 |
| mrcbT16-q |
191 |
| mrcbT16-s |
0.754 |
| mrcbT16-y |
37.34 |
| mrcbT16-x |
2.7 |
| mrcbT16-3 |
2335 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
2.200 |
| mrcbT16-6 |
229 |
| mrcbT16-7 |
Q1 |
| mrcbT16-C |
82 |
| mrcbT16-M |
1.44 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
91.4 |
| arlyear |
2025 |
| mrcbU14 |
85215392471 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
001407354800001 WOS |
| mrcbU63 |
cav_un_epca*0256642 Fuzzy Sets and Systems 505 1 2025 0165-0114 1872-6801 Elsevier |
|