| bibtype |
J -
Journal Article
|
| ARLID |
0640707 |
| utime |
20251103083134.5 |
| mtime |
20251103235959.9 |
| SCOPUS |
85212857253 |
| WOS |
001394795600001 |
| DOI |
10.1016/j.fss.2024.109249 |
| title
(primary) (eng) |
Multi-valued Choquet integral based on a couple of set functions with an application in multi-attribute decision-making |
| specification |
| page_count |
18 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0256642 |
| ISSN |
0165-0114 |
| title
|
Fuzzy Sets and Systems |
| volume_id |
503 |
| publisher |
|
|
| keyword |
Choquet integral |
| keyword |
Multifunction |
| keyword |
Fuzzy measure |
| keyword |
Multi-valued Choquet integral |
| keyword |
Hesitant fuzzy set |
| keyword |
Set-valued fuzzy measure |
| author
(primary) |
| ARLID |
cav_un_auth*0203805 |
| name1 |
Zhang |
| name2 |
D. |
| country |
CN |
| garant |
K |
|
| author
|
| ARLID |
cav_un_auth*0101163 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| full_dept (cz) |
Ekonometrie |
| full_dept |
Department of Econometrics |
| department (cz) |
E |
| department |
E |
| full_dept |
Department of Econometrics |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0280491 |
| name1 |
Pap |
| name2 |
E. |
| country |
RS |
|
| source |
|
| cas_special |
| abstract
(eng) |
As a generalization of Choquet integrals, the generalized Choquet type set-valued integral of functions w.r.t. set multifunctions and σ-additive measures has been performed in our previous paper [66]. The present paper is its continuation and it brings a novel set-valued type Choquet integral, named double set function multi-valued Choquet integral (DSMVCI), where the σ-additive measure is replaced by a fuzzy measure. Various kinds of its properties and convergence theorems are obtained, and set-valued type Jensen's and Markov's type inequalities are proved. Its application in multi-attribute decision-making with hesitant fuzzy information is given. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| reportyear |
2026 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0371070 |
| confidential |
S |
| article_num |
109249 |
| mrcbC91 |
C |
| mrcbT16-e |
COMPUTERSCIENCE.THEORY&METHODS|STATISTICS&PROBABILITY|MATHEMATICS.APPLIED |
| mrcbT16-f |
2.6 |
| mrcbT16-g |
0.9 |
| mrcbT16-h |
19.7 |
| mrcbT16-i |
0.0062 |
| mrcbT16-j |
0.612 |
| mrcbT16-k |
14846 |
| mrcbT16-q |
191 |
| mrcbT16-s |
0.754 |
| mrcbT16-y |
37.34 |
| mrcbT16-x |
2.7 |
| mrcbT16-3 |
2335 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
2.200 |
| mrcbT16-6 |
229 |
| mrcbT16-7 |
Q1 |
| mrcbT16-C |
82 |
| mrcbT16-M |
1.44 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
91.4 |
| arlyear |
2025 |
| mrcbU14 |
85212857253 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
001394795600001 WOS |
| mrcbU63 |
cav_un_epca*0256642 Fuzzy Sets and Systems Roč. 503 č. 1 2025 0165-0114 1872-6801 Elsevier |
|