bibtype J - Journal Article
ARLID 0640710
utime 20260123172047.6
mtime 20251103235959.9
SCOPUS 105019923693
WOS 001608319300003
DOI 10.1016/j.amc.2025.129778
title (primary) (eng) Frameworking the vectorized basic linear algebra for prototyping codes in MATLAB
specification
page_count 19 s.
media_type P
serial
ARLID cav_un_epca*0256160
ISSN 0096-3003
title Applied Mathematics and Computation
volume_id 513
publisher
name Elsevier
keyword Abstract linear algebra
keyword Code vectorization
keyword Finite element method
keyword Tensor structures
keyword Triangular meshes
author (primary)
ARLID cav_un_auth*0459832
name1 Moskovka
name2 Alexej
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0319984
name1 Rahman
name2 T.
country NO
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0496135
name1 Vatne
name2 J. E.
country NO
source
url https://library.utia.cas.cz/separaty/2025/MTR/valdman-0640710.pdf
cas_special
project
project_id GA23-04766S
agency GA ČR
country CZ
ARLID cav_un_auth*0459138
abstract (eng) When writing high-performance code for numerical computations in a scripting language such as MATLAB, it is crucial to vectorize operations within large for-loops. However, this vectorization process often obscures the original mathematical structure, making the code less readable. This issue is particularly pronounced in finite element method (FEM) implementations, despite the inherently structured nature of FEM. A practical remedy is to decouple the vectorization layer from the mathematical logic of the code. This can be effectively achieved by building on top of already-vectorized basic linear algebra subprograms. Over the past 15 years, this idea has been applied in a series of works, resulting in fast, structured, and maintainable code. In this paper, we present a vectorized basic linear algebra package and introduce a formalism based on multilinear algebra to define and explain its functions. We also incorporate MATLAB’s recently introduced page-wise functions to enhance expressiveness. We provide examples such as computing normal vectors, volumes, and finite element assembly to demonstrate the clarity and efficiency of the approach. The resulting codes closely follow mathematical abstraction, facilitate reuse and extension, and support rapid development and prototyping by scientists, engineers, and students.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2026
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0371072
confidential S
article_num 129778
mrcbC91 C
mrcbT16-e MATHEMATICS.APPLIED
mrcbT16-f 3.2
mrcbT16-g 0.7
mrcbT16-h 9
mrcbT16-i 0.02528
mrcbT16-j 0.837
mrcbT16-k 33342
mrcbT16-q 182
mrcbT16-s 0.89
mrcbT16-y 35.95
mrcbT16-x 3.79
mrcbT16-3 8064
mrcbT16-4 Q1
mrcbT16-5 3.200
mrcbT16-6 534
mrcbT16-7 Q1
mrcbT16-C 96.9
mrcbT16-M 2.11
mrcbT16-N Q1
mrcbT16-P 96.9
arlyear 2026
mrcbU14 105019923693 SCOPUS
mrcbU24 PUBMED
mrcbU34 001608319300003 WOS
mrcbU63 cav_un_epca*0256160 Applied Mathematics and Computation Roč. 513 č. 1 2026 0096-3003 1873-5649 Elsevier