| project |
| project_id |
334014 |
| agency |
Research Council of Finland |
| country |
FI |
| ARLID |
cav_un_auth*0496615 |
|
| project |
| project_id |
DMS-2453853 |
| agency |
National Science Foundation |
| country |
US |
| ARLID |
cav_un_auth*0496616 |
|
| project |
| project_id |
GA24-10505S |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0497637 |
|
| project |
| project_id |
PPLZ L100752451 |
| agency |
GA AV ČR |
| country |
CZ |
| ARLID |
cav_un_auth*0496614 |
|
| abstract
(eng) |
Let f : Omega -> Omega ' be a Sobolev mapping of finite distortion between planar domains Omega and Omega ', satisfying the (INV) condition and coinciding with a homeomorphism near partial derivative Omega. We show that f admits a generalized inverse mapping h : Omega '-> Omega, which is also a Sobolev mapping of finite distortion and satisfies the (INV) condition. We also establish a higher-dimensional analogue of this result: if a mapping f : Omega -> Omega ' of finite distortion is in the Sobolev class W-1,W-p(Omega,R-n) with p > n-1 and satisfies the (INV) condition, then f has an inverse in W-1,W-1(Omega ', R-n) that is also of finite distortion. Furthermore, we characterize Sobolev mappings satisfying (INV) whose generalized inverses have finite n-harmonic energy. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| reportyear |
2026 |
| num_of_auth |
3 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0371974 |
| cooperation |
| ARLID |
cav_un_auth*0496617 |
| name |
Faculty of Mathematics and Physics, Charles University |
| country |
CZ |
|
| cooperation |
| ARLID |
cav_un_auth*0298179 |
| name |
University of Jyväskylä |
| country |
FI |
|
| cooperation |
| ARLID |
cav_un_auth*0496618 |
| name |
Syracuse University |
| country |
US |
|
| confidential |
S |
| article_num |
111215 |
| mrcbC91 |
C |
| mrcbC96 |
https://arxiv.org/abs/2412.18976 |
| mrcbT16-e |
MATHEMATICS |
| mrcbT16-f |
1.9 |
| mrcbT16-g |
0.2 |
| mrcbT16-h |
14.4 |
| mrcbT16-i |
0.01847 |
| mrcbT16-j |
1.625 |
| mrcbT16-k |
13833 |
| mrcbT16-q |
119 |
| mrcbT16-s |
1.958 |
| mrcbT16-y |
35.97 |
| mrcbT16-x |
1.72 |
| mrcbT16-3 |
1501 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
1.500 |
| mrcbT16-6 |
315 |
| mrcbT16-7 |
Q1 |
| mrcbT16-C |
89.1 |
| mrcbT16-M |
1.35 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
89.1 |
| arlyear |
2026 |
| mrcbU14 |
105017668030 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
001586089800002 WOS |
| mrcbU63 |
cav_un_epca*0256966 Journal of Functional Analysis 290 1 2026 0022-1236 1096-0783 Elsevier |