bibtype J - Journal Article
ARLID 0641338
utime 20251201155626.3
mtime 20251112235959.9
SCOPUS 105021299046
WOS 001618124500012
DOI 10.1098/rsos.250513
title (primary) (eng) Material fingerprinting: predicting human perception of material appearance through psychophysical analysis and neural networks
specification
page_count 21 s.
media_type E
serial
ARLID cav_un_epca*0475408
ISSN 2054-5703
title Royal Society Open Science
volume_id 12
publisher
name Royal Society Publishing
keyword material
keyword perception
keyword feature
keyword predicting
keyword neural network
keyword fingerprint
author (primary)
ARLID cav_un_auth*0101086
name1 Filip
name2 Jiří
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
share 40
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0294719
name1 Děchtěrenko
name2 Filip
institution PSU-E
full_dept (cz) Kognitivní psychologie
full_dept Department of Cognitive Psychology
full_dept Institute of psychology
country CZ
share 10
fullinstit Psychologický ústav AV ČR, v. v. i.
author
ARLID cav_un_auth*0340873
name1 Schmidt
name2 F.
country DE
share 10
author
ARLID cav_un_auth*0106408
name1 Lukavský
name2 Jiří
institution PSU-E
full_dept (cz) Kognitivní psychologie
full_dept Department of Cognitive Psychology
full_dept Institute of psychology
country CZ
share 10
fullinstit Psychologický ústav AV ČR, v. v. i.
author
ARLID cav_un_auth*0293863
name1 Kotera
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
share 10
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0458638
name1 Vilímovská
name2 Veronika
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
country CZ
share 10
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0468180
name1 Fleming
name2 R. W.
country DE
share 10
source
url https://library.utia.cas.cz/separaty/2025/RO/filip-0641338.pdf
cas_special
project
project_id GA22-17529S
agency GA ČR
country CZ
ARLID cav_un_auth*0439849
abstract (eng) Digital representation of materials is crucial in fields such as virtual reality, industrial design and quality control. However, predicting human perception of materials from image data is challenging due to the complexity of material appearances and the intricacies of human vision. This study introduces a perceptual representation termed the ‘visual fingerprint’, linking image-based measurements of materials to intuitive, human-understandable attributes. We conducted psychophysical studies using standardized video sequences of 347 diverse real-world materials, including fabrics and wood, selected to encompass a broad spectrum of textures, colours and reflective properties. Sixteen key appearance attributes were identified, and over 110 000 human ratings were collected to map perceptual attributes across material categories. By integrating CLIP-derived image features with a multi-layer perceptron model, we developed a predictive framework for material perception. Our results demonstrate that human judgements of appearance and similarity can be accurately predicted using only two images of a material. This work offers a practical and interpretable approach to material representation, enabling intuitive comparisons and retrievals in applications where material appearance is crucial. The proposed material fingerprint and its prediction directly from image data represent a significant step towards simplifying the understanding and interoperability of material properties in diverse digital environments.
result_subspec WOS
RIV BD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2026
num_of_auth 7
mrcbC47 PSU-E 50000 50100 50101
mrcbC55 PSU-E AN
inst_support RVO:67985556
inst_support RVO:68081740
permalink https://hdl.handle.net/11104/0371959
cooperation
ARLID cav_un_auth*0354022
name Justus Liebig University Giessen
country DE
confidential S
article_num 250513
mrcbC91 A
mrcbT16-e MULTIDISCIPLINARYSCIENCES
mrcbT16-f 3.2
mrcbT16-g 0.6
mrcbT16-h 5.3
mrcbT16-i 0.02271
mrcbT16-j 0.921
mrcbT16-k 17898
mrcbT16-q 92
mrcbT16-s 0.795
mrcbT16-y 67.64
mrcbT16-x 2.99
mrcbT16-3 5847
mrcbT16-4 Q1
mrcbT16-5 2.800
mrcbT16-6 642
mrcbT16-7 Q2
mrcbT16-C 73
mrcbT16-M 0.9
mrcbT16-N Q1
mrcbT16-P 73
arlyear 2025
mrcbU14 105021299046 SCOPUS
mrcbU24 41244060 PUBMED
mrcbU34 001618124500012 WOS
mrcbU63 cav_un_epca*0475408 Royal Society Open Science 12 11 2025 2054-5703 2054-5703 Royal Society Publishing