| bibtype |
J -
Journal Article
|
| ARLID |
0641338 |
| utime |
20251201155626.3 |
| mtime |
20251112235959.9 |
| SCOPUS |
105021299046 |
| WOS |
001618124500012 |
| DOI |
10.1098/rsos.250513 |
| title
(primary) (eng) |
Material fingerprinting: predicting human perception of material appearance through psychophysical analysis and neural networks |
| specification |
| page_count |
21 s. |
| media_type |
E |
|
| serial |
| ARLID |
cav_un_epca*0475408 |
| ISSN |
2054-5703 |
| title
|
Royal Society Open Science |
| volume_id |
12 |
| publisher |
| name |
Royal Society Publishing |
|
|
| keyword |
material |
| keyword |
perception |
| keyword |
feature |
| keyword |
predicting |
| keyword |
neural network |
| keyword |
fingerprint |
| author
(primary) |
| ARLID |
cav_un_auth*0101086 |
| name1 |
Filip |
| name2 |
Jiří |
| institution |
UTIA-B |
| full_dept (cz) |
Rozpoznávání obrazu |
| full_dept (eng) |
Department of Pattern Recognition |
| department (cz) |
RO |
| department (eng) |
RO |
| full_dept |
Department of Pattern Recognition |
| share |
40 |
| garant |
K |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0294719 |
| name1 |
Děchtěrenko |
| name2 |
Filip |
| institution |
PSU-E |
| full_dept (cz) |
Kognitivní psychologie |
| full_dept |
Department of Cognitive Psychology |
| full_dept |
Institute of psychology |
| country |
CZ |
| share |
10 |
| fullinstit |
Psychologický ústav AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0340873 |
| name1 |
Schmidt |
| name2 |
F. |
| country |
DE |
| share |
10 |
|
| author
|
| ARLID |
cav_un_auth*0106408 |
| name1 |
Lukavský |
| name2 |
Jiří |
| institution |
PSU-E |
| full_dept (cz) |
Kognitivní psychologie |
| full_dept |
Department of Cognitive Psychology |
| full_dept |
Institute of psychology |
| country |
CZ |
| share |
10 |
| fullinstit |
Psychologický ústav AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0293863 |
| name1 |
Kotera |
| name2 |
Jan |
| institution |
UTIA-B |
| full_dept (cz) |
Zpracování obrazové informace |
| full_dept |
Department of Image Processing |
| department (cz) |
ZOI |
| department |
ZOI |
| full_dept |
Department of Image Processing |
| country |
CZ |
| share |
10 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0458638 |
| name1 |
Vilímovská |
| name2 |
Veronika |
| institution |
UTIA-B |
| full_dept (cz) |
Rozpoznávání obrazu |
| full_dept |
Department of Pattern Recognition |
| department (cz) |
RO |
| department |
RO |
| country |
CZ |
| share |
10 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0468180 |
| name1 |
Fleming |
| name2 |
R. W. |
| country |
DE |
| share |
10 |
|
| source |
|
| cas_special |
| project |
| project_id |
GA22-17529S |
| agency |
GA ČR |
| country |
CZ |
| ARLID |
cav_un_auth*0439849 |
|
| abstract
(eng) |
Digital representation of materials is crucial in fields such as virtual reality, industrial design and quality control. However, predicting human perception of materials from image data is challenging due to the complexity of material appearances and the intricacies of human vision. This study introduces a perceptual representation termed the ‘visual fingerprint’, linking image-based measurements of materials to intuitive, human-understandable attributes. We conducted psychophysical studies using standardized video sequences of 347 diverse real-world materials, including fabrics and wood, selected to encompass a broad spectrum of textures, colours and reflective properties. Sixteen key appearance attributes were identified, and over 110 000 human ratings were collected to map perceptual attributes across material categories. By integrating CLIP-derived image features with a multi-layer perceptron model, we developed a predictive framework for material perception. Our results demonstrate that human judgements of appearance and similarity can be accurately predicted using only two images of a material. This work offers a practical and interpretable approach to material representation, enabling intuitive comparisons and retrievals in applications where material appearance is crucial. The proposed material fingerprint and its prediction directly from image data represent a significant step towards simplifying the understanding and interoperability of material properties in diverse digital environments. |
| result_subspec |
WOS |
| RIV |
BD |
| FORD0 |
10000 |
| FORD1 |
10200 |
| FORD2 |
10201 |
| reportyear |
2026 |
| num_of_auth |
7 |
| mrcbC47 |
PSU-E 50000 50100 50101 |
| mrcbC55 |
PSU-E AN |
| inst_support |
RVO:67985556 |
| inst_support |
RVO:68081740 |
| permalink |
https://hdl.handle.net/11104/0371959 |
| cooperation |
| ARLID |
cav_un_auth*0354022 |
| name |
Justus Liebig University Giessen |
| country |
DE |
|
| confidential |
S |
| article_num |
250513 |
| mrcbC91 |
A |
| mrcbT16-e |
MULTIDISCIPLINARYSCIENCES |
| mrcbT16-f |
3.2 |
| mrcbT16-g |
0.6 |
| mrcbT16-h |
5.3 |
| mrcbT16-i |
0.02271 |
| mrcbT16-j |
0.921 |
| mrcbT16-k |
17898 |
| mrcbT16-q |
92 |
| mrcbT16-s |
0.795 |
| mrcbT16-y |
67.64 |
| mrcbT16-x |
2.99 |
| mrcbT16-3 |
5847 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
2.800 |
| mrcbT16-6 |
642 |
| mrcbT16-7 |
Q2 |
| mrcbT16-C |
73 |
| mrcbT16-M |
0.9 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
73 |
| arlyear |
2025 |
| mrcbU14 |
105021299046 SCOPUS |
| mrcbU24 |
41244060 PUBMED |
| mrcbU34 |
001618124500012 WOS |
| mrcbU63 |
cav_un_epca*0475408 Royal Society Open Science 12 11 2025 2054-5703 2054-5703 Royal Society Publishing |
|