bibtype C - Conference Paper (international conference)
ARLID 0641368
utime 20251120112324.8
mtime 20251112235959.9
SCOPUS 105003168138
WOS 001529693400011
DOI 10.1007/978-3-031-85703-4_11
title (primary) (eng) Minimization of Nonlinear Energies in Python Using FEM and Automatic Differentiation Tools
specification
page_count 15 s.
media_type E
serial
ARLID cav_un_epca*0641367
ISBN 978-3-031-85702-7
ISSN 0302-9743
title Lecture Notes in Computer Science
part_num 15581
page_num 159-173
publisher
place Berlin
name Springer Nature Switzerland AG
year 2025
editor
name1 Wyrzykowski
name2 R.
editor
name1 Dongarra
name2 J.
editor
name1 Deelman
name2 E.
editor
name1 Karczewski
name2 K.
keyword nonlinear energy minimization
keyword autograd
keyword p-Laplacian
keyword Ginzburg-Landau model
keyword hyperelasticity
keyword finite elements
author (primary)
ARLID cav_un_auth*0366821
name1 Béreš
name2 Michal
institution UGN-S
full_dept (cz) Oddělení aplikované matematiky a informatiky & Oddělení IT4Innovations
full_dept (eng) Department of applied mathematics and computer science and Department IT4Innovations
full_dept Applied Mathematics and Computer Science & IT4Innovations
country CZ
fullinstit Ústav geoniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový dokument
url https://doi.org/10.1007/978-3-031-85703-4_11
cas_special
project
project_id GA24-10366S
agency GA ČR
country CZ
ARLID cav_un_auth*0472839
abstract (eng) This contribution examines the capabilities of the Python ecosystem to solve nonlinear energy minimization problems, with a particular focus on transitioning from traditional MATLAB methods to Python's advanced computational tools, such as automatic differentiation. We demonstrate Python's streamlined approach to minimizing nonlinear energies by analyzing three problem benchmarks - the p-Laplacian, the Ginzburg-Landau model, and the Neo-Hookean hyperelasticity. This approach merely requires the provision of the energy functional itself, making it a simple and efficient way to solve this category of problems. The results show that the implementation is about ten times faster than the MATLAB implementation for large-scale problems. Our findings highlight Python's efficiency and ease of use in scientific computing, establishing it as a preferable choice for implementing sophisticated mathematical models and accelerating the development of numerical simulations.
action
ARLID cav_un_auth*0487577
name International Conference of Parallel Processing and Applied Mathematics (PPAM 2024) /15./
dates 20240908
mrcbC20-s 20240911
place Ostrava
country CZ
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2026
num_of_auth 2
mrcbC47 UTAM-F 10000 10100 10102
mrcbC52 2 4 X 4 4x 4 20251112132317.9 20251112132335.1 20251112132338.2
presentation_type PR
mrcbC55 UTIA-B BA
inst_support RVO:68145535
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0371537
confidential S
mrcbT16-q 499
mrcbT16-s 0.606
mrcbT16-y 25.34
mrcbT16-x 1.17
mrcbT16-3 102124
mrcbT16-4 Q2
arlyear 2025
mrcbTft \nSoubory v repozitáři: UGN_0641368.pdf
mrcbU14 105003168138 SCOPUS
mrcbU24 PUBMED
mrcbU34 001529693400011 WOS
mrcbU63 cav_un_epca*0641367 Lecture Notes in Computer Science 15581 978-3-031-85702-7 0302-9743 1611-3349 159 173 PARALLEL PROCESSING AND APPLIED MATHEMATICS, PART III Berlin Springer Nature Switzerland AG 2025
mrcbU67 Wyrzykowski R. 340
mrcbU67 Dongarra J. 340
mrcbU67 Deelman E. 340
mrcbU67 Karczewski K. 340