bibtype J - Journal Article
ARLID 0642596
utime 20260123171747.6
mtime 20251204235959.9
SCOPUS 105023670983
WOS 001633605300003
DOI 10.1007/s11118-025-10247-8
title (primary) (eng) Rough Differential Equations Driven by Besov–Orlicz Paths
specification
page_count 41 s.
media_type P
serial
ARLID cav_un_epca*0254775
ISSN 0926-2601
title Potential Analysis
volume_id 64
publisher
name Springer
keyword Besov-Orlicz space
keyword Rough path
keyword Rough differential equation
author (primary)
ARLID cav_un_auth*0356972
name1 Čoupek
name2 P.
country CZ
author
ARLID cav_un_auth*0494629
name1 Hendrych
name2 F.
country CZ
author
ARLID cav_un_auth*0370372
name1 Slavík
name2 Jakub
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/SI/slavik-0642596.pdf
cas_special
project
project_id GA22-12790S
agency GA ČR
country CZ
ARLID cav_un_auth*0449240
abstract (eng) In the article, the rough path theory is extended to cover paths from the exponential Besov-Orlicz space, and the extension is used to treat nonlinear differential equations driven by such paths. The exponential Besov-Orlicz-type spaces, rough paths, and controlled rough paths are defined and analyzed, a sewing lemma for such paths is given, and the existence and uniqueness of the solution to differential equations driven by these paths is proved. The results cover equations driven by paths of continuous local martingales with Lipschitz continuous quadratic variation (e.g. the Wiener process) or by paths of fractionally filtered Hermite processes in the nth Wiener chaos with Hurst parameter H ∈ (1/3, 1/2] (e.g. the fractional Brownian motion).
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2026
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0372942
cooperation
ARLID cav_un_auth*0340903
name Matematicko-fyzikalni fakulta UK
institution MFF UK
confidential S
article_num 3
mrcbC91 C
mrcbC96 https://arxiv.org/abs/2406.02793
mrcbT16-e MATHEMATICS
mrcbT16-f 1
mrcbT16-g 0.2
mrcbT16-h 9.6
mrcbT16-i 0.0029
mrcbT16-j 0.85
mrcbT16-k 1309
mrcbT16-q 51
mrcbT16-s 0.907
mrcbT16-y 31.99
mrcbT16-x 1.04
mrcbT16-3 217
mrcbT16-4 Q1
mrcbT16-5 0.800
mrcbT16-6 64
mrcbT16-7 Q2
mrcbT16-C 60.1
mrcbT16-M 0.79
mrcbT16-N Q2
mrcbT16-P 60.1
arlyear 2026
mrcbU14 105023670983 SCOPUS
mrcbU24 PUBMED
mrcbU34 001633605300003 WOS
mrcbU63 cav_un_epca*0254775 Potential Analysis 64 1 2026 0926-2601 1572-929X Springer