bibtype C - Conference Paper (international conference)
ARLID 0644268
utime 20260115101637.4
mtime 20260108235959.9
DOI 10.1007/978-3-032-10192-1_14
title (primary) (eng) WARD: Weather-Aware Road Surface Condition Monitoring Dataset
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0644267
ISBN 978-3-032-10192-1
title Image Analysis and Processing - ICIAP 2025
part_title Part II
page_num 164-175
publisher
place Cham
name Springer
year 2026
editor
name1 Galasso
name2 Fabio
editor
name1 Masi
name2 Iacopo
keyword computer vision
keyword environmental monitoring
keyword object detection
author (primary)
ARLID cav_un_auth*0500746
name1 Nesnídalová
name2 Soňa
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0379363
name1 Kerepecký
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0283562
name1 Novozámský
name2 Adam
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2026/ZOI/nesnidalova-0644268.pdf
cas_special
project
project_id GA24-10069S
agency GA ČR
country CZ
ARLID cav_un_auth*0472834
abstract (eng) Road surface condition (RSC) monitoring is essential for enhancing vehicle safety and accident prevention. This study investigates the application of computer vision techniques for real-time sensing of road surface conditions. We introduce a novel dataset named WARD (Weather-Aware Road Dataset), a comprehensive collection of almost 55 000 images collected in real-world driving scenarios across diverse seasonal and weather conditions, designed to advance RSC detection, now available for download. We thoroughly evaluate state-of-the-art computer vision models, specifically MobileNet and EfficientNet, on both the WARD and publicly available RoadSaW datasets, providing insights into their classification performance. MobileNet exhibited superior classification and inference speed results, processing images at up to 30 fps on an affordable GPU. To improve real-time efficiency, we employ temporal smoothing through moving window aggregation. Our findings validate the potential of non-contact, camera-based RSC monitoring, showcasing its practicality and cost-effectiveness compared to other sensors.
action
ARLID cav_un_auth*0500747
name International Conference on Image Analysis and Processing – ICIAP 2025 /23./
dates 20250915
mrcbC20-s 20250919
place Roma
country IT
RIV JC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2026
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0374433
cooperation
ARLID cav_un_auth*0377559
name ČVUT v Praze, Fakulta jaderného a fyzikálního inženýrství
institution ČVUT FJFI
country CZ
confidential S
arlyear 2026
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0644267 Image Analysis and Processing - ICIAP 2025 Part II 978-3-032-10192-1 164 175 Cham Springer 2026 Lecture Notes in Computer Science 16168
mrcbU67 Rodolà Emanuele 340
mrcbU67 Galasso Fabio 340
mrcbU67 Masi Iacopo 340