bibtype J - Journal Article
ARLID 0645206
utime 20260129114639.6
mtime 20260127235959.9
SCOPUS 105024660789
WOS 001637702500001
DOI 10.1007/s11228-025-00782-2
title (primary) (eng) On Semismooth* Path-Following Method for Parametric Inclusions
specification
page_count 25 s.
media_type P
serial
ARLID cav_un_epca*0343967
ISSN 1877-0533
title Set-Valued and Variational Analysis
volume_id 33
publisher
name Springer
keyword generalized equation
keyword uniform semismoothness*
keyword path-following method
author (primary)
ARLID cav_un_auth*0497379
name1 Roubal
name2 Tomáš
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
share 51
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
share 49
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2026/MTR/roubal-0645206.pdf
cas_special
abstract (eng) This paper investigates a path-following method inspired by the semismooth & lowast; approach for solving algebraic inclusions, with a primary emphasis on the role of strong subregularity and its crucial role in ensuring the robustness and stability of the path-following method, as it provides a framework to uniformly control the distance between the input and the solution set across a continuous path. We explore the problem of finding a mapping x : [0, T] -f R-n that satisfies 0 E F(t, x (t)) for each t E [0, T], where F is a set-valued mapping from R x R-n to R-n. We consider an approach based on mappings exhibiting uniform semismooth & lowast; properties along continuous trajectories, thereby maintaining a uniform grid error throughout the interval. Error estimates demonstrate an o(h) grid error with respect to the discretization parameter under natural regularity assumptions. Numerical experiments applied to electric circuit and elastoplastic models confirm the efficiency and robustness of the method.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2026
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0375153
confidential S
article_num 46
mrcbC91 A
mrcbT16-e MATHEMATICS.APPLIED
mrcbT16-f 1.5
mrcbT16-g 0.4
mrcbT16-h 5.7
mrcbT16-i 0.00161
mrcbT16-j 0.915
mrcbT16-k 673
mrcbT16-q 50
mrcbT16-s 0.89
mrcbT16-y 31.85
mrcbT16-x 1.31
mrcbT16-3 236
mrcbT16-4 Q1
mrcbT16-5 1.100
mrcbT16-6 33
mrcbT16-7 Q2
mrcbT16-C 52.9
mrcbT16-M 0.66
mrcbT16-N Q2
mrcbT16-P 52.9
arlyear 2025
mrcbU14 105024660789 SCOPUS
mrcbU24 PUBMED
mrcbU34 001637702500001 WOS
mrcbU63 cav_un_epca*0343967 Set-Valued and Variational Analysis 33 4 2025 1877-0533 1877-0541 Springer