| bibtype |
J -
Journal Article
|
| ARLID |
0645206 |
| utime |
20260129114639.6 |
| mtime |
20260127235959.9 |
| SCOPUS |
105024660789 |
| WOS |
001637702500001 |
| DOI |
10.1007/s11228-025-00782-2 |
| title
(primary) (eng) |
On Semismooth* Path-Following Method for Parametric Inclusions |
| specification |
| page_count |
25 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0343967 |
| ISSN |
1877-0533 |
| title
|
Set-Valued and Variational Analysis |
| volume_id |
33 |
| publisher |
|
|
| keyword |
generalized equation |
| keyword |
uniform semismoothness* |
| keyword |
path-following method |
| author
(primary) |
| ARLID |
cav_un_auth*0497379 |
| name1 |
Roubal |
| name2 |
Tomáš |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept (eng) |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department (eng) |
MTR |
| share |
51 |
| garant |
K |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0292941 |
| name1 |
Valdman |
| name2 |
Jan |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| full_dept |
Department of Decision Making Theory |
| share |
49 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| abstract
(eng) |
This paper investigates a path-following method inspired by the semismooth & lowast; approach for solving algebraic inclusions, with a primary emphasis on the role of strong subregularity and its crucial role in ensuring the robustness and stability of the path-following method, as it provides a framework to uniformly control the distance between the input and the solution set across a continuous path. We explore the problem of finding a mapping x : [0, T] -f R-n that satisfies 0 E F(t, x (t)) for each t E [0, T], where F is a set-valued mapping from R x R-n to R-n. We consider an approach based on mappings exhibiting uniform semismooth & lowast; properties along continuous trajectories, thereby maintaining a uniform grid error throughout the interval. Error estimates demonstrate an o(h) grid error with respect to the discretization parameter under natural regularity assumptions. Numerical experiments applied to electric circuit and elastoplastic models confirm the efficiency and robustness of the method. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| reportyear |
2026 |
| num_of_auth |
2 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0375153 |
| confidential |
S |
| article_num |
46 |
| mrcbC91 |
A |
| mrcbT16-e |
MATHEMATICS.APPLIED |
| mrcbT16-f |
1.5 |
| mrcbT16-g |
0.4 |
| mrcbT16-h |
5.7 |
| mrcbT16-i |
0.00161 |
| mrcbT16-j |
0.915 |
| mrcbT16-k |
673 |
| mrcbT16-q |
50 |
| mrcbT16-s |
0.89 |
| mrcbT16-y |
31.85 |
| mrcbT16-x |
1.31 |
| mrcbT16-3 |
236 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
1.100 |
| mrcbT16-6 |
33 |
| mrcbT16-7 |
Q2 |
| mrcbT16-C |
52.9 |
| mrcbT16-M |
0.66 |
| mrcbT16-N |
Q2 |
| mrcbT16-P |
52.9 |
| arlyear |
2025 |
| mrcbU14 |
105024660789 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
001637702500001 WOS |
| mrcbU63 |
cav_un_epca*0343967 Set-Valued and Variational Analysis 33 4 2025 1877-0533 1877-0541 Springer |
|