bibtype J - Journal Article
ARLID 0645516
utime 20260203111259.7
mtime 20260202235959.9
DOI 10.3390/computation14020042
title (primary) (eng) Information Inequalities for Five Random Variables
specification
page_count 32 s.
media_type E
serial
ARLID cav_un_epca*0630188
ISSN 2079-3197
title Computation
volume_id 14
keyword entropic region
keyword information inequalities
keyword polymatroid
keyword polyhedral geometry
author (primary)
ARLID cav_un_auth*0398469
name1 Csirmaz
name2 Laszlo
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country HU
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0447301
name1 Csirmaz
name2 E. P.
country HU
source
url https://library.utia.cas.cz/separaty/2026/MTR/csirmaz-0645516.pdf
cas_special
project
project_id ERMiD
agency EC
country XE
ARLID cav_un_auth*0502900
abstract (eng) The entropic region is formed by the collection of the Shannon entropies of all subvectors of finitely many jointly distributed discrete random variables. For four or more variables, the structure of the entropic region is mostly unknown. We utilize a variant of the Maximum Entropy Method to obtain five-variable non-Shannon entropy inequalities, which delimit the five-variable entropy region. This method adds copies of some of the random variables in generations. A significant reduction in computational complexity, achieved through theoretical considerations and by harnessing the inherent symmetries, allowed us to calculate all five-variable non-Shannon inequalities provided by the first nine generations. Based on the results, we define two infinite collections of such inequalities and prove them to be entropy inequalities. We investigate downward-closed subsets of non-negative lattice points that parameterize these collections, and based on this, we develop an algorithm to enumerate all extremal inequalities. The discovered set of entropy inequalities is conjectured to characterize the applied method completely.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2026
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0375330
confidential S
article_num 42
mrcbC91 A
mrcbT16-e MATHEMATICS.INTERDISCIPLINARYAPPLICATIONS
mrcbT16-f 1.9
mrcbT16-g 0.7
mrcbT16-h 2.7
mrcbT16-i 0.00211
mrcbT16-j 0.34
mrcbT16-k 1898
mrcbT16-q 34
mrcbT16-s 0.437
mrcbT16-y 48.42
mrcbT16-x 2.7
mrcbT16-3 1586
mrcbT16-4 Q2
mrcbT16-5 1.900
mrcbT16-6 248
mrcbT16-7 Q2
mrcbT16-C 62.1
mrcbT16-M 0.64
mrcbT16-N Q2
mrcbT16-P 62.1
arlyear 2026
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0630188 Computation 14 2 2026 2079-3197 2079-3197