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1. Introduction

Stochastic PDEs for manifold-valued processes have attracted a great deal of attention due 
to their wide range of applications in physics, in particular in kinetic theory of phase transitions 
and quantum field theory, see e.g. Bruned et al. [6], the first and the second named authors 
[7–9], Carroll [23], Funaki [38] and Röckner et al. [58] and references therein. In this paper we 
are dealing with a particular stochastic PDE, known as a stochastic geometric wave equation 
(SGWE), that was introduced and studied by the first and the third named authors in a series of 
papers [15], [17,19], see also [18].

The aim of this paper is to prove a large deviations principle (LDP) for the one-dimensional 
stochastic wave equation with solutions taking values in a d-dimensional compact Riemannian 
manifold M . More precisely we will consider the equation

Dt ∂tu
ε = Dx∂xu

ε + √
εYuε (∂tu

ε, ∂xu
ε) Ẇ , (1.1)

where ε ∈ (0, 1] approaches zero. Here D is the connection on the pull-back bundle u−1T M of 
the tangent bundle over M induced by the Riemannian connection on M , see e.g. [16,60], Y is 
a non-linearity and W is a spatially homogeneous Wiener process on R. A precise formulation 
is provided in Section 3. Here we only note that we will work with the extrinsic formulation of 
(1.1), that is, we assume M to be isometrically embedded into a certain Euclidean space Rn, 
which holds true due to the celebrated Nash isometric embedding theorem [49]. Then, in view of 
Remark 2.5 in [15], equation (1.1) can be written in the form

∂ttu
ε = ∂xxu

ε + Auε(∂tu
ε, ∂tu

ε) − Auε(∂xu
ε, ∂xu

ε) + √
εYuε (∂tu

ε, ∂xu
ε) Ẇ , (1.2)
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where A is the second fundamental form of the submanifold M ⊆ Rn. More details about the 
equivalence of extrinsic and intrinsic formulations of stochastic PDEs can be found in Sections 2 
and 12 of [15]. Moreover, using the notation zε = (uε, ∂tu

ε) equation (1.2) can be formally 
written as the following stochastic evolution equation in a suitable topological vector space,

dzε(t) = (Gzε(t) + F(zε(t)))dt + √
εG(zε(t))dW(t), t ∈ [0, T ], (1.3)

with a generator G of some C0-group, and the drift and diffusion operators F and G, see Propo-
sition 3.11 and Remark 4.4 for details.

Due to its importance for applications, LDP for stochastic PDEs has been widely studied by 
many authors, see e.g. [35] and [36]. However, analysis of large deviations for stochastic PDEs 
for manifold-valued processes is very little understood. To the best of our knowledge, LDP has 
only been established for the stochastic Landau-Lifshitz-Gilbert equation with solutions taking 
values in the two dimensional sphere [9]. Our paper is the first to study LDP for SGWE. One 
should also mention a PhD thesis by Hussain [42], see also [11], who has established the LDP 
for stochastic heat equation with codimension one constraint.

If ε = 0 then equation (1.2) reduces to a deterministic wave maps equation. It has been in-
tensively studied in recent years due to its importance in field theory and general relativity, see 
for example [39] and references therein. It turns out that solutions to the deterministic geometric 
wave equation can exhibit a very complex behavior including (multiple) blowups and shrink-
ing and expanding bubbles, see [3,4]. In some cases the Soliton Resolution Conjecture has been 
proved, see [43]. Various concepts of stability of these phenomena, including the stability of 
soliton solutions has also been intensely studied [29]. It seems natural to investigate stability for 
wave maps by studying the impact of small random perturbations and this idea leads to equation 
(1.2). Let us recall that the stability of solitons under the influence of noise has already been 
studied by means of LDP for the Schrödinger equations, see [28]. LDP, once established, will 
provide a tool for more precise analysis of the stability of wave maps.

Finally, let us recall that in [46] large deviations techniques are applied to derive a rigorous 
connection between the Yang-Mills measure and the energy functional. While in our work the 
problem is much easier because of the assumed regularity of the noise, we believe we provide a 
starting point for an analogous result in the case of less regular noises. Equations of stochastic 
flows for harmonic maps with very irregular noise have been recently proposed in [6] and [58].

Another motivation for studying equation (1.2) with ε > 0 comes from the Hamiltonian 
structure of deterministic wave equation. Deterministic Hamiltonian systems may have infinite 
number of invariant measures and are not ergodic, see the discussion of this problem in [32]. 
Characterisation of such systems is a long standing problem. The main idea, which goes back 
to Kolmogorov-Eckmann-Ruelle, is to choose a suitable small random perturbation such that the 
solution to stochastic system is a Markov process with the unique invariant measure and then one 
can select a “physical” invariant measure of the deterministic system by taking the limit of van-
ishing noise, see for example [27], where this idea is applied to wave maps. A finite dimensional 
toy example was studied in [2].

Our proof of the large deviations principle relies on the weak convergence method introduced 
in [21] and is based on a variational representation formula for certain functionals of the driving 
infinite dimensional Brownian motion. However, the approach of [21] can not be directly applied 
to the SGWE and requires a number of modifications, see Section 5 below.

Recently in [61] the authors have established an LDP for a certain class of Banach space 
valued stochastic differential equations by a different method, but their argument does not apply 
3
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to SGWE studied in this paper because, for example the wave operator does not generate a 
compact C0-semigroup.

Finally, we note that the approach we developed in this paper can be applied to a number of 
problems that are open at present, including the beam equation studied in [14], and the nonlinear 
wave equation with polynomial nonlinearity and spatially homogeneous noise. In particular, this 
method would generalize the results of [52] and [64]. Our approach would also lead to an exten-
sion of the work of Martirosyan [48] who considers a nonlinear wave equations on a bounded 
domain. We believe that the methods of the present work will allow us to obtain the large devi-
ations principle for the family of stationary measures generated by the flow of stochastic wave 
equation, with multiplicative white noise, in non-local Sobolev spaces over the full space Rd .

The organisation of the paper is as follows. In Section 2, we introduce our notation and state 
the definitions used in the paper. Section 3 contains some properties of the nonlinear drift terms 
and the diffusion coefficient that we need later. In Section 4 we prove the existence of a unique 
global and strong in PDE sense solution to the skeleton equation associated to (1.2). The proof 
of Large Deviations Principle, based on weak convergence approach, is provided in Section 5. 
In Appendix A, we recall the intrinsic and extrinsic formulation of SGWE from [15] and state, 
without proof, an equivalence result between them. We conclude the paper with Appendices B
and C, where we state modified version of the existing results on global well-posedness of (1.2)
and energy inequality from [15] that we use frequently in the paper.

Finally, let us point out that the current paper is an expanded and corrected version of paper 
[10].
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2. Notation

For any two non-negative quantities a and b, we write a � b if there exists a universal constant 
c > 0 such that a ≤ cb, and we write a � b when a � b and b � a. In case we want to emphasize 
the dependence of c on some parameters a1, . . . , ak , then we write, respectively, �a1,...,ak

and 
�a1,...,ak

. We will denote by BR(a), for a ∈ R and R > 0, the open ball in R with center at a and 
we put BR = BR(0). Now we list the notation used throughout the whole paper.

• N = {0, 1, · · · } denotes the set of natural numbers, R+ = [0, ∞), Leb denotes the Lebesgue 
measure.

• Let I ⊆ R be an open interval. By Lp(I ; Rn), p ∈ [1, ∞), we denote the classical real Ba-
nach space of all (equivalence classes of) Rn-valued p-integrable maps on I . The norm on 
Lp(I ; Rn) is given by
4
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‖u‖Lp(I ;Rn) :=
⎛⎝∫

I

|u(x)|p dx

⎞⎠
1
p

, u ∈ Lp(I ;Rn), (2.1)

where | · | is Euclidean norm on Rn. For p = ∞, we consider the usual modification to 
essential supremum.

• For any p ∈ [1, ∞], Lp

loc(R; Rn) stands for a metrizable topological vector space equipped 
with a natural countable family of seminorms {pj }j∈N defined by

pj (u) := ‖u‖Lp(Bj ;Rn), u ∈ L2
loc(R;Rn), j ∈ N. (2.2)

• By Hk,p(I ; Rn), for p ∈ [1, ∞] and k ∈N , we denote the Banach space of all u ∈ Lp(I ; Rn)

for which Dju ∈ Lp(I ; Rn), j = 0, 1, . . . , k, where Dj is the weak derivative of order j . The 
norm here is given by

‖u‖Hk,p(I ;Rn) :=
⎛⎝ k∑

j=0

‖Dju‖p

Lp(I ;Rn)

⎞⎠
1
p

, u ∈ Hk,p(I ;Rn). (2.3)

• We write Hk,p

loc (R; Rn), for p ∈ [1, ∞] and k ∈ N , to denote the space of all elements u ∈
L

p

loc(R; Rn) whose weak derivatives up to order k belong to Lp

loc(R; Rn). It is relevant to 

note that Hk,p

loc (R; Rn) is a metrizable topological vector space equipped with the following 
natural countable family of seminorms {qj }j∈N ,

qj (u) := ‖u‖Hk,p(Bj ;Rn), u ∈ H
k,p

loc (R;Rn), j ∈ N. (2.4)

The spaces Hk,2(I ; Rn) and H
k,2
loc (R; Rn) are usually denoted by Hk(I ; Rn) and

Hk
loc(R; Rn) respectively.

• We set

H := H 2(R;Rn) × H 1(R;Rn), Hloc := H 2
loc(R;Rn) × H 1

loc(R;Rn). (2.5)

• To shorten the notation in calculation we set the following rules:
– if the space where function is taking value, for example Rn, is clear then to save the space 

we will omit Rn, for example Hk(I) instead Hk(I ; Rn);
– if I = (0, T ) or (−R, R) or B(x, R), for some T , R > 0 and x ∈ R, then instead of 

Lp(I ; Rn) we write, respectively, Lp(0, T ; Rn), Lp(BR; Rn), Lp(B(x, R); Rn). Simi-
larly for Hk and Hk

loc spaces.
– write H(BR) or HR for H 2((−R, R); Rn) × H 1((−R, R); Rn).

• For any nonnegative integer j , let Cj (R) be the space of real valued continuous functions 
whose derivatives up to order j are continuous on R. We also need the family of spaces 
Cj

b (R) defined by

Cj
b (R) :=

{
u ∈ Cj (R); ∀α ∈ N, α ≤ j,∃Kα,‖Dju‖L∞(R) < Kα

}
.

For j = 0 we will write Cb(R) instead C0(R).
b

5
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• Given T > 0 and a real Banach space E, we denote by C([0, T ]; E) the real Banach space 
of all E-valued continuous functions u : [0, T ] → E endowed with the norm

‖u‖C([0,T ];E) := sup
t∈[0,T ]

‖u(t)‖E, u ∈ C([0, T ];E).

By 0C([0, T ]; E) we mean the set of elements of C([0, T ]; E) vanishes at origin, that is,

0C([0, T ];E) := {u ∈ C([0, T ];E) : u(0) = 0} .

• For given metric space (X, ρ), by C(R; X) we mean the space of continuous functions from 
R to X which is equipped with the metric

(f, g) 
→
∞∑

j=1

1

2j
min{1, sup

t∈[−j,j ]
ρ(f (t), g(t))}.

• We denote the tangent and the normal bundle of a smooth manifold M by T M and NM , 
respectively. Let F(M) be the set of all smooth R-valued function on M .

• A map u : R → M belongs to Hk
loc(R; M) provided that θ ◦ u ∈ Hk

loc(R; R) for every θ ∈
F(M). We equip Hk

loc(R; M) with the topology induced by the mappings

Hk
loc(R;M) � u 
→ θ ◦ u ∈ Hk

loc(R;R), θ ∈ F(M).

Since the tangent bundle T M of a manifold M is also a manifold, this definition covers 
Sobolev spaces of T M-valued maps too.

• By L(X, Y) we denote the space of all linear continuous operators from a topological vector 
space X to Y . If H1, H2 are two separable Hilbert spaces then L2 (H1,H2) ⊂ L (H1,H2)

will denote the space of Hilbert–Schmidt operators acting from H1 to H2.
• We denote by S(R) the space of Schwartz functions on R and write S ′(R) for its dual, which 

is the space of tempered distributions on R. By L2
λ we denote the weighted space L2(R, λ), 

where dλ(x) := e−x2
dx, x ∈ R.

3. Preliminaries

In this section we discuss all the required preliminaries about the nonlinearity and the diffusion 
coefficient that we need in Section 4. We are following Sections 3 to 5 of [15] very closely here. 
Below we use the notation F(·), along with ̂·, to denote the Fourier transform.

3.1. The Wiener process

Let μ be a symmetric Borel measure on R. The random forcing we consider is in the form of 
a spatially homogeneous Wiener process on R with a spectral measure μ satisfying∫

(1 + |x|2)2 μ(dx) < ∞ . (3.1)
R

6
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By L2(R, μ, C) we denote the Banach space of complex-valued functions that are square inte-
grable with respect to the measure μ.

Definition 3.1. An S ′(R)-valued process W = {W(t), t ≥ 0}, on a given stochastic basis 
(	, F, (Ft )t≥0, P ), is called a spatially homogeneous Wiener process with spectral measure μ
provided that

(1) for every ϕ ∈ S(R), {W(t)(ϕ), t ≥ 0} is a real-valued (Ft )-adapted Wiener process,
(2) W(t)(aϕ + ψ) = aW(t)(ϕ) + W(t)(ψ) holds almost surely for every t ≥ 0, a ∈ R and 

ϕ, ψ ∈ S(R),
(3) for every t ≥ 0 and ϕ1, ϕ2 ∈ S(R), E [W(t)(ϕ1)W(t)(ϕ1)] = t〈ϕ̂1, ϕ̂2〉L2(μ).

It is shown in [56] that the Reproducing Kernel Hilbert Space (RKHS) Hμ of the Gaussian 
distribution of W(1) is given by

Hμ :=
{
ψ̂μ : ψ ∈ L2(R,μ,C),ψ(x) = ψ(−x), x ∈ R

}
.

Note that Hμ endowed with inner-product

〈
ψ̂1μ, ψ̂2μ

〉
Hμ

:=
∫
R

ψ1(x)ψ2(x)μ(dx),

is a Hilbert space.
Recall from [56,57] that W can be regarded as a cylindrical Wiener process on Hμ and it takes 

values in any Hilbert space E, such that the embedding Hμ ↪→ E is Hilbert-Schmidt. Since we 
explicitly know the structure of Hμ, the next result, whose proof is based on [54, Lemma 2.2]
and discussion with Szymon Peszat [55] shows that assumption (3.1) is equivalent to saying that 
the paths of W belong to C([0, T ]; H 2

λ (R)), where the space Hs
λ(R), s ≥ 0, is defined as the 

completion of S(R) with respect to the norm

‖u‖Hs
λ(R) :=

⎛⎝∫
R

(1 + |x|2)s |F(λ1/2u)(x)|2 dx

⎞⎠
1
2

, (3.2)

where F denoted the Fourier transform and, with a slight abuse of notation, λ(x) = e−x2
, x ∈ R, 

denotes the density of the measure λ.

Lemma 3.2. Let us assume that the measure μ satisfies (3.1). Then the identity map from Hμ

into H 2
λ (R) is a Hilbert-Schmidt operator.

Proof of Lemma 3.2. To simplify the notation we set

L2 (R,μ) := {f ∈ L2(R,μ;C) : f (x) = f (−x), ∀x ∈R}.
(s)

7
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Let {ek}k∈N ⊂ S(R) be an orthonormal basis of L2
(s)(R, μ). Then, by the definition of Hμ, 

{F(ekμ)}k∈N is an orthonormal basis of Hμ. Invoking the convolution property of the Fourier 
transform and the Bessel inequality, we obtain,

∞∑
k=1

‖êkμ‖2
H 2

λ

=
∞∑

k=1

∫
R

(1 + |x|2)|F
(
λ1/2F(ekμ)

)
(x)|2 dx

≤
∫
R

(1 + |x|2)2

( ∞∑
k=1

|F
(
λ1/2F(ekμ)

)
(x)|2

)
dx

=
∫
R

(1 + |x|2)2

⎛⎝ ∞∑
k=1

∣∣∣∣ ∫
R

F
(
λ1/2

)
(x − z)ek(z)μ(dz)

∣∣∣∣2
⎞⎠ dx

≤
∫
R2

(1 + |x|2)2|F
(
λ1/2

)
(x − z)|2 μ(dz)dx

=
∫
R2

(1 + |x + z|2)2|F
(
λ1/2

)
(x)|2 μ(dz)dx

� ‖λ1/2‖2
H 1

λ (R)

∫
R

(1 + |z|2)2 μ(dz).

Hence Lemma 3.2. �
It is relevant to note here that H 2

λ (R) is a subset of H 2
loc(R) and the embedding is continuous.

Remark 3.3. It is important to note that all the results of this paper are valid for any Wiener 
process which takes values in the space H 2

λ (R) not just for the Wiener process which is space 
homogeneous. However, in the case of space homogeneity, the solution process will be space 
homogeneous if the initial data is space homogeneous.

The next result, whose detailed proof can be found in [51, Lemma 1], plays very important 
role in deriving the required estimates for the terms involving diffusion coefficient.

Lemma 3.4. If the measure μ satisfies (3.1), then Hμ is continuously embedded in C2
b(R). More-

over, for given g ∈ Hj(B(x, R); Rn), where x ∈ R, R > 0 and j ∈ {0, 1, 2}, the multiplication 
operator

Hμ � ξ 
→ g · ξ ∈ Hj(B(x,R);Rn),

is Hilbert-Schmidt and ∃ c > 0, independent of R, x, g, ξ and j , such that

‖ξ 
→ g · ξ‖L (H ,Hj (B(x,R);Rn)) ≤ c‖g‖Hj (B(x,R);Rn).
2 μ

8
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Remark 3.5. Note that the constant c of inequality in Lemma 3.4 does not depend on the size 
and position of the ball. However, if we consider a cylindrical Wiener process, then c will also 
depend on the center x but will be bounded on bounded sets with respect to x.

3.2. Extensions of non-linear term

Recall that M is isometrically embedded into a certain Euclidean space Rn and TpM ⊆ Rn

and NpM ⊆ Rn are the tangent and the normal vector spaces at p ∈ M , respectively. Further 
recall that A is the second fundamental form tensor of M ⊆ Rn. Thus, for each p ∈ M , Ap :
TpM × TpM → NpM . It is well known, see e.g. [41], that Ap , p ∈ M , is a symmetric bilinear 
form.

Since we are following the approach of [7], [15], and [40], one of the main steps in the proof 
of the existence theorem is to consider the problem (1.2) in the ambient space Rn with an appro-
priate extension of A and Y from their domain to Rn. In this section we discuss two extensions 
of A which work fine in the context of stochastic wave map, as displayed in [15].

Remark 3.6. Let us note that we only prove the existence of a global solution to SPDE in the 
Euclidean space, obtained by considering suitable extensions of A and Y to Rn, for the initial 
data taking values in the manifold M and not for an arbitrary initial data. On the other hand, it 
is possible to prove that the approximating equation (4.10) has a local solution for every initial 
data. But we don’t know if this solution is global unless the initial data takes values in M .

The same remarks apply to the skeleton equation (4.10) studied in Section 4.

Let us denote by E the exponential function

TRn � (p, ξ) 
→ p + ξ ∈Rn,

relative to the Riemannian manifold Rn equipped with the standard Euclidean metric. The proof 
of the following proposition about the existence of an open set O containing M , which is called 
a tubular neighborhood of M , can be found in [53, Proposition 7.26, p. 200].

Proposition 3.7. There exists an Rn-open neighborhood O around M and an NM-open neigh-
borhood V around the set {(p, 0) ∈ NM : p ∈ NM} such that the restriction of the exponential 
map E |V : V → O is a diffeomorphism. Moreover, the neighborhood V can be chosen in such a 
way that (p, tξ ) ∈ V whenever t ∈ [−1, 1] and (p, ξ) ∈ V .

In case of no ambiguity, we will denote the diffeomorphism E |V : V → O by E . By using the 
Proposition 3.7, diffeomorphism i : NM � (p, ξ) 
→ (p, −ξ) ∈ NM and the standard argument 
of partition of unity, one can construct a function ϒ :Rn → Rn which identifies the manifold M
as its fixed point set. To be precise we have the following result.

Lemma 3.8 ([15, Corollary 3.4 and Remark 3.5]). There exists a smooth compactly supported 
function ϒ : Rn →Rn which has the following properties:

(1) restriction of ϒ on O is a diffeomorphism,
(2) ϒ

∣∣
O

= E ◦ i ◦ E−1 : O → O is an involution on the tubular neighborhood O of M ,
(3) ϒ(ϒ(q)) = q for every q ∈ O ,
9
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(4) if q ∈ O , then ϒ(q) = q if and only if q ∈ M ,
(5) if p ∈ M , then

ϒ′(p)ξ =
{

ξ, provided ξ ∈ TpM,

−ξ provided ξ ∈ NpM.

The following result is the first extension of the second fundamental form that we use in this 
paper.

Proposition 3.9 ([15, Proposition 3.6]). If we define

Bq(a, b) =
n∑

i,j=1

∂2ϒ

∂qi∂qj

(q)aibj = ϒ′′
q(a, b), q ∈ Rn, a, b ∈Rn, (3.3)

and

Aq(a, b) = 1

2
Bϒ(q)(ϒ

′(q)a,ϒ′(q)b), q ∈Rn, a, b ∈ Rn, (3.4)

then, for every p ∈ M ,

Ap(ξ, η) = Ap(ξ, η), ξ, η ∈ TpM,

and

Aϒ(q)(ϒ
′(q)a,ϒ′(q)b) = ϒ′(q)Aq(a, b) + Bq(a, b), q ∈ O, a,b ∈Rn. (3.5)

Along with the extension A, defined by formula (3.4), we also need the extension A , defined 
by formula (3.6), of the second fundamental form tensor A which will be perpendicular to the 
tangent space.

Proposition 3.10 ([15, Proposition 3.7]). Consider the function

A : Rn ×Rn ×Rn � (q, a, b) 
→ Aq(a, b) ∈Rn,

defined by formula

Aq(a, b) =
n∑

i,j=1

aivij (q)bj = Aq(πq(a),πq(b)), q ∈Rn, a ∈ Rn, b ∈ Rn, (3.6)

where πp , p ∈ M , is the orthogonal projection of Rn onto TpM , and vij , for i, j ∈ {1, . . . , n}, 
are smooth and symmetric (i.e. vij = vji ) extensions of vij (p) := Ap(πpei, πpej ) to ambient 
space Rn. Then A satisfies the following:

(1) A is smooth in (q, a, b) and symmetric in (a, b) for every q ,
(2) Ap(ξ, η) = Ap(ξ, η) for every p ∈ M , ξ, η ∈ TpM ,
(3) Ap(a, b) is perpendicular to TpM for every p ∈ M , a, b ∈ Rn.
10
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3.3. The C0-group and the extension operators

In this subsection we recall some facts on infinitesimal generators of the linear wave equation 
and on the extension operators in various Sobolev spaces, see [15, Section 5] for details.

Proposition 3.11. Assume that k, n ∈ N . The one parameter family of operators (St ), t ∈ R
defined by

St

(
u

v

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos[t (−�)1/2]u1 + (−�)−1/2 sin[t (−�)1/2]v1

...

cos[t (−�)1/2]un + (−�)−1/2 sin[t (−�)1/2]vn

−(−�)1/2 sin[t (−�)1/2]u1 + cos[t (−�)1/2]v1

...

−(−�)1/2 sin[t (−�)1/2]un + cos[t (−�)1/2]vn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.7)

is a C0-group on

Hk := Hk+1(R;Rn) × Hk(R;Rn),

and its infinitesimal generator is an operator Gk = G defined by

D(Gk) = Hk+2(R;Rn) × Hk+1(R;Rn),

G
(

u

v

)
=
(

v

�u

)
.

Remark 3.12. It is enlightening to observe that the C0 group (St )t∈R on the Hilbert space Hk

defined above in (3.7) has a unique extension to a C0 group (S̃t )t∈R on the topological vector 
space Hk

loc := Hk+1
loc (R; Rn) × Hk

loc(R; Rn). In particular, on the space Hloc = H1
loc.

The following result is well known, see e.g. [47] and [34, Section II.5.4].

Proposition 3.13. Let k ∈N . There exists a linear bounded operator

Ek : Hk((−1,1);Rn) → Hk(R;Rn),

such that

(i) Ekf = f almost everywhere on (−1, 1) whenever f ∈ Hk((−1, 1); Rn),
(ii) Ekf vanishes outside of (−2, 2) whenever f ∈ Hk((−1, 1); Rn),

(iii) Ekf ∈ Ck(R; Rn)), if f ∈ Ck([−1, 1]; Rn)),
(iv) if j ∈N and j < k, then there exists a unique extension of Ek to a bounded linear operator 

from Hj((−1, 1); Rn) to Hj(R; Rn).

Definition 3.14. For k ∈ N , r > 0 we define the operators

Ek
r : Hj((−r, r);Rn) → Hj(R;Rn), j ∈ N, j ≤ k,
11
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called as r-scaled Ek operators, by the following formula

(Ek
r f )(x) = {Ek[y 
→ f (yr)]}

(x

r

)
, x ∈ R, (3.8)

for r > 0 and f ∈ Hk((−r, r); Rn).

The following remark will be useful in Lemma 4.7.

Remark 3.15. We can rewrite (3.8) as (Ek
r f )(x) = (Ekfr)(

x
r
), f ∈ Hk((−r, r); Rn) where fr :

(−1, 1) � y 
→ f (yr) ∈ Rn. Also, observe that for f ∈ H 1((−r, r); Rn)

‖fr‖2
H 1((−1,1);Rn)

≤ (r−1 + r)‖f ‖2
H 1((−r,r);Rn)

.

3.4. The diffusion coefficient

In this subsection we discuss the assumptions on diffusion coefficient Y which we only need 
in Section 4. It is relevant to note that due to a technical issue, which is explained in Section 5, 
we need to consider stricter conditions on Y in establishing the large deviation principle for (1.2). 
Here Yp : TpM × TpM → TpM , for p ∈ M , is a mapping satisfying,

|Yp(ξ, η)|TpM ≤ CY (1 + |ξ |TpM + |η|TpM), p ∈ M, ξ,η ∈ TpM,

for some constant CY > 0 which is independent of p. By invoking Lemma 3.8 and [15, Proposi-
tion 3.10], we can extend the noise coefficient to map Y :Rn ×Rn ×Rn � (p, a, b) 
→ Yp(a, b) ∈
Rn which satisfies the following:

Y.1 for q ∈ O and a, b ∈Rn,

Yϒ(q)

(
ϒ′(q)a,ϒ′(q)b

)= ϒ′(q)Yq(a, b), (3.9)

Y.2 there exists a compact set KY ⊂ Rn containing M such that Yp(a, b) = 0, for all a, b ∈ Rn, 
whenever p /∈ KY ,

Y.3 Y is of C2-class and there exist positive constants CYi
, i ∈ {1, 2, 3} such that, with notation 

Y(p, a, b) := Yp(a, b), for every p, a, b ∈ Rn,

|Yp(a, b)| ≤ CY0(1 + |a| + |b|), (3.10)∣∣∣∣ ∂Y

∂pi

(p, a, b)

∣∣∣∣≤ CY1(1 + |a| + |b|), i = 1, . . . , n, (3.11)∣∣∣∣ ∂Y

∂ai

(p, a, b)

∣∣∣∣+ ∣∣∣∣ ∂Y

∂bi

(p, a, b)

∣∣∣∣≤ CY2 , i = 1, . . . , n, (3.12)∣∣∣∣ ∂2Y
(p,a, b)

∣∣∣∣≤ CY3, x, y ∈ {p,a, b} and i, j ∈ {1, . . . , n}. (3.13)

∂xj ∂yi

12
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4. Skeleton equation

The purpose of this section is to introduce and study the deterministic equation associated to 
the stochastic geometric wave equation (1.2). Define a space

H
1,2

0 (0, T ,Hμ) :=
{
h ∈ C0 ([0, T ],Hμ) : ḣ ∈ L2(0, T ;Hμ)

}
. (4.1)

Note that H
1,2

0 (0, T , Hμ) is a Hilbert space with norm 
∫ T

0 ‖ḣ(t)‖2
Hμ

dt and the map

L2(0, T ;Hμ) � ḣ 
→ h =
⎧⎨⎩t 
→

t∫
0

ḣ(s) ds

⎫⎬⎭ ∈ H
1,2

0 (0, T ,Hμ), (4.2)

is an isometric isomorphism. For h ∈ H
1,2

0 (0, T , Hμ), we consider the so called “skeleton equa-
tion” associated to problem {

Dt ∂tu = Dx∂xu + Yu(∂tu, ∂xu) ḣ,

u(0, ·) = u0, ∂tu(t, ·)|t=0 = v0
(4.3)

i.e., {
∂ttu = ∂xxu + Au(∂tu, ∂tu) − Au(∂xu, ∂xu) + Yu(∂tu, ∂xu) ḣ ,

u(0, ·) = u0, ∂tu(0, ·) = v0.
(4.4)

Recall that M is a compact Riemannian manifold which is isometrically embedded into some 
Euclidean space Rn, and hence, we can assume that M is a submanifold of Rn. The following 
main result of this section is closely related to [15, Theorem 11.1].

Theorem 4.1. Let us assume that T > 0, h ∈ H
1,2

0 (0, T , Hμ) and (u0, v0)∈H 2
loc ×H 1

loc(R; T M). 
Then there exists a function u : [0, T ) ×R → M such that for every R > T the following asser-
tions hold:

(i) u belongs to C1([0, T ) ×R; M),
(ii) [0, T ) � t 
→ u(t, ·) ∈ H 2((−R, R); M) is continuous,

(iii) [0, T ) � t 
→ u(t, ·) ∈ H 1((−R, R); M) is continuously differentiable,
(iv) u(0, x) = u0(x) and ∂tu(0, x) = v0(x, ω) holds for every x ∈ R,
(v) for every vector field X on M , and every t ≥ 0 and R > 0

〈∂tu(t),X(u(t))〉Tu(t)M = 〈v0,X(u0)〉Tu(t)M +
t∫

0

〈Dx∂xu(s),X(u(s))〉Tu(s)M ds

+
t∫
〈∂tu(s),∇∂t u(s)X〉Tu(s)M ds
0

13
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+
t∫

0

〈X(u(s)), Yu(s)(∂tu(s), ∂xu(s))ḣ(s)〉Tu(s)M ds,

holds in L2(−R, R).

Moreover, if R > T and U : [0, T ) × (−R, R) → M is a map which satisfies conditions (ii)–(v) 
and

(i’) U belongs to C1([0, T ) × (−R, R); M),

then

U(t, x) = u(t, x) for every |x| ≤ R − t and t ∈ [0, T ). (4.5)

Definition 4.2. Assume that T > 0, h ∈ H
1,2

0 (0, T , Hμ) and (u0, v0) ∈ H 2
loc × H 1

loc(R; T M). 
A function u : [0, T ) × R → M satisfying the conditions (i)–(v) in Theorem 4.1 is called an 
intrinsic solution to problem (4.4).

A function u : [0, T ) ×R → M is called an extrinsic solution to problem (4.4) if and only if 
for every R > T the following five conditions hold,

(1) [0, T ) � t 
→ u(t, ·) ∈ H 2((−R, R); Rn) is continuous,
(2) [0, T ) � t 
→ u(t, ·) ∈ H 1((−R, R); Rn) is continuously differentiable,
(3) u(t, x) ∈ M for every t ∈ [0, T ) and x ∈ R,
(4) u(0, x) = u0(x) and ∂tu(0, x) = v0(x) for every x ∈R,
(5) for every t ∈ [0, T ) the following holds in L2((−R, R); Rn),

∂tu(t) = v0 +
t∫

0

[
∂xxu(s) − Au(s)(∂xu(s), ∂xu(s)) + Au(s)(∂tu(s), ∂tu(s))

]
ds

+
t∫

0

Yu(s)(∂tu(s), ∂xu(s))ḣ(s) ds. (4.6)

Remark 4.3. Let us observe that due to Theorem A.3 a function u : [0, T ) ×R → M an intrinsic 
solution to problem (4.4) iff it is an extrinsic solution to problem (4.4). Hence in what follows 
we will simply use a notion “solution” to problem (4.4).

Remark 4.4. Using the C0-group (S̃t )t∈R from Remark 3.12 one could expect that if a function 
u : [0, T ) ×R → M is a solution to problem (4.4), then the Hloc function

z : [0, T ] � t 
→
(

u(t)

∂tu(t)

)
∈Hloc,

satisfies the following mild-integral equation
14
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z(t) = Stz0 +
t∫

0

St−sF(z(s)) ds +
t∫

0

St−s(G(z(s))ḣ(s)) ds, t ∈ [0, T ], (4.7)

where, for z = (u, v) ∈ Hloc and y ∈ Hμ, we put

F(z) =
(

0
Au(v, v) − Au(∂xu, ∂xu)

)
, G(z)y =

(
0

Yu(v, ∂xu)y

)
. (4.8)

It seems that in some sense the maps G and F are locally Lipschitz continuous. However, we 
have not introduced a metric on the space H 2

loc × H 1
loc to make this assertion rigorous. Instead 

we have used some localization and approximation techniques to prove the existence of global 
solutions to our skeleton equation (4.4). There are two main difficulties in the proof of such a 
result. The first one is the invariance of the manifold M and the second one is the no-blowup. The 
former issue is dealt with in Proposition 4.10 while the latter issue is treated in Proposition 4.12. 
Our proof is motivated by a proof from the paper [15]. However, such a result is not sufficient 
to establish LDP with a proper rate function because of the lack of compactness. This additional 
problem is studied in the following Section 5.

The beginning of a proof of the existence part of Theorem 4.1. We begin with an observa-
tion that in view of Remark 4.3 it is sufficient to prove that there exists a function u : [0, T ) ×R →
M such that for every R > T the five conditions [1]–[5] from Definition 4.2 are satisfied.

For this purpose let us fix R > T and r > R + T . Let ϕ : R → R be a smooth compactly 
supported function such that ϕ(x) = 1 for x ∈ (−r, r) and ϕ(x) = 0 for x /∈ (−2r, 2r). Next, 
with the convention z = (u, v) ∈ H and ux = ∂xu, we define the following maps

Fr : [0, T ] ×H � (t, z) 
→
(

0
E1

r−t [Au(v, v) −Au(ux,ux)]
)

∈H,

Gr : [0, T ] ×H � (t, z) 
→
(

0
(E1

r−t Yu(v,ux))·
)

∈ L2(Hμ,H),

Qr : H � z 
→
(

ϕ · ϒ(u)

ϕ · ϒ′(u)v

)
∈ H,

where for (u, v) ∈ H, E1
r−t Yu(v, ux) ∈ H 1

loc(R; Rn) and (E1
r−t Yu(v, ux))· is the multiplication 

operator defined by

(E1
r−t Yu(v,ux))· : Hμ � ξ 
→ (E1

r−t Yu(v,ux)) · ξ ∈ H 1
loc(R;Rn)

satisfy Lemma 3.4. Moreover, we define, for k ∈ N , the following maps

Fr,k : [0, T ] ×H � (t, z) 
→ χ
( |z|Hr−t

k

)
Fr (t, z) ∈H,

Gr,k : [0, T ] ×H � (t, z) 
→ χ
( |z|Hr−t

k

)
Gr (t, z) ∈ L2(Hμ,H),

where χ(s) = max{0, min{1, 2 − s}}, s ≥ 0, i.e.
15
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χ : [0,∞) � s 
→
⎧⎨⎩

1, if s ∈ [0,1],
2 − s, if s ∈ (1,2],
0, if s ∈ (2,∞).

(4.9)

The following two properties of Qr , which we state without proof, are taken from [15, Sec-
tion 7].

Lemma 4.5. If z = (u, v) ∈ H is such that u(x) ∈ M and v(x) ∈ Tu(x)M for x ∈ (−r, r), then 
Qr (z) = z on (−r, r).

Lemma 4.6. The mapping Qr is of C1-class and its derivative, with z = (u, v) ∈ H, satisfies

Q′
r (z)w =

(
ϕ · ϒ′(u)w1

ϕ · [ϒ′′(u)(v,w1) + ϒ′(u)w2]
)

, w = (w1,w2) ∈H.

In the following arguments, till the end of the proof of Corollary 4.9 we choose and fix k ∈ N .
Our first objective is to prove the well posedness of the following approximating version of 

equation (4.7),

z(t) = Stξ +
t∫

0

St−sFr,k(s, z(s)) ds +
t∫

0

St−s(Gr,k(s, z(s))ḣ(s)) ds, t ∈ [0, T ]. (4.10)

This will be achieved in Corollary 4.8 after we have proved the next lemma. The proof of the 
Theorem will be completed later. �

The next result is about the Lipschitz properties of the localized maps defined above.

Lemma 4.7. The functions Fr and Gr are continuous. Moreover, the functions Fr,k and Gr,k are 
globally Lipschitz in the second variable, i.e. there exists a constant Cr,k > 0 such that

‖Fr,k(t, z) − Fr,k(t,w)‖H + ‖Gr,k(t, z) − Gr,k(t,w)‖L2(Hμ,H)

≤ Cr,k‖z − w‖Hr−t
, (4.11)

for all t ∈ [0, T ] and z, w ∈H.

Proof of Lemma 4.7. The continuity of functions Fr and Gr is a consequence of the Sobolev 
embedding H 1(R) ⊆ Cb(R) in conjunction with Lemma 3.4.

To prove the Lipschitz property, let us choose and fix t ∈ [0, T ] and z = (u, v), w = (ũ, ṽ) ∈
H. Note that due to the definitions of Fr,k and Gr,k , it is sufficient to prove (4.11) in the case 
‖z‖Hr−t

, ‖w‖Hr−t
≤ k.

Let us set Irt := (t − r, r − t). Since in the chosen case Fr,k(t, z) = Fr (t, z) and Fr,k(t, w) =
Fr (t, w), by Proposition 3.13 and Remark 3.15, there exists CE(r, t) > 0 such that

‖Fr,k(t, z) − Fr,k(t,w)‖H ≤ CE(r, t)
[‖Au(v, v) −Aũ(ṽ, ṽ)‖H 1(Irt )

+‖Au(ux,ux) −Aũ(ũx, ũx)‖H 1(Irt )

]
. (4.12)
16
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Since ϒ is smooth and has compact support, see Lemma 3.8, from (3.4) observe that

A :Rn � q 
→ Aq ∈ L(Rn ×Rn;Rn),

is smooth, compactly supported (in particular bounded) and globally Lipschitz. Recall the fol-
lowing well-known interpolation inequality, refer [9, (2.12)],

‖u‖2
L∞(I ) ≤ k2

e‖u‖L2(I )‖u‖H 1(I ), u ∈ H 1(I ), (4.13)

where I is any open interval in R and ke = 2 max
{

1, 1√|I |
}

. Note that since r > R + T and 

t ∈ [0, T ], |Irt | = 2(r − t) > 2R. Thus, we can choose ke = 2 max
{

1, 1√|R|
}

. Consequently, 
using the above mentioned properties of A and the interpolation inequality (4.13) we get

‖Au(v, v) −Aũ(ṽ, ṽ)‖L2(Irt )
≤ ‖Au(v, v) −Aũ(v, v)‖L2(Irt )

+ ‖Aũ(v, v) −Aũ(ṽ, v)‖L2(Irt )

+ ‖Aũ(ṽ, v) −Aũ(ṽ, ṽ)‖L2(Irt )

≤ LA‖v‖2
L∞(Irt )

‖u − ũ‖L2(Irt )

+ BA
[‖v‖L∞(Irt ) + ‖ṽ‖L∞(Irt )

]‖v − ṽ‖L2(Irt )

≤ C(LA,BA,R, k, ke)‖z − w‖Hr−t
, (4.14)

where LA and BA are the Lipschitz constants and bound of A, respectively. Next, since A is 
smooth and have compact support, if we set LA′ and BA′ are the Lipschitz constants and bound 
of

A′ : Rn � q 
→ dqA ∈ L(Rn ×Rn ×Rn;Rn),

then by adding and subtracting the terms as we did to get (4.14) followed by invoking the prop-
erties of A′ and the interpolation inequality (4.13) we have

‖dx

[
Au(v, v) −Aũ(ṽ, ṽ)

]‖L2(Irt )

≤ ‖duA(v, v)(ux) − dũA(ṽ, ṽ)(ũx)‖L2(Irt )
+ 2‖Au(vx, v) −Aũ(ṽx, ṽ)‖L2(Irt )

≤ LA′ ‖ux‖L∞(Irt )‖v‖2
L∞(Irt )

‖u − ũ‖L2(Irt )
+ BA′ ‖v‖2

L∞(Irt )
‖ux − ũx‖L2(Irt )

+ BA′
[‖v‖L∞(Irt ) + ‖ṽ‖L∞(Irt )

]‖v − ṽ‖L2(Irt )
‖ũx‖L∞(Irt )

+ 2
[
LA‖u − ũ‖L∞(Irt )‖v‖L∞(Irt )‖vx‖L2(Irt )

+ BA‖vx − ṽx‖L2(Irt )
‖v‖L∞(Irt )

+BA‖v − ṽ‖L∞(Irt )‖ṽx‖L2(Irt )

]
�LA,BA,LA′ ,BA′ ,ke

[
‖u − ũ‖H 2(Irt )

‖u‖H 2(Irt )
‖v‖2

H 1(Irt )
+ ‖u − ũ‖H 2(Irt )

‖v‖2
H 1(Irt )

+‖v − ṽ‖H 1(Irt )

[‖v‖H 1(Irt )
+ ‖ṽ‖H 1(Irt )

]‖ũ‖H 2(Irt )
+ ‖u − ũ‖H 2(Irt )

‖v‖2
H 1(Irt )

+‖v − ṽ‖H 1(I )

(‖v‖H 1(I ) + ‖ṽ‖H 1(I )

)]

rt rt rt

17
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�k ‖z − w‖Hr−t
, (4.15)

where the last step holds since ‖z‖Hr−t
, ‖w‖Hr−t

≤ k. By following similar procedure of (4.14)
and (4.15) we also get

‖Au(ux,ux) −Aũ(ũx, ũx)‖H 1(Irt )
�LA,BA,LA′ ,BA′ ,ke,k ‖z − w‖Hr−t

.

Hence by substituting the estimates back in (4.12) we are done with (4.11) for Fr,k-term.
Next, we consider Gr,k . As for Fr,k , it is sufficient to perform the calculations for the case 

‖z‖Hr−t
, ‖w‖Hr−t

≤ k. By invoking Lemma 3.4 followed by Remark 3.15 we have

‖Gr,k(t, z) − Gr,k(t,w)‖2
L2(Hμ,H) ≤ ‖(E1

r−t Yu(v,ux)) · −(E1
r−t Yũ(ṽ, ũx)) · ‖2

L2(Hμ,H 1(R))

≤ cr,t CE(r, t) ‖Yu(v,ux) − Yũ(ṽ, ũx)‖2
H 1(Irt )

.

Recall that the 1-D Sobolev embedding gives H 1(R) ↪→ L∞(R). Consequently, by the Taylor 
formula [24, Theorem 5.6.1] and inequalities (3.11)–(3.12) we have

‖Yu(v, ∂xu) − Yũ(ṽ, ũx)‖2
L2(Irt )

≤
∫
Irt

|Yu(x)(v(x), ux(x)) − Yũ(x)(v(x), ux(x))|2 dx

+
∫
Irt

|Yũ(x)(v(x), ux(x)) − Yũ(x)(v(x), ũx(x))|2 dx

+
∫
Irt

|Yũ(x)(v(x), ũx(x)) − Yũ(x)(ṽ(x), ũx(x))|2 dx

≤ C2
Y

[
1 + ‖v‖2

H 1(Irt )
+ ‖u‖2

H 1(Irt )

]
‖u − ũ‖2

H 2(Irt )

+ C2
Y2

[
‖ux − ũx‖2

H 1(Irt )
+ ‖v − ṽ‖2

H 1(Irt )

]
�k,CY ,CY2

‖z − w‖2
Hr−t

. (4.16)

For homogeneous part of the norm, that is L2-norm of the derivative, we have

‖dx

[
Yu(v,ux) − Yũ(ṽ, ũx)

]‖2
L2(Irt )

�
∫
Irt

n∑
i=1

{∣∣∣∣ ∂Y

∂pi

(u(x), v(x), ux(x))
dui

dx
(x) − ∂Y

∂pi

(ũ(x), ṽ(x), ũx(x))
dũi

dx
(x)

∣∣∣∣2

+
∣∣∣∣ ∂Y

∂ai

(u(x), v(x), ux(x))
dvi

dx
(x) − ∂Y

∂ai

(ũ(x), ṽ(x), ũx(x))
dṽi

dx
(x)

∣∣∣∣2
+
∣∣∣∣ ∂Y

∂bi

(u(x), v(x), ux(x))
dui

x

dx
(x) − ∂Y

∂bi

(ũ(x), ṽ(x), ũx(x))
d∂xũ

i

dx
(x)

∣∣∣∣2
}

dx

=: Y1 + Y2 + Y3. (4.17)
18
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We will estimate each term separately by using the 1-D Sobolev embedding, the Taylor formula 
and inequalities (3.11)–(3.13) as follows:

Y1 �
∫
Irt

n∑
i=1

{∣∣∣∣ ∂Y

∂pi

(u(x), v(x), ux(x))
dui

dx
(x) − ∂Y

∂pi

(ũ(x), v(x), ux(x))
dui

dx
(x)

∣∣∣∣2

+
∣∣∣∣ ∂Y

∂pi

(ũ(x), v(x), ux(x))
dui

dx
(x) − ∂Y

∂pi

(ũ(x), v(x), ux(x))
dũi

dx
(x)

∣∣∣∣2
+
∣∣∣∣ ∂Y

∂pi

(ũ(x), v(x), ux(x))
dũi

dx
(x) − ∂Y

∂pi

(ũ(x), ṽ(x), ux(x))
dũi

dx
(x)

∣∣∣∣2
+
∣∣∣∣ ∂Y

∂pi

(ũ(x), ṽ(x), ux(x))
dũi

dx
(x) − ∂Y

∂pi

(ũ(x), ṽ(x), ũx(x))
dũi

dx
(x)

∣∣∣∣2
}

dx

� C2
Y3

‖u − ũ‖2
L2(Irt )

‖ux‖2
H 1(Irt )

+ C2
Y1

[
1 + ‖v‖2

H 1(Irt )
+ ‖ux‖2

H 1(Irt )

]
‖ux − ũx‖2

L2(Irt )

+ C2
Y3

‖v − ṽ‖2
L2(Irt )

‖ũx‖2
H 1(Irt )

+ C2
Y3

‖ux − ũx‖2
L2(Irt )

‖ũx‖2
H 1(Irt )

�k,CY2 ,CY3 ,CY1
‖z − w‖2

Hr−t
. (4.18)

Terms Y2 and Y3 are quite similar so it is enough to estimate only one. For Y2 we have the 
following calculation

Y2 �
∫
Irt

n∑
i=1

{∣∣∣∣ ∂Y

∂ai

(u(x), v(x), ux(x))
dvi

dx
(x) − ∂Y

∂ai

(ũ(x), v(x), ux(x))
dvi

dx
(x)

∣∣∣∣2 dx

+
∣∣∣∣ ∂Y

∂ai

(ũ(x), v(x), ux(x))
dvi

dx
(x) − ∂Y

∂ai

(ũ(x), ṽ(x), ux(x))
dvi

dx
(x)

∣∣∣∣2 dx

+
∣∣∣∣ ∂Y

∂ai

(ũ(x), ṽ(x), ux(x))
dvi

dx
(x) − ∂Y

∂ai

(ũ(x), ṽ(x), ũx(x))
dvi

dx
(x)

∣∣∣∣2 dx

+
∣∣∣∣ ∂Y

∂ai

(ũ(x), ṽ(x), ũx(x))
dvi

dx
(x) − ∂Y

∂ai

(ũ(x), ṽ(x), ũx(x))
dṽi

dx
(x)

∣∣∣∣2 dx

}
� C2

Y3
‖u − ũ‖2

H 1(Irt )
‖vx‖2

L2(Irt )
+ C2

Y3
‖v − ṽ‖2

H 1(Irt )
‖vx‖2

L2(Irt )

+ C2
Y3

‖ux − ũx‖2
H 1(Irt )

‖vx‖2
L2(Irt )

+ C2
Y3

Cr,t‖vx − ṽx‖2
L2(Irt )

�k,Cr,tCY3
‖z − w‖2

Hr−t
. (4.19)

Hence by substituting (4.18)–(4.19) into (4.17) we get

‖dx

[
Yu(v,ux) − Yũ(ṽ, ũx)

]‖2
L2(Irt )

�k,Cr,t ,CY2 ,CY3 ,CY1
‖z − w‖2

Hr−t
,

which together with (4.16) gives Gr,k part of (4.11). Hence the Lipschitz property from 
Lemma 4.7 follows. �
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The following result follows directly from Lemma 4.7 and the standard theory of PDE via 
semigroup approach, refer [1] and [45] for a detailed proof.

Corollary 4.8. For all ξ ∈ H and h ∈ H
1,2

0 (0, T , Hμ), there exists a unique z = zk in 
C([0, T ]; H) which is a solution of equation (4.10).

From now on, for each r > R + T and k ∈N , the solution from Corollary 4.8 will be denoted 
by zr,k and called the approximate solution. To proceed further we define the following two 
auxiliary functions

F̃r,k : [0, T ] ×H � (t, z) 
→
(

0
ϕ · ϒ′(u)F2

r,k(t, z) + ϕBu(v, v) − ϕBu(ux,ux)

)
−
(

0
�ϕ · h(u) + 2ϕx · h′(u)ux

)
∈ H,

and

G̃r,k : [0, T ] ×H � (t, z) 
→
(

0
ϕ · ϒ′(u)G2

r,k(t, z)

)
∈H.

Here F2
r,k(s, zr,k(s)) and G2

r,k(s, zr,k(s)) denote the second components of the vectors
Fr,k(s, zr,k(s)) and Gr,k(s, zr,k(s)), respectively. The following corollary relates the solution 
zr,k with its transformation under the map Qr and allows to understand the need of the functions 
F̃r,k and G̃r,k .

Corollary 4.9. Let us assume that ξ := (E2
r u0, E1

r v0) and that zr,k ∈ C([0, T ]; H) is a solution 
of equation (4.10). Then the ̃zr,k = Qr (zr,k) satisfies,

z̃r,k(t) = StQr (ξ) +
t∫

0

St−s F̃r,k(s, zr,k(s)) ds +
t∫

0

St−s(G̃r,k(s, zr,k(s))ḣ(s)) ds, t ∈ [0, T ].

Proof of Corollary 4.9. First observe that by the action of Q′
r and G on the elements of H from 

Lemma 4.6 and (3.11), respectively, we get

Q′
r (zr,k(s))

(
Fr,k(s, zr,k(s)) + Gr,k(s, zr,k(s))ḣ(s)

)
=
(

0

ϕ ·
{
[ϒ′(ur,k(s))](F2

r,k(s, zr,k(s))) + [ϒ′(ur,k(s))](G2
r,k(s, zr,k(s))ḣ(s))

} )
.

(4.20)

Moreover, since by applying Lemma 4.6 and (3.11) to z = (u, v) ∈ H we have

F(z) := Q′
rGz − GQrz =

(
ϕ · [ϒ′(u)](v)

ϕ · {[ϒ′′(u)](v, v) + [ϒ′(u)](u′′)
} )

−
(

ϕ · [ϒ′(u)](v)

ϕ′′ · ϒ(u) + 2ϕ′ · [ϒ′(u)](u′) + ϕ · [ϒ′(u)](u′′) + ϕ · [ϒ′′(u)](u′, u′)

)
, (4.21)
20
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substitution z = zr,k(s) = (ur,k(s), vr,k(s)) ∈ H in (4.21) with (4.20) followed by definition (3.3)
gives, for s ∈ [0, T ],

Q′
r (zr,k(s))

(
Fr,k(s, zr,k(s)) + Gr,k(s, zr,k(s))

)+ F(zr,k(s))

=
⎛⎝ 0

ϕ · [ϒ′(ur,k(s))](F2
r,k(s, zr,k(s))) + ϕ · [ϒ′′(ur,k(s))](vr,k(s), vr,k(s))

−ϕ · [ϒ′′(ur,k(s))](∂xur,k(s), ∂xur,k(s))

⎞⎠
−
(

0
−ϕ′′ · ϒ(ur,k(s)) + 2ϕ′ · [ϒ′(ur,k(s))](∂xur,k(s)) + ϕ · [ϒ′(ur,k(s))](G2

r,k(s, zr,k(s)))

)
= F̃r,k(s, zr,k(s)) + G̃r,k(s, zr,k(s)).

Hence, if we have

T∫
0

[‖Fr,k(s, zr,k(s))‖H + ‖Gr,k(s, zr,k(s))ḣ(s)‖H
]

ds < ∞, (4.22)

then by invoking [15, Lemma 6.4] with

L = Qr ,K = U = H,A = B = G, g(s) = 0, f (s) = Fr,k(s, zr,k(s)) + Gr,k(s, zr,k(s))ḣ(s),

we are done with the proof here. But (4.22) follows by Lemma 4.7, because h ∈ H
1,2

0 (0, T , Hμ)

and the following holds due to the Hölder inequality

T∫
0

‖Gr,k(s, zr,k(s))ḣ(s)‖H ds =
T∫

0

‖G2
r,k(s, zr,k(s))ḣ(s)‖H 1(R) ds

≤
⎛⎝ T∫

0

‖(G2
r,k(s, zr,k(s))) · ‖2

L2(Hμ,H 1(R))
ds

⎞⎠
1
2
⎛⎝ T∫

0

‖ḣ(s)‖2
Hμ

ds

⎞⎠
1
2

. �

Next we prove that the approximate solution zr,k stays on the manifold. Define the following 
three positive reals: for each r > R + T and k ∈N ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ 1
k := inf {t ∈ [0, T ] : ‖zr,k(t)‖Hr−t

≥ k},
τ 2
k := inf {t ∈ [0, T ] : ‖̃zr,k(t)‖Hr−t

≥ k},
τ 3
k := inf {t ∈ [0, T ] : ∃x, |x| ≤ r − t, ur,k(t, x) /∈ O},

τk := τ 1
k ∧ τ 2

k ∧ τ 3
k .

(4.23)

Also, define the following H-valued functions of time t ∈ [0, T ]
21
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ak(t) = Stξ +
t∫

0

St−s1[0,τk)(s)Fr,k(s, zr,k(s)) ds

+
t∫

0

St−s(1[0,τk)(s)Gr,k(s, zr,k(s))ḣ(s)) ds,

ãk(t) = StQr (ξ) +
t∫

0

St−s1[0,τk)(s)F̃r,k(s, zr,k(s)) ds

+
t∫

0

St−s(1[0,τk)(s)G̃r,k(s, zr,k(s))ḣ(s)) ds.

(4.24)

Proposition 4.10. For each k ∈ N and ξ := (E2
r u0, E1

r v0), the functions ak , ãk , zr,k and z̃r,k

coincide on [0, τk). In particular, ur,k(t, x) ∈ M for |x| ≤ r − t and t ≤ τk . Consequently, τk =
τ 1
k = τ 2

k ≤ τ 3
k .

Proof of Proposition 4.10. Let us fix k. First note that, due to indicator function,

ak = zr,k and ãk = z̃r,k on [0, τk). (4.25)

Next, since E1
r−sf = f on |x| ≤ r − s, see Proposition 3.13, and ϕ = 1 on (−r, r), by Lemma 4.5

followed by (3.5) we infer that{
1[0,τk)(s)[F̃r,k(s, zr,k(s))](x) = 1[0,τk)(s)[Fr,k(s, z̃r,k(s))](x),

1[0,τk)(s)[G̃r,k(s, zr,k(s))e](x) = 1[0,τk)(s)[Gr,k(s, z̃r,k(s))e](x), e ∈ K,
(4.26)

holds for every |x| ≤ r − s, 0 ≤ s ≤ T . Now we claim that if we denote

p(t) := 1

2
‖ak(t) − ãk(t)‖2

Hr−t
,

then the map s 
→ p(s ∧ τk) is continuous and uniformly bounded. Indeed, since, by Proposi-
tion 3.13, ξ(x) = (u0(x), v0(x)) ∈ T M for |x| ≤ r , the uniform boundedness is an easy con-
sequence of bound property of C0-group, Lemmata 4.5 and 4.7. Continuity of s 
→ p(s ∧ τk)

follows from the following:

(1) for every z ∈H, the map t 
→ ‖z‖2
Hr−t

is continuous;
(2) for each t , the map

L2(R) � u 
→
t∫

0

|u(s)|2 ds ∈R,

is locally Lipschitz.
22
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Now observe that by applying Proposition C.1 for

k = 1,L = I, T = r, x = 0 and z(t) = (u(t), v(t)) := ak(t) − ãk(t),

we get e(t, r; 0, z(t)) = p(t), and the following

e(t, r;0, (t)) ≤ e(0, r;0, z0) +
t∫

0

V (s, z(s)) ds. (4.27)

Here

V (t, z(t)) := 〈u(t), v(t)〉L2(Br−t )
+ 〈v(t), f (t)〉L2(Br−t )

+ 〈∂xv(t), ∂xf (t)〉L2(Br−t )

+ 〈v(t), g(t)〉L2(Br−t )
+ 〈∂xv(t), ∂xg(t)〉L2(Br−t )

,

and (
0

f (t)

)
:= 1[0,τk)(t)[Fr,k(t, zr,k(t)) − F̃r,k(t, zr,k(t))],(

0
g(t)

)
:= 1[0,τk)(t)[Gr,k(t, zr,k(t))ḣ(t) − G̃r,k(t, zr,k(t))ḣ(t)].

Due to the extension operators E2
r and E1

r the initial data ξ in the definition (4.24) satisfies the 
assumption of Lemma 4.5, StQr (ξ) = Stξ , and so e(0, 0; 0, z(0)) = p(0) = 0. Next observe that 
by the Cauchy-Schwarz inequality we have

V (t, z(t)) ≤ 1

2
‖u(t)‖2

L2(Br−t )
+ 3

2
‖v(t)‖2

L2(Br−t )
+ 1

2
‖f (t)‖2

L2(Br−t )
+ ‖∂xv(t)‖2

L2(Br−t )

+ 1

2
‖∂xf (t)‖2

L2(Br−t )
+ 1

2
‖g(t)‖2

L2(Br−t )
+ 1

2
‖∂xg(t)‖2

L2(Br−t )

≤ 3p(t) + 1

2
‖f (t)‖2

H 1(Br−t )
+ 1

2
‖g(t)‖2

H 1(Br−t )
.

By using above into (4.27) and, then, by invoking equalities (4.26) and (4.25), definition (4.23), 
Lemma 3.4 and Lemma 4.7 we have the following calculation, for every t ∈ [0, T ],

p(t) ≤
t∫

0

3p(s) ds + 1

2

t∫
0

1[0,τk)(s)‖F2
r,k(s, zr,k(s)) − F2

r,k(s, z̃r,k(s))‖2
H 1(Br−s )

ds

+ 1

2

t∫
0

1[0,τk)(s)‖G2
r,k(s, zr,k(s)) − G2

r,k(s, z̃r,k(s))‖2
L2(Hμ,H 1(Br−s ))

‖ḣ(s)‖2
Hμ

ds

≤ 3

t∫
p(s) ds + 1

2
C2

r,k

t∫
1[0,τk)(s)‖zr,k(s) − z̃r,k(s)‖2

Hr−s
ds
0 0
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+ 1

2
C2

r,k

t∫
0

1[0,τk)(s)‖zr,k(s) − z̃r,k(s)‖2
Hr−s

‖ḣ(s)‖2
Hμ

ds

≤ (3 + C2
r,k)

t∫
0

p(s)(1 + ‖ḣ(s)‖2
Hμ

)ds. (4.28)

Consequently by the Gronwall Lemma, for t ∈ [0, τk],

p(t) �Cr,k
p(0) exp

⎡⎣ t∫
0

(1 + ‖ḣ(s)‖2
Hμ

)ds

⎤⎦ . (4.29)

Note that the right hand side in (4.29) is finite because h ∈ H
1,2

0 (0, T , Hμ). Since we know that 
p(0) = 0 we arrive to p(t) = 0 on t ∈ [0, τk]. This further implies that ak(t, x) = ãk(t, x) hold 
for |x| ≤ r − t and t ≤ τk . Consequently, zr,k(t, x) = z̃r,k(t, x) hold for |x| ≤ r − t and t ≤ τk . 
So, because ̃zr,k(t, x) = Qr (zr,k(t)) and ϕ = 1 on (−r, r),

ur,k(t, x) = ϒ(ur,k(t, x)), for |x| ≤ r − t, t ≤ τk. (4.30)

Since, by definition (4.23) of τk , ur,k(t, x) ∈ O , equality (4.30) and Lemma 3.8, gives ur,k(t, x) ∈
M for |x| ≤ r − t and t ≤ τk . This suggests that τk ≤ τ 3

k and hence τk = τ 1
k ∧ τ 2

k . It remains to 
show that τ 1

k = τ 2
k . But suppose it does not hold and without loss of generality we assume that 

τ 1
k > τ 2

k . Then by definition (4.23) and the continuity of zr,k and z̃r,k in time we have

‖zr,k(τ
2
k , ·)‖H

r−τ2
k

< k but ‖̃zr,k(τ
2
k , ·)‖H

r−τ2
k

≥ k,

which contradicts the above mentioned consequence of p = 0 on [0, τk]. Hence we conclude that 
τ 1
k = τ 2

k and this finishes the proof of Proposition 4.10. �
Next in the ongoing proof of Theorem 4.1 we show that the approximate solutions extend 

each other. Recall that r > R + T is fixed for given T > 0.

Lemma 4.11. Let k ∈ N and ξ = (E2
r u0, E1

r v0). Then zr,k+1(t, x) = zr,k(t, x) on |x| ≤ r − t , 
t ≤ τk , and τk ≤ τk+1.

Proof of Lemma 4.11. Define

p(t) := 1

2
‖ak+1(t) − ak(t)‖2

H 1(Br−t )×L2(Br−t )
.

As an application of Proposition C.1, by performing the computation based on (4.27)–(4.28), 
with k = 0 and rest the same, we obtain
24
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p(t) ≤ 2

t∫
0

p(s) ds + 1

2

t∫
0

‖1[0,τk+1)(s)F
2
r (s, zr,k+1(s)) − 1[0,τk)(s)F

2
r (s, zr,k(s))‖2

L2(Br−s )
ds

+ 1

2

t∫
0

‖1[0,τk+1)(s)G
2
r (s, zr,k+1(s))ḣ(s) − 1[0,τk)(s)G

2
r (s, zr,k(s))ḣ(s)‖2

L2(Br−s )
ds.

(4.31)

Then, since Fr and Gr depends on ur,k(s), ur,k+1(s) and their first partial derivatives, with respect 
to time t and space x, which are actually bounded on the interval (−(r − s), r − s) by some 
constant Cr for every s < τk+1 ∧ τk , by evaluating (4.31) on t ∧ τk+1 ∧ τk following the use of 
Lemmata 4.7 and 3.4 we get

p(t ∧ τk+1 ∧ τk) ≤ 2

t∫
0

p(s ∧ τk+1 ∧ τk) ds

+ 1

2

t∧τk+1∧τk∫
0

‖F2
r (s, zr,k+1(s)) − F2

r (s, zr,k(s))‖2
L2(Br−s )

ds

+ 1

2

t∧τk+1∧τk∫
0

‖G2
r (s, zr,k+1(s))ζ(s) − G2

r (s, zr,k(s))ḣ(s)‖2
L2(Br−s )

ds

�k

t∫
0

p(s ∧ τk+1 ∧ τk)(1 + ‖ḣ(s)‖2
Hμ

)ds.

Hence by the Gronwall Lemma we infer that p = 0 on [0, τk+1 ∧ τk].
Consequently, we claim that τk ≤ τk+1. We divide the proof of our claim in the following three 

exhaustive subcases. Due to (4.23), the subcases when ‖ξ‖Hr
> k + 1 and k < ‖ξ‖Hr

≤ k + 1
are trivial. In the last subcase when ‖ξ‖Hr

≤ k we prove the claim τk ≤ τk+1 by the method of 
contradiction, and so assume that τk > τk+1 is true. Then, because of continuity in time of zr,k

and zr,k+1, by (4.23) we have

‖zr,k(τk+1)‖Hr−τk+1
< k and ‖zr,k+1(τk+1)‖Hr−τk+1

≥ k. (4.32)

However, since p(t) = 0 for t ∈ [0, τk+1 ∧ τk] and (u0(x), v0(x)) ∈ T M for |x| < r , by argument 
based on the one made after (4.29), in the Proposition 4.10, we get zr,k(t, x) = zr,k+1(t, x) for 
every t ∈ [0, τk+1] and |x| ≤ r − t . But this contradicts (4.32) and we finish the proof of our 
claim and, in result, the proof of Lemma 4.11. �

Since by definition (4.23) and Lemma 4.11 the sequence of stopping times {τk}k≥1 is bounded 
and non-decreasing, it makes sense to denote by τ the limit of {τk}k≥1. Now by using [15, 
Lemma 10.1], we prove that the approximate solutions do not explode which is same as the 
following in terms of τ .
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Proposition 4.12. For τk defined in (4.23), τ := lim
k→∞ τk = T .

Proof of Proposition 4.12. We first notice that by a particular case of the Chojnowska-Michalik 
Theorem [26], when the diffusion coefficient is absent, we have that for each k the approximate 
solution zr,k , as a function of time t , is H 1(R; Rn) × L2(R; Rn)-valued and satisfies

zr,k(t) = ξ +
t∫

0

Gzr,k(s) ds +
t∫

0

Fr,k(s, zr,k(s)) ds +
t∫

0

Gr,k(s, zr,k(s))ḣ(s) ds, (4.33)

for t ≤ T . In particular,

ur,k(t) = ξ1 +
t∫

0

vr,k(s) ds,

for t ≤ T , where ξ1 = E2
r u0 and the integral converges in H 1(R; Rn). Hence

∂tur,k(s, x) = vr,k(s, x), for all s ∈ [0, T ], x ∈ R.

Next, by keeping in mind the Proposition 4.10, we set

l(t) := ‖ak(t)‖2
H 1(Br−t )×L2(Br−t )

and q(t) := log(1 + ‖ak(t)‖2
Hr−t

).

By applying Proposition C.1, respectively, with k = 0, 1 and L(x) = x, log(1 + x), followed by 
the use of Lemma 4.7 we get

l(t) ≤ l(0) +
t∫

0

l(s) ds +
t∫

0

1[0,τk](s)〈vr,k(s), ϕ(s)〉L2(Br−s )
ds

+
t∫

0

1[0,τk](s)〈vr,k(s),ψ(s)〉L2(Br−s )
ds, (4.34)

and

q(t) ≤ q(0) +
t∫

0

‖ak(s)‖2
Hr−s

1 + ‖ak(s)‖2
Hr−s

ds

+
t∫
1[0,τk](s)

〈vr,k(s), ϕ(s)〉L2(Br−s )

1 + ‖ak(s)‖2
Hr−s

ds +
t∫
1[0,τk](s)

〈∂xvr,k(s), ∂x[ϕ(s)]〉L2(Br−s )

1 + ‖ak(s)‖2
Hr−s

ds
0 0
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+
t∫

0

1[0,τk](s)
〈vr,k(s),ψ(s)〉L2(Br−s )

1 + ‖ak(s)‖2
Hr−s

ds +
t∫

0

1[0,τk](s)
〈∂xvr,k(s), ∂x[ψ(s)]〉L2(Br−s )

1 + ‖ak(s)‖2
Hr−s

ds.

(4.35)

Here

ϕ(s) := Aur,k(s)(vr,k(s), vr,k(s)) −Aur,k(s)(∂xur,k(s), ∂xur,k(s)),

ψ(s) := Yur,k(s)(∂tur,k(s), ∂xur,k(s))ḣ(s).

Since by Proposition 4.10 ur,k(s, x) ∈ M for |x| ≤ r − s and s ≤ τk , we have

ur,k(s, x) ∈ M and ∂tur,k(s, x) = vr,k(s, x) ∈ Tur,k(s,x)M,

on the mentioned domain of s and x. Consequently, by Proposition 3.9, we get

Aur,k(s,x)(vr,k(s, x), vr,k(s, x)) = Aur,k(s,x)(vr,k(s, x), vr,k(s, x)), (4.36)

Aur,k(s,x)(∂xur,k(s, x), ∂xur,k(s, x)) = Aur,k(s,x)(∂xur,k(s, x), ∂xur,k(s, x)),

on |x| ≤ r − s and s ≤ τk . Hence, since vr,k(s, x) ∈ Tur,k(s,x)M , and by definition, Aur,k(s,x) ∈
Nur,k(s,x)M , the L2-inner product on domain Br−s vanishes and, in result, the second integrals in 
(4.34) and (4.35) are equal to zero.

Next, to deal with the integral containing terms ψ , we follow Lemma 4.7 and we invoke 
Lemma 3.4, estimate (3.10), and Proposition 4.10 to get

〈vr,k(s), Yur,k(s)(∂tur,k(s), ∂xur,k(s))ḣ(s)〉L2(Br−s )

� ‖vr,k(s)‖2
L2(Br−s )

+ ‖Yur,k(s)(∂tur,k(s), ∂xur,k(s))ḣ(s)‖2
L2(Br−s )

≤ ‖vr,k(s)‖2
L2(Br−s )

+ C2
Y0

C2
r

(
1 + ‖vr,k(s)‖2

L2(Br−s )
+ ‖∂xur,k(s)‖2

L2(Br−s )

)
‖ḣ(s)‖2

Hμ

� (1 + l(s))(1 + ‖ḣ(s)‖2
Hμ

), (4.37)

for some Cr > 0, and estimates (3.11)–(3.12) yields

〈vr,k(s), Yur,k(s)(∂tur,k(s), ∂xur,k(s))ḣ(s)〉L2(Br−s )

+ 〈∂xvr,k(s), ∂x[Yur,k(s)(∂tur,k(s), ∂xur,k(s))ḣ(s)]〉L2(Br−s )

� ‖vr,k(s)‖2
H 1(Br−s )

+ ‖Yur,k(s)(∂tur,k(s), ∂xur,k(s))ḣ(s)‖2
H 1(Br−s )

≤ ‖vr,k(s)‖2
H 1(Br−s )

+ ‖ḣ(s)‖2
Hμ

[
C2

Y0
C2

r

(
1 + ‖vr,k(s)‖2

L2(Br−s )
+ ‖∂xur,k(s)‖2

L2(Br−s )

)
+C2

Y1

(
1 + ‖vr,k(s)‖2

H 1(Br−s )
+ ‖∂xur,k(s)‖2

H 1(Br−s )

)
‖ur,k(s)‖2

H 1(Br−s )

+C2
Y2

(
‖vr,k(s)‖2

L2(Br−s )
+ ‖∂xur,k(s)‖2

L2(Br−s )

)]
�Cr ,CYi

(1 + l(s)) (1 + ‖ak(s)‖2
Hr−s

)(1 + ‖ḣ(s)‖2
Hμ

), i = 0,1,2. (4.38)
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By substituting the estimates (4.36) and (4.37) in the inequality (4.34) we get

l(t) � l(0) +
t∫

0

1[0,τk](s)(1 + l(s)) (1 + ‖ḣ(s)‖2
Hμ

)ds. (4.39)

Now we define Sj as the set of initial data whose norm under extension is bounded by j , more 
precisely,

Sj := {(u0, v0) ∈Hloc : ‖ξ‖Hr
≤ j where ξ := (E2

r u0,E
1
r v0)}.

Then, for the initial data belonging to Sj , the Gronwall Lemma on (4.39) yields

1 + lj (t ∧ τk) ≤ Kr,j , t ≤ T , j ∈ N, (4.40)

where the constant Kr,j also depends on ‖ḣ‖L2(0,T ;Hμ) and lj stands to show that (4.40) holds 
under Sj only.

Next to deal with the third integral in (4.35), denote by O its integrand, we recall the following 
celebrated Gagliardo-Nirenberg inequalities, see e.g. [37],

|ψ |2L∞(r−s) ≤ |ψ |2
L2(Br−s )

+ 2|ψ |L2(Br−s )
|ψ̇ |L2(Br−s )

, ψ ∈ H 1(Br−s). (4.41)

Then by applying [15, Lemma 10.1] followed by the generalized Hölder inequality and (4.41)
we infer

|O(s)| � 1[0,τk)(s)

∫
Br−s

{|∂xvr,k||∂xur,k||vr,k|2 + |∂xxur,k||∂xur,k|2|vr,k| + |∂xvr,k||∂xur,k|3}dx

1 + ‖ak(s)‖2
Hr−s

� 1[0,τk)(s)
l(s)‖ak(s)‖2

Hr−s

1 + ‖ak(s)‖2
Hr−s

≤ 1[0,τk)(s)(1 + l(s)). (4.42)

So, by substituting (4.36), (4.37) and (4.42) in (4.35) we have

q(t) � 1 + q(0) +
t∫

0

1[0,τk)(s)(1 + l(s)) (1 + ‖ḣ(s)‖2
Hμ

)ds.

Consequently, by applying (4.40), we obtain on Sj ,

qj (t ∧ τk) � 1 + qj (0) +
t∫

0

[1 + lj (s ∧ τk)] (1 + ‖ḣ(s)‖2
Hμ

)ds

≤ Cr,j ‖ḣ‖L2(0,T ;Hμ), j ∈N, t ∈ [0, T ], (4.43)

for some Cr,j > 0, where in the last step we have used that r > T and on set Sj the quantity 
qj (0) is bounded by log(1 + j).
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To complete the proof let us fix t < T . Then, by Proposition 4.10,

|ak(τk)|Hr−τk
= |zr,k(τk)|Hr−τk

≥ k whenever τk ≤ t.

So for every k such that τk ≤ t we have

log(1 + k2) ≤ q(τk) = q(t ∧ τk).

Thus by restricting to Sj and using inequality (4.43), we obtain

log(1 + k2) ≤ qj (t ∧ τk) � Cr,j‖ḣ‖L2(0,T ;Hμ). (4.44)

In this way, if lim
k→∞ τk = t0 for any t0 < T , then by taking k → ∞ in (4.44) we get 

Cr,j‖ḣ‖L2(0,T ;Hμ) ≥ ∞ which is absurd. Since this holds for every j ∈ N and t0 < T , we in-
fer that τ = T . Hence, the proof of Proposition 4.12 is complete. �
The conclusion of the proof of the existence part of Theorem 4.1. Now we have all the ma-
chinery required to finish the proof of Theorem 4.1. Define

wr,k(t) :=
(

E2
r−t ur,k(t)

E1
r−t vr,k(t)

)
,

and observe that wr,k : [0, T ) → H is continuous. If we set

zr(t) := lim
k→∞wr,k(t), t < T , (4.45)

then by Lemma 4.11 and Proposition 4.12 it is straightforward to verify that, for every t < T , the 
sequence {wr,k(t)}k∈N is Cauchy in H. But since H is complete, the limit in (4.45) converges 
in H. Moreover, since by Proposition 4.12 zr,k(t) = zr,k1(t) for every k1 ≥ k and t ≤ τk , we 
have that zr(t) = wr,k(t) for t ≤ τk . In particular, [0, T ) � t 
→ zr(t) ∈ H is continuous and 
zr(t, x) = zr,k(t, x) for |x| ≤ r − t if t ≤ τk .

Hence, if we write zr(t) = (ur(t), vr(t)), then we have shown that ur satisfy the first con-
clusion of the Theorem B.1. In the remaining proof of the existence part we will show that the 
zr , defined in (4.45), will satisfy all the remaining conclusions. Evaluation of (4.33) at t ∧ τk

together applying the result from previous paragraph gives

zr,k(t ∧ τk) = ξ +
t∧τk∫
0

Gzr,k(s) ds +
t∧τk∫
0

Fr (s, zr,k(s)) ds +
t∧τk∫
0

Gr (s, zr,k(s))ḣ(s) ds, (4.46)

and this equality holds in H 1(R; Rn) × L2(R; Rn). Restricting to the interval (−R, R), (4.46)
becomes

zr (t ∧ τk) = ξ +
t∧τk∫

Gzr(s) ds +
t∧τk∫

Fr (s, zr (s)) ds +
t∧τk∫

Gr (s, zr (s))ḣ(s) ds,
0 0 0
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under the action of natural projection from H 1(R; Rn) × L2(R; Rn) to H 1((−R, R); Rn) ×
L2((−R, R); Rn). Here the integrals converge in H 1((−R, R); Rn) ×L2((−R, R); Rn). Taking 
the limit k → ∞ on both the sides, the dominated convergence theorem yields

zr (t) = ξ +
t∫

0

Gzr(s) ds +
t∫

0

Fr (s, zr (s)) ds +
t∫

0

Gr (s, zr (s))ḣ(s) ds, t < T ,

in H 1((−R, R); Rn) ×L2((−R, R); Rn). In particular, by looking to each component separately 
we have, for every t < T ,

ur(t) = u0 +
t∫

0

vr(s) ds, (4.47)

in H 1((−R, R); Rn), and

vr(t) = v0 +
t∫

0

[
∂xxur(s) + Aur(s)(vr (s), vr (s)) − Aur(s)(∂xur(s), ∂xur(s))

]
ds

+
t∫

0

Yur (s)(vr (s), ∂xur(s))ḣ(s) ds, (4.48)

holds in L2((−R, R); Rn). It is relevant to note that in the formula above, we have replaced 
A by A which makes sense because due to Proposition 4.10 and Proposition 4.12, ur(t, x) =
ur,k(t, x) ∈ M for |x| ≤ r − t and t < T . Hence we are done with the proof of existence part. The 
proof of the existence part of Theorem 4.1 is now complete. �
Proof of the uniqueness part of Theorem 4.1. For the uniqueness part let us fix R and T such 
that R > T and a map U : [0, T ) × (−R, R) → M which satisfies conditions (ii)–(v) and (i’) 
mentioned in the statement of Theorem 4.1. We will show (4.5) with u : [0, T ) × R → M as 
constructed in the existence part.

Since we seek solutions that take values in the Fréchet space H 2
loc(R; Rn) × H 1

loc(R; Rn), we 
localize the problem using a sequence of non-linear wave equations. Before doing this let us 
point out that the skeleton equation (4.6) can be equivalently written in the following form

z(t) = Stξ +
t∫

0

St−sFr,k(s, z(s)) ds +
t∫

0

St−s(Gr,k(s, z(s))ḣ(s)) ds, (4.49)

where

z(t) = (u(t), ∂tu(t)) ∈ H, t ∈ [0, T ). (4.50)

Concerning the uniqueness, let us define a function Z : [0, T ) → H
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Z(t) :=
(

E2
RU(t)

E1
R∂tU(t)

)
, t ∈ [0, T )

and observe that it is a continuous function. Let us also define a stopping time σk by

σk := τk ∧ inf {t < T : ‖Z(t)‖Hr−t
≥ k},

and a function β : [0, T ) → H as, for t ∈ [0, T ),

β(t) := Stξ +
t∫

0

St−s1[0,σk)(s)Fr,k(s,Z(s)) ds +
t∫

0

St−s1[0,σk)(s)Gr,k(s,Z(s))ḣ(s) ds.

In the same vein as in the existence part of the proof, as an application of the Chojnowska-
Michalik Theorem and projection operator, the restriction of β on HR , which we denote by b, 
satisfies

b(t) = ξ +
t∫

0

Gb(s) ds +
t∫

0

(
0

AU(s)(∂tU(s), ∂tU(s)) −AU(s)(∂xU(s), ∂xU(s))

)
ds

+
t∫

0

(
0

YU(s)(∂tU(s), ∂xU(s))ḣ(s)

)
ds, t ≤ σk,

where the integrals converge in H 1((−R, R); Rn) × L2((−R, R); Rn). Then since U(t) and 
∂tU(t) have similar form, respectively to (4.47) and (4.48), by direct computation we deduce 
that function p defined as

p(t) := b(t) −
(

U(t)

∂tU(t)

)
,

satisfies

p(t) =
t∫

0

Gp(s) ds, t ≤ σk.

Since the above implies that p satisfies the linear homogeneous wave equation with null initial 
data, by [15, Remark 6.2],

p(t, x) = 0 for |x| ≤ R − t, t ≤ σk. (4.51)

Next we set

q(t) := ‖β(t) − ak(t)‖2
HR−t

,

and apply Proposition C.1, with k = 1, T = r, L = I , to obtain
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q(t ∧ σk) ≤ 2

t∧σk∫
0

q(s) ds +
t∫

0

‖Fr,k(s,Z(s)) − Fr,k(s, ak(s))‖2
H ds

+
t∧σk∫
0

‖Gr,k(s,Z(s))ḣ(s) − Gr,k(s, ak(s))ḣ(s)‖2
H ds. (4.52)

But we know that r − t > R − t , and by definition σk ≤ τk which implies

Fr,k(t, z) = FR,k(t, z), Gr,k(t, z) = GR,k(t, z) on (t − R,R − t),

whenever ‖z‖Hr−t
≤ k. Consequently, the estimate (4.52) becomes

q(t ∧ σk) ≤ 2

t∧σk∫
0

q(s) ds +
t∧σk∫
0

‖FR,k(s,Z(s)) − FR,k(s, ak(s))‖2
H]ds

+
t∧σk∫
0

‖GR,k(s,Z(s))ḣ(s) − GR,k(s, ak(s))ḣ(s)‖2
H ds.

Invoking Lemmata 4.7 and 3.4 followed by (4.51) yields

q(t ∧ σk) ≤ CR

t∧σk∫
0

q(s)(1 + ‖ḣ(s)‖2
Hμ

)ds.

Therefore, we get q = 0 on [0, σk) by the Gronwall Lemma. Since in the limit k → ∞, σk goes 
to T as τk , by taking k to infinity, by Proposition 4.10 we obtain that ur(t, x) = U(t, x) for each 
t < T and |x| ≤ R − t . The proof of the uniqueness part of Theorem 4.1 and hence the whole 
proof is now complete. �
5. Large deviation principle

In this section we establish a large deviation principle (LDP) for system (1.2) via a weak 
convergence approach developed in [21] and [22] which is based on variational representations 
of infinite-dimensional Wiener processes.

First, let us recall the general criteria for LDP obtained in [21]. Let (	, F, P ) be a probability 
space with an increasing family F := {Ft , t ≥ 0} of the sub-σ -fields of F satisfying the usual 
conditions. Let B(E) denote the Borel σ -field of the Polish space E (i.e. complete separable 
metric space). Since we are interested in the large deviations of continuous stochastic processes, 
we follow [25] and consider the following definition of large deviations principle given in terms 
of random variables.

Definition 5.1. The (E, B(E))-valued random family {Xε}ε>0, defined on (	, F, P ), is said to 
satisfy a large deviation principle on E with the good rate function I if the following conditions 
hold:
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(1) I is a good rate function: The function I : E → [0, ∞] is such that for each M ∈ [0, ∞)

the level set {φ ∈ E : I(φ) ≤ M} is a compact subset of E.
(2) Large deviation upper bound: For each closed subset F of E

lim sup
ε→0

ε logP
[
Xε ∈ F

]≤ − inf
u∈F

I(u).

(3) Large deviation lower bound: For each open subset G of E

lim inf
ε→0

ε logP
[
Xε ∈ G

]≥ − inf
u∈G

I(u),

where by convention the infimum over an empty set is +∞.

Assume that K, H are separable Hilbert spaces such that the embedding K ↪→ H is Hilbert-
Schmidt. Let W := {W(t), t ≥ 0} be a cylindrical Wiener process on K defined on (	, F, F , P ). 
Hence the paths of W take values in C([0, ∞); H).

Let us, for the whole section, fix a number T > 0. Note that the RKHS linked to W restricted to 
the time interval [0, T ] is equal to 0H

1,2(0, T ; K). Let S be the class of K-valued F -predictable 
processes φ which trajectories belong to 0H

1,2(0, T ; K), P -almost surely. For M > 0, we set

SM :=
⎧⎨⎩h ∈ 0H

1,2(0, T ;K) :
T∫

0

‖ḣ(s)‖2
K ds ≤ M

⎫⎬⎭ . (5.1)

The set SM endowed with the weak topology from 0H
1,2(0, T ; K), is metrizable by the follow-

ing metric

d1(h, k) :=
∞∑
i=1

1

2i

∣∣∣∣
T∫

0

〈ḣ(s) − k̇(s), ei〉K ds

∣∣∣∣,
where {ei}i∈N is a complete orthonormal basis for L2(0, T ; K), is a Polish space, see [22]. 
Define SM as the set of bounded stochastic controls by

SM := {φ ∈ S : φ(ω) ∈ SM,P -a.s.}.

Note that ∪M>0SM is a proper subset of S . Next, consider a family indexed by ε ∈ (0, 1] of 
Borel measurable maps

J ε : 0C([0, T ];H) → E.

We denote by με the “image” measure on E of P by J ε , that is,

με = J ε(P ), i.e. με(A) = P
(
(J ε)−1(A)

)
, A ∈ B(E).

We have the following result.
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Theorem 5.2 ([21, Theorem 4.4]). Suppose that there exists a measurable map J 0 : 0C([0, T ];
H) → E such that

BD1: if M > 0 and a family {hε} ⊂ SM converges in law as SM-valued random elements to 
h ∈ SM as ε → 0, then the random variables

0C([0, T ];H) � ω 
→ J ε

⎛⎝ω + 1√
ε

·∫
0

ḣε(s) ds

⎞⎠ ∈ E,

converges in law, as ε ↘ 0, to the random variable J 0
(∫ ·

0 ḣ(s) ds
)
,

BD2: for every M > 0, the set ⎧⎨⎩J 0

⎛⎝ ·∫
0

ḣ(s) ds

⎞⎠ : h ∈ SM

⎫⎬⎭ ,

is a compact subset of E.

Then the family of measures με satisfies the large deviation principle (LDP) with the rate function 
defined by

I(u) := inf

⎧⎨⎩1

2

T∫
0

‖ḣ(s)‖2
K ds : 0H

1,2(0, T ;K) and u = J 0

⎛⎝ ·∫
0

ḣ(s) ds

⎞⎠⎫⎬⎭ , (5.2)

with the convention inf{∅} = +∞.

5.1. Main result

It is important to note that in transferring the general theory argument from Theorem 5.2 in 
our setting we require some information about the difference of solutions at two different times. 
Hence we need to strengthen the assumptions on diffusion coefficient. In the remaining part of 
this paper, we assume that

Y : M � p 
→ Y(p) ∈ TpM,

is a smooth vector field on compact Riemannian manifold M , which can be considered as a 
submanifold of Rn, such that its extension, denote again by Y , on the ambient space Rn is 
smooth and satisfies

Y.4 there exists a compact set KY ⊂ Rn such that Y(p) = 0 if p /∈ KY ,
Y.5 for q ∈ O , Y(ϒ(q)) = ϒ′(q)Y (q),
Y.6 for some CY > 0

|Y(p)| ≤ CY (1 + |p|),
∣∣∣∣ ∂Y

∂pi

(p)

∣∣∣∣≤ CY , and

∣∣∣∣ ∂2Y

∂pi∂pj

(p)

∣∣∣∣≤ CY ,

for p ∈ KY , i, j = 1, . . . , n.
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Remark 5.3.

(1) Since KY is compact, there exists a CK such that |Y(p)| ≤ CK for p ∈Rn.
(2) For M = S2 case, Y(p) = p × e, p ∈ M , for some fixed vector e ∈ R3 satisfies above as-

sumptions.

Since, due to the above assumptions, Y and its first order partial derivatives are Lipschitz, by 
1-D Sobolev embedding we easily get the next result.

Lemma 5.4. For any R > 0, there exists a constant CY,R > 0 such that the extension Y defined 
above satisfies

(1) ‖Y(u)‖Hj (BR) ≤ CY,R(1 + ‖u‖Hj (BR)), j = 0,1,2,

(2) ‖Y(u) − Y(v)‖L2(BR) ≤ CY,R‖u − v‖L2(BR),

(3) ‖Y(u) − Y(v)‖H 1(BR) ≤ CY,R‖u − v‖H 1(BR)

(
1 + ‖u‖H 1(BR) + ‖v‖H 1(BR)

)
.

Let (FW,0
t ) be the P -augmented filtration generated by the Wiener process W . Now we state 

the main result of this section for the following small noise Cauchy problem{
∂ttu

ε = ∂xxu
ε + Auε(∂tu

ε, ∂tu
ε) − Auε(∂xu

ε, ∂xu
ε) + √

εY (uε)Ẇ ,(
uε(0), ∂tu

ε(0)
)= (u0, v0) ,

(5.3)

with the hypothesis that (u0, v0) is F0-measurable H 2
loc ×H 1

loc(R, T M)-valued random variable, 
such that u0(x, ω) ∈ M and v0(x, ω) ∈ Tu0(x,ω)M hold for every ω ∈ 	 and x ∈ R. Since the 
small noise problem (5.3), with initial data (u0, v0) ∈ Hloc(R; M), is a particular case of Theo-
rem B.1, for given ε > 0 and T > 0, there exists a unique global strong (FW,0

t )-adapted solution 
to (5.3), which we denote by zε := (uε, ∂tu

ε), with values in the Polish space

XT := C
(
[0, T ];H 2

loc(R;Rn)
)

× C
(
[0, T ];H 1

loc(R;Rn)
)

,

∼= C ([0, T ];Hloc) , (5.4)

where Hloc has been defined in (2.5), and satisfy the properties mentioned in Appendix B.
Below, let Hμ be embedded in a separable Hilbert space E via a Hilbert-Schmidt inclusion 

i : Hμ ↪→ E as in Example 3.2, define a filtration

Gt = σ(πs : s ≤ t), t ∈ [0, T ]

on 0C([0, T ]; E) where πs(f ) = f (s), denote by w the Wiener measure with the covariance 
operator ii∗ on 0C([0, T ]; E) and denote by B the identity mapping on 0C([0, T ]; E).

Lemma 5.5. Let (u0, v0) ∈ Hloc(R; M). Then there exists a Borel measurable mapping J ε =
(Uε, V ε)

J ε : C([0, T ];E) → XT , (5.5)
0
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such that

(a) Uε(t, x), V ε(t, x) are Gw
t -adapted for every (t, x) ∈ [0, T ] ×R,

(b) Uε(t, x) : 0C([0, T ]; E) → M for every (t, x) ∈ [0, T ] ×R,
(c) t 
→ Uε(t) ∈ H 1

loc(R; Rn) is continuously differentiable and

dUε(t)

dt
= V ε(t), t ∈ [0, T ],

(d) (Uε(0), V ε(0)) = (u0, v0),
(e) (Uε, B) is a solution of (5.3) in the sense of Theorem B.1 for the probability measure w,
(f) if W̃ is an E-valued Wiener process with covariance operator ii∗ on some stochastic basis 

then (Uε(W̃ ), W̃ ) is a solution of (5.3) in the sense of Theorem B.1.

Proof of Lemma 5.5. For t ∈ [0, T ], define a stopping operator

Lt : 0C([0, T ];E) → 0C([0, T ];E) : f 
→ f (· ∧ t)

and observe that Gt = σ(Lt ) and FW
t = σ(Lt (W)). The Doob-Dynkin Lemma yields the ex-

istence of a Borel measurable mapping J ε such that zε = J ε(W) a.s., and since zε is (FW,0
t )-

adapted, the same lemma yields the existence of a Borel measurable map

lt : 0C([0, T ];E) → H 2
loc(R;Rn) × H 1

loc(R;Rn)

such that zε(t) = lt (Lt (W)) a.s. Hence w(J ε
t = lt ◦ Lt) = 1 and we conclude that J ε

t is 
Gw

t -measurable for every t ∈ [0, T ]. In particular, we have proved (a). Since Uε(t, x)(W) =
uε(t, x) ∈ M a.s. for every (t, x) ∈ [0, T ] ×R by definition, we get that, w-a.s., Uε(t, x) ∈ M for 
every (t, x) ∈ [0, T ] ×R since paths of Uε are jointly continuous. Thus (b) holds w-a.s. Next,

uε(t, x) = u0(x) +
t∫

0

∂tu
ε(s, x) ds

holds a.s. for every (t, x) ∈ [0, T ] ×R so, as in the previous step, w-a.s.,

Uε(t, x) = u0(x) +
t∫

0

V ε(s, x) ds

holds for every (t, x) ∈ [0, T ] ×R since paths of Uε and V ε are jointly continuous. In particular, 
(c) holds w-a.s. Moreover, it is obvious that (d) holds w-a.s. To deal with the w-exceptional set, 
denote by γ the smooth geodesic flow on R × T M and redefine, on this exceptional set,

J ε(t, x) = (γ (t, u0(x), v0(x)), γ̇ (t, u0(x), v0(x)))

which satisfies (b), (c) and (d) as well. Finally, if we define (ũε, ṽε) = (Ũ ε(W̃ ), Ṽ ε(W̃ )) then the 
finite-dimensional distributions of the processes
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(V ε, ∂xxU
ε,AUε (∂xU

ε, ∂xU
ε),AUε (V ε,V ε), Y (Uε),B)

(∂tu
ε, ∂xxu

ε,Auε (∂xu
ε, ∂xu

ε),Auε (∂tu
ε, ∂tu

ε), Y (uε),W)

(ṽε, ∂xxũ
ε,Aũε (∂xũ

ε, ∂xũ
ε),Aũε (ṽε, ṽε), Y (ũε), W̃ )

coincide in every in L2((−R, R; Rn)). Hence we obtain (e) and (f) e.g. by [50, Theorem 8.3 and 
Theorem 8.6]. Let us just point out that the measurability and qualitative properties of ũε and 
ṽε = dũε

dt
are guaranteed by (a)–(d). �

Recall from Section 3 that the random perturbation W we consider is a cylindrical Wiener 
process on Hμ and there exists a separable Hilbert space E such that the embedding of Hμ in 
E is Hilbert-Schmidt. Hence we can apply the general theory from previous section with the 
notations defined by taking Hμ instead of K .

Let us define a Borel map

J 0 : 0C([0, T ];E) → XT . (5.6)

Note that it is well-defined due to Lemma 5.5. If h ∈ 0C([0, T ]; E) \ H
1,2

0 (0, T , Hμ), then we 
set J 0(h) = 0. If h ∈ H

1,2
0 (0, T , Hμ) then by Theorem 4.1 there exists a function in XT , say zh, 

that solves {
∂ttu = ∂xxu + Au(∂tu, ∂tu) − Au(∂xu, ∂xu) + Y(u) ḣ,

u(0, ·) = u0, ∂tu(0, ·) = v0,
(5.7)

uniquely and we set J 0(h) = zh.

Remark 5.6. At some places in the paper we denote J 0(h) by J 0
(∫ ·

0 ḣ(s) ds
)

to make it clear 
that the considered differential equation is controlled by ḣ not by h.

The main result of this section is as follows.

Theorem 5.7. The family of laws {L (zε) : ε ∈ (0, 1]} on XT , where zε := (uε, ∂tu
ε) is the unique 

solution to (5.3), satisfies the large deviation principle with rate function I defined in (5.2).

Remark 5.8. It is relevant to note that we believe that it is possible to establish the well-posedness 
result and the LDP for problem (5.3) in a suitable weighted Sobolev spaces but we have decided 
to use local Sobolev spaces for our analysis because the wave equation structure allows localiza-
tion. We have adopted the approach of local Sobolev spaces because it has been used in all the 
previous papers on the stochastic geometric wave equations, see [15,17–19].

Note that, in light of Theorem 5.2, in order to prove the Theorem 5.7 it is sufficient to show 
the following two statements.

Statement 1: For each M > 0, the set KM := {J 0(h) : h ∈ SM} is a compact subset of 
XT , where SM ⊂ H

1,2
0 (0, T , Hμ) is the centered closed ball of radius M endowed with the 

weak topology.
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Statement 2: Assume that M > 0, that {εn}n∈N is an (0, 1]-valued sequence convergent to 
0, that {hn}n∈N ⊂ SM converges in law to h ∈ SM as ε → 0. Then, the processes

0C([0, T ];E) � W(·) 
→ J εn

⎛⎝W(·) + 1√
εn

·∫
0

ḣn(s) ds

⎞⎠ ∈XT , (5.8)

converge in law on XT to J 0
(∫ ·

0 ḣ(s) ds
)
.

Remark 5.9. By combining the proofs of Theorem B.1 and Theorem 4.1 we infer that the map 

(5.8) is well-defined and J εn

(
W(·) + 1√

εn

∫ ·
0 ḣn(s) ds

)
solves the following stochastic control 

Cauchy problem⎧⎪⎪⎨⎪⎪⎩
∂ttu

εn = ∂xxu
εn + Auεn (∂tu

εn, ∂tu
εn) − Auεn (∂xu

εn, ∂xu
εn) + Y(uεn)ḣn

+ √
εnY (uεn)Ẇ ,(

uεn(0), ∂tu
εn(0)

)= (u0, v0) ,

(5.9)

for the initial data (u0, v0) ∈ H 2
loc × H 1

loc(R; T M).

Remark 5.10. It is clear by now that verification of the LDP reduces to proving two conver-
gence results, see [13,12,20,25,63]. As it was shown first in [9], the second convergence result 
follows from the first one via the Jakubowski version of the Skorokhod representation theorem. 
Therefore, establishing LDP reduces, de facto, to proving one convergence result for determin-
istic controlled problem called also the skeleton equation. This convergence result is specific to 
the stochastic PDE in question and requires techniques related to the considered equation. Thus, 
for instance, the proof in [9, Lemma 6.3] for the stochastic Landau-Lifshitz-Gilbert equation, 
is different from the proof, for stochastic Navier-Stokes equation, of [25, Proposition 3.5]. On 
technical level, the proof of corresponding result, i.e. Statement 1, is the main contribution of 
our work.

5.2. Proof of Statement 1

Let us fix M > 0 and consider a sequence of controls {hn}n∈N ⊂ SM. Let zn = (un, vn) :=
J 0(hn), for n ∈ N , be a solution to problem (5.7), corresponding to control hn. Since SM is 
the closed unit ball in the Hilbert space H

1,2
0 (0, T , Hμ), by the Banach-Alaoglu Theorem [59, 

Theorem 3.15] or [5, Theorem 3.16], SM is weakly compact. Consequently there exists a subse-
quence of {hn}n∈N , we still denote this by {hn}n∈N , which converges weakly to a limit h ∈ SM. 
Hence in order to complete the proof of Statement 1 we only need to show that the subsequence 
{zn}n∈N converges to zh = (uh, vh) which, by definition, is the unique solution to the Cauchy 
problem of the skeleton equation (5.7) with the control h.

Before delving into the proof of this claim we establish the following a priori estimate which 
is a preliminary step required to prove, Proposition 5.16, the main result of this section. Let us 
recall that T > 0 is fixed for the whole section and M > 0 is chosen and fixed in this subsection.

Lemma 5.11. If x ∈ R, then there exists a constant B > 0, which depends on ‖(u0, v0)‖H(B(x,T )),

M and T , such that
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sup
h∈SM

sup
t∈[0, T

2 ]
e(t, T ;x, zh(t)) ≤ B, (5.10)

where zh is the unique global strong solution to problem (5.7) and

e(t, T ;x, z) : = 1

2
‖z‖2

HB(x,T −t)
= 1

2

{
‖u‖2

L2(B(x,T −t))
+ ‖∂xu‖2

L2(B(x,T −t))
+ ‖v‖2

L2(B(x,T −t))

+‖∂xxu‖2
L2(B(x,T −t))

+ ‖∂xv‖2
L2(B(x,T −t))

}
, z = (u, v) ∈Hloc.

Moreover, if we restrict x on an interval [−a, a] ⊂R, then the constant B := B(M, T , a), which 
also depends on ‘a’ now, can be chosen such that

sup
x∈[−a,a]

sup
h∈SM

sup
t∈[0, T

2 ]
e(t, T ;x, zh(t)) ≤ B.

Proof of Lemma 5.11. Let us choose and fix x ∈ R. First note that the last part follows from 
the first one because by assumptions, (u0, v0) ∈ Hloc, in particular, ‖(u0, v0)‖H(−a−T ,a+T ) < ∞
and therefore,

sup
x∈[−a,a]

‖(u0, v0)‖H(B(x,T )) ≤ ‖(u0, v0)‖H(−a−T ,a+T ) < ∞.

The procedure to prove (5.10) is based on the proof of Proposition 4.12. Let us fix h in SM and 
denote the corresponding solution zh := (uh, vh) which exists due to Theorem 4.1.

Since x is fixed, we will avoid writing it explicitly in the norm. Define

l(t, T ;x) := 1

2
‖(uh(t), vh(t)‖2

H 1(BT −t )×L2(BT −t )
, t ∈ [0, T ].

To shorten the notation we will write l(t) in place of l(t, T ; x). Thus, invoking Proposition C.1, 
with k = 0 and L = I , implies, for t ∈ [0, T ],

l(t) ≤ l(0) +
t∫

0

〈uh(r), vh(s)〉L2(BT −s )
ds +

t∫
0

〈vh(s), fh(s)〉L2(BT −s )
ds

+
t∫

0

〈vh(s), Y (uh(s))ḣ(s)〉L2(BT −s )
ds, (5.11)

where

fh(r) := Auh(r)(vh(r), vh(r) − Auh(r)(∂xuh(r), ∂xuh(r).

Since vh(r) ∈ Tuh(r)M and by definition Auh(r)(·, ·) ∈ Nuh(r)M , the second integral in (5.11)
vanishes. Because uh(r) ∈ M , invoking the Cauchy-Schwartz inequality, Lemmata 3.4 and 5.4
implies
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l(t) ≤ l(0) +
(

C2
Y C2

T

2
+ 2

) t∫
0

(1 + l(s))(1 + ‖ḣ(s)‖2
Hμ

)ds.

Consequently, by applying the Gronwall Lemma and using h ∈ SM we get

l(t) �CY ,CT
(1 + l(0))

[
T + ‖ḣ‖2

L2(0,T ;Hμ)

]
≤ (T +M)(1 + l(0)). (5.12)

Next we define

q(t) := log(1 + ‖zh(t)‖2
HT −t

).

Then Proposition C.1, with k = 1 and L(x) = log(1 + x), gives, for t ∈ [0, T2 ],

q(t) ≤ q(0) +
t∫

0

‖zh(s)‖2
HT −s

1 + ‖zh(s)‖2
HT −s

ds

+
t∫

0

〈vh(s), fh(s)〉L2(BT −s )

1 + ‖zh(s)‖2
HT −s

ds +
t∫

0

〈∂xvh(s), ∂x[fh(s)]〉L2(BT −s )

1 + ‖zh(s)‖2
HT −s

ds

+
t∫

0

〈vh(s), Y (uh(s))ḣ(s)〉L2(BT −s )

1 + ‖zk(s)‖2
HT −s

ds +
t∫

0

〈∂xvh(s), ∂x [Y(uh(s))ḣ(s)]〉L2(BT −s )

1 + ‖zh(s)‖2
HT −s

ds.

Since by perpendicularity the second integral in above vanishes, by doing the calculation based 
on (4.38) and (4.42) we deduce

q(t) �T 1 + q(0) +
t∫

0

l(s)‖zh(s)‖2
HT −s

1 + ‖zh(s)‖2
HT −s

ds

+
t∫

0

(1 + l(s)) (1 + ‖zh(s)‖2
HT −s

)(1 + ‖ḣ(s)‖2
Hμ

)

1 + ‖zk(s)‖2
HT −s

ds

≤ 1 + q(0) +
t∫

0

(1 + l(s))(1 + ‖ḣ(s)‖2
Hμ

)ds,

which further implies, due to (5.12) and h ∈ SM,

q(t) � 1 + q(0) + (T +M)2(1 + l(0)).

In terms of zh, that is, for each x ∈ R and t ∈ [0, T2 ],

‖zh(t)‖2
H � exp

[
‖(u0, v0)‖2

H (T +M)2
]
.

B(x,T −t) B(x,T )
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Since above holds for every t ∈ [0, T2 ], h ∈ SM, by taking supremum on t and h we get (5.10), 
and hence the proof of Lemma 5.11. �
Remark 5.12. Since B(x, T2 ) ⊆ B(x, T − t) for every t ∈ [0, T2 ], Lemma 5.11 implies also that 
for R = T

2 ,

sup
x∈[−a,a]

sup
h∈SM

sup
t∈[0, T

2 ]

1

2

{
‖uh(t)‖2

H 2(B(x,R))
+ ‖vh(t)‖2

H 1(B(x,R))

}
≤ B(M, T , a).

Recall that, in the current subsection 5.2, we have the sequence {hn}n∈N which converges 
weakly to a limit h ∈ SM. Now we prove the main result of this subsection which will allow to 
complete the proof of Statement 1.

Proposition 5.13. Let zn = (un, vn) := J 0(hn), for n ∈ N , be a solution to problem (5.7), cor-
responding to control hn and similarly let zh = (uh, vh) := J 0(h). Then the sequence {zn}n∈N
converges to zh in the space XT .

In particular, the map

SM ∈ h 
→ J 0(h) ∈XT ,

is Borel measurable.

Proof of Proposition 5.13. Let us first note that the second part of the Proposition follows from 
first one because continuous maps are Borel measurable.

Towards proving the first conclusion let us consider the objects as in the assumptions of Propo-
sition 5.13. In particular, zh = (uh, vh) and zn = (un, vn), are the unique global strong solutions, 
respectively, to

{
∂ttuh = ∂xxuh + Auh

(∂tuh, ∂tuh) − Auh
(∂xuh, ∂xuh) + Y(uh)ḣ,

(uh(0), vh(0)) = (u0, v0) , where vnh := ∂tuh,
(5.13)

and {
∂ttun = ∂xxun + Aun(∂tun, ∂tun) − Aun(∂xun, ∂xun) + Y(un)ḣn,

(un(0), vn(0)) = (u0, v0) , where vn := ∂tun.
(5.14)

Hence zn := (un, vn) = zh − zn is the unique global strong solution to, with null initial data,

∂ttun = ∂xxun − Auh
(∂xuh, ∂xuh) + Aun(∂xun, ∂xun) + Auh

(∂tuh, ∂tuh)

− Aun(∂tun, ∂tun) + Y(uh)ḣ − Y(un)ḣn, (5.15)

where vn := ∂tun. This implies that
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zn(t) =
t∫

0

St−s

(
0

fn(s)

)
ds +

t∫
0

St−s

(
0

gn(s)

)
ds, t ∈ [0, T ].

Here

fn(s) := −Auh(s)(∂xuh(s), ∂xuh(s)) + Aun(s)(∂xun(s), ∂xun(s)) + Auh(s)(∂tuh(s), ∂tuh(s))

− Aun(s)(∂tun(s), ∂tun(s)),

and

gn(s) := Y(uh(s))ḣ(s) − Y(un(s))ḣn(s).

We aim to show that

zn −−−→
n→∞ 0 in C

(
[0, T ],H 2

loc(R;Rn)
)

× C
(
[0, T ],H 1

loc(R;Rn)
)

,

that is, for every R > 0 and x ∈R,

sup
t∈[0,T ]

[
‖un(t)‖2

H 2(B(x,R))
+ ‖vn(t)‖2

H 1(B(x,R))

]
→ 0 as n → ∞. (5.16)

Without loss of generality we assume x = 0. Since a compact set in R can be covered by a 
finite number of any given closed interval of non-zero length, it is sufficient to prove above for a 
fixed R > 0 whose value we set to T .

Let ϕ be a bump function which takes value 1 on BR and vanishes outside B2R . Define

ūn(t, x) := un(t, x)ϕ(x) and ūh(t, x) := uh(t, x)ϕ(x),

so

v̄n(t, x) = ϕ(x)vn(t, x), v̄h(t, x) = ϕ(x)vh(t, x),

and with notation ūn := ūn − ūh,

∂tt ūn − ∂xx ūn = [Aun(∂tun, ∂tun) − Aun(∂xun, ∂xun) − Auh
(∂tuh, ∂tuh)

+Auh
(∂xuh, ∂xuh)

]
ϕ − (un − uh)∂xxϕ − 2(∂xun − ∂xuh)∂xϕ + [Y(un)ḣn − Y(uh)ḣ

]
ϕ

=: f̄n + ḡn.

Here

f̄n(s) := [Aun(s)(∂tun(s), ∂tun(s)) − Aun(s)(∂xun(s), ∂xun(s)) − Auh(s)(∂tuh(s), ∂tuh(s))

+Auh(s)(∂xuh(s), ∂xuh(s))
]
ϕ − (un(s) − uh(s))∂xxϕ − 2(∂xun(s) − ∂xuh(s))∂xϕ,

and
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Z. Brzeźniak, B. Gołdys, M. Ondreját et al. Journal of Differential Equations 325 (2022) 1–69
ḡn(s) := [Y(un(s))ḣn(s) − Y(uh(s))ḣ(s)
]
ϕ, s ∈ [0, T ].

Next, by direct computation we can find constants Cϕ, C̄ϕ > 0, depend on ϕ, ϕ′, ϕ′′, such that, 
for all t ∈ [0, T ] and n ∈N ,

‖ūn(t)‖2
H 2(−R,R)

+ ‖v̄n(t)‖2
H 1(−R,R)

≤ Cϕ

[‖un(t)‖2
H 2(−R,R)

+ ‖vn(t)‖2
H 1(−R,R)

]
≤ C̄ϕ

[‖ūn(t)‖2
H 2(−R,R)

+ ‖v̄n(t)‖2
H 1(−R,R)

]
. (5.17)

Hence, in order to prove assertion (5.16) it is enough to prove the following

sup
t∈[0,T ]

[
‖ūn(t)‖2

H 2(−R,R)
+ ‖v̄n(t)‖2

H 1(−R,R)

]
→ 0 as n → ∞. (5.18)

Using the time dependent balls in the space R, what is more natural in the context of the wave 
equations, we observe that claim (5.18) is a consequence of the following one.

sup
t∈[0,R]

[
‖ūn(t)‖2

H 2(BT −t )
+ ‖v̄n(t)‖2

H 1(BT −t )

]
→ 0 as n → ∞, (5.19)

where T := 4T . Indeed, because for every t ∈ [0, R], T − t > 2R and consequently, we have

‖ūn(t)‖2
H 2(BR)

+ ‖v̄n(t)‖2
H 1(BR)

≤ ‖ūn(t)‖2
H 2(B2R)

+ ‖v̄n(t)‖2
H 1(B2R)

≤ sup
t∈[0,R]

[
‖ūn(t)‖2

H 2(BT −t )
+ ‖v̄n(t)‖2

H 1(BT −t )

]
.

So we conclude that in order to prove Proposition 5.13 it is enough to show (5.19).

Proof of claim (5.19). Let us set l(t, z) := 1
2‖z‖2

HT −t
, for z = (u, v) ∈ Hloc and t ∈ [0, R]. 

Invoking Proposition C.1, with null diffusion part and k = 1, L = I, x = 0, gives, for every 
t ∈ [0, R],

l(t, z̄n(t)) ≤
t∫

0

V (r, z̄n(r)) dr, (5.20)

where z̄n(t) = (ūn(t), ̄vn(t)) and

V (t, z̄n(t)) = 〈ūn(t), v̄n(t)〉L2(BT −t )
+ 〈v̄n(t), f̄n(t)〉L2(BT −t )

+ 〈∂x v̄n(t), ∂x f̄n(t)〉L2(BT −t )
+ 〈v̄n(t), ḡn(t)〉L2(BT −t )

+ 〈∂x v̄n(t), ∂x ḡn(t)〉L2(BT −t )

=: Vf (t, z̄n(t)) +Vg(t, z̄n(t)).

We estimate Vf (t, ̄zn(t)) and Vg(t, ̄zn(t)) separately as follows. Since T − t > 2R, for every 
t ∈ [0, R] and ϕ(y), ϕ′(y) = 0 for y /∈ B2R , we have
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t∫
0

Vf (r, z̄(r)) dr =
t∫

0

[ ∫
B2R

{
ϕ(y)un(r, y)ϕ(y)vn(r, y) + ϕ(y)vn(r, y)f̄n(r, y)

+ϕ′(y)vn(r, y)∂xf̄n(r, y) + ϕ(y)∂xvn(r, y)∂xf̄n(r, y)
}

dy

]
dr

�ϕ,ϕ′

t∫
0

l(r, z̄n(r)) dr +
t∫

0

‖f̄n(r)‖2
H 1(B2R)

dr,

and

t∫
0

Vg(r, z̄(r)) dr =
t∫

0

(
〈v̄n(r), ḡn(r)〉L2(BT −r )

+ 〈∂x v̄n(r), ∂x ḡn(r)〉L2(BT −r )

)
dr

=
t∫

0

(〈v̄n(r), ḡn(r)〉L2(B2R) + 〈∂x v̄n(r), ∂x ḡn(r)〉L2(B2R)

)
dr.

Let us estimate the terms involving f̄n first. Since un, uh takes values on manifold M , by us-
ing the properties of ϕ and invoking interpolation inequality (4.13), as pursued in Lemma 4.7, 
followed by Lemma 5.11 we deduce that

‖f̄n(r)‖2
L2(B2R)

�ϕ,ϕ′,ϕ′′ ‖Aun(r)(vn(r), vn(r)) − Auh(r)(vn(r), vn(r))‖2
L2(B2R)

+ ‖Auh(r)(vn(r), vn(r)) − Auh(r)(vn(r), vh(r))‖2
L2(B2R)

+ ‖Auh(r)(vn(r), vh(r)) − Auh(r)(vh(r), vh(r))‖2
L2(B2R)

+ ‖Aun(r)(∂xun(r), ∂xun(r)) − Auh(r)(∂xun(r), ∂xun(r))‖2
L2(B2R)

+ ‖Auh(r)(∂xun(r), ∂xun(r)) − Auh(r)(∂xun(r), ∂xuh(r))‖2
L2(B2R)

+ ‖Auh(r)(∂xun(r), ∂xuh(r)) − Auh(r)(∂xuh(r), ∂xuh(r))‖2
L2(B2R)

+ ‖un(r) − uh(r)‖2
L2(B2R)

+ 2‖∂xun(r) − ∂xuh(r)‖2
L2(B2R)

�LA,BA,R ‖un(r) − uh(r)‖2
L2(B2R)

‖vn(r)‖4
L∞(B2R)

+ ‖vn(r) − vh(r)‖2
L2(B2R)

(
‖vn(r)‖2

L∞(B2R) + ‖vh(r)‖2
L∞(B2R)

)
+ ‖un(r) − uh(r)‖2

L2(B2R)
‖∂xun(r)‖4

L∞(B2R)

+ ‖∂xun(r) − ∂xuh(r)‖2
L2(B2R)

(
‖∂xun(r)‖2

L∞(B2R) + ‖∂xuh(r)‖2
L∞(B2R)

)
+ ‖un(r) − uh(r)‖2

L2(B2R)
+ 2‖∂xun(r) − ∂xuh(r)‖2

L2(B2R)

�LA,BA,R,ke,B ‖zn(r)‖2
H(B ) � l(r, zn(r)). (5.21)
2R
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Similarly by using the interpolation inequality (4.13) and Lemma 5.11, based on the computation 
of (4.15), we get

‖∂xf̄n(r)‖2
L2(B2R)

�LA,BA,R,ke,B l(r, zn(r)),

where the constant of inequality is independent of n but depends on the properties of ϕ and its 
first two derivatives, consequently, we have, for some Cf̄ > 0,

t∫
0

‖f̄n(r)‖2
H 1(B2R)

dr ≤ Cf̄

t∫
0

l(r, zn(r)) dr, ∀t ∈ [0,R]. (5.22)

Now we move to the crucial estimate of integral involving ḡn. It is the part where we follow the 
idea of [25, Proposition 3.4] and [30, Proposition 4.4]. Let m be a natural number, whose value 
will be set later. Define the following partition of [0, R],{

0,
1 · R
2m

,
2 · R
2m

, · · · ,
2m · R

2m

}
,

and set

rm := (k + 1) · R
2m

and tk+1 := (k + 1) · R
2m

if r ∈
[
k · R
2m

,
(k + 1) · R

2m

)
.

Now observe that, for every t ∈ [0, R],
t∫

0

〈v̄n(r), ḡn(r)〉H 1(B2R) dr

=
t∫

0

〈v̄n(r), ϕ(Y (un(r)) − Y(uh(r)))ḣn(r)〉H 1(B2R) dr

+
t∫

0

〈v̄n(r) − v̄n(rm),ϕY (uh(r))(ḣn(r) − ḣ(r))〉H 1(B2R) dr

+
t∫

0

〈v̄n(rm),ϕ(Y (uh(r)) − Y(uh(rm)))(ḣn(r) − ḣ(r))〉H 1(B2R) dr

+
t∫

0

〈v̄n(rm),ϕY (uh(rm))(ḣn(r) − ḣ(r))〉H 1(B2R) dr

=: Gn,m
1 (t) + G

n,m
2 (t) + G

n,m
3 (t) + G

n,m
4 (t). (5.23)

For Gn,m, Lemmata 3.4, 5.4 and 5.11 followed by (5.17) imply
1
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|Gn,m
1 (t)| �ϕ

t∫
0

‖v̄n(r)‖2
H 1(B2R)

dr +
t∫

0

‖Y(un(r)) − Y(uh(r))‖2
H 1(B2R)

‖ḣn(r)‖2
Hμ

dr

�R

t∫
0

‖v̄n(r)‖2
H 1(B2R)

dr

+
t∫

0

‖un(r) − uh(r)‖2
H 1(B2R)

(
1 + ‖un(r)‖2

H 1(B2R)
+ ‖uh(r)‖2

H 1(B2R)

)
‖ḣn(r)‖2

Hμ
dr

�B

t∫
0

(1 + l(r, zn(r)))
(

1 + ‖ḣn(r)‖2
Hμ

)
dr, ∀t ∈ [0,R]. (5.24)

To estimate Gn,m
2 (t) we invoke 〈h, k〉H 1(B2R) ≤ ‖h‖L2(B2R)‖k‖H 2(2R)) followed by the Hölder 

inequality and Lemmata 3.4, 5.4, and 5.15 to get, for every t ∈ [0, R],

|Gn,m
2 (t)| �R,ϕ

t∫
0

‖vn(r) − vn(rm)‖L2(B2R)‖Y(uh(r))‖H 2(B2R)‖ḣn(r) − ḣ(r)‖Hμ dr

�R

⎛⎝ t∫
0

‖vn(r) − vn(rm)‖2
L2(B2R)

dr

⎞⎠
1
2

×
⎛⎝ t∫

0

[
1 + ‖uh(r)‖4

H 2(B2R)

]
‖ḣn(r) − ḣ(r)‖2

Hμ
dr

⎞⎠
1
2

�
√

Mμ

⎛⎝ t∫
0

|r − rm|dr

⎞⎠
1
2

sup
r∈[0,T2 ]

[
1 + ‖uh(r)‖4

H 2(BT −r )

]

�
R
√

Mμ

2m/2 sup
r∈[0,T2 ]

[
1 + (l(r, zh(r)))

2
]

≤ R
√

Mμ

2m/2 (1 +B2),

where in the last and the second last step we have used, respectively, Lemma 5.11 for T instead 
of T and

⎛⎝ t∫
0

|r − rm|dr

⎞⎠
1
2

≤
⎛⎝ R∫

0

|r − rm|dr

⎞⎠
1
2

=
⎛⎝ 2m∑

k=1

tk∫
tk−1

∣∣∣∣r − kR

2m

∣∣∣∣dr

⎞⎠
1
2

≤ R

2m/2 .

Moreover, in the third last step we have also applied the following: since R = T and ḣn → ḣ

weakly in L2(0, T ; Hμ), the sequence ḣn − ḣ is bounded in L2(0, T ; Hμ) i.e. ∃Mμ > 0 such that
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T∫
0

‖ḣn(r) − ḣ(r)‖2
Hμ

dr ≤ Mμ, for all n. (5.25)

Before moving to Gn,m
3 (t) note that, since 2R = T

2 , due to Remark 5.12, for every s, t ∈ [0, T2 ],

‖uh(t) − uh(s)‖H 1(B2R) ≤
t∫

s

‖vh(r)‖H 1(B2R) dr �
√
B|t − s|.

Consequently, by the Hölder inequality followed by Lemmata 3.4, 5.15, and 5.4 we obtain

|Gn,m
3 (t)| �ϕ

⎛⎝ t∫
0

[
‖vn(rm)‖2

H 1(B2R)
+ ‖vh(rm)‖2

H 1(B2R)

]
dr

⎞⎠
1
2

×
⎛⎝ t∫

0

‖Y(uh(r)) − Y(uh(rm))‖2
H 1(B2R)

‖ḣn(r) − ḣ(r))‖2
Hμ

dr

⎞⎠
1
2

�T ,B

⎛⎝ t∫
0

‖uh(r) − uh(rm)‖2
H 1(B2R)

[
1 + ‖uh(r)‖2

H 1(B2R)
+ ‖uh(rm)‖2

H 1(B2R)

]

×‖ḣn(r) − ḣ(r)‖2
Hμ

dr
) 1

2

�T ,B

⎛⎝ t∫
0

|r − rm| ‖ḣn(r) − ḣ(r)‖2
Hμ

dr

⎞⎠
1
2

≤
⎛⎝ 2m∑

k=1

tk∫
tk−1

∣∣∣∣r − kR

2m

∣∣∣∣ ‖ḣn(r) − ḣ(r)‖2
Hμ

dr

⎞⎠
1
2

≤
√

R

2m

⎛⎝ t∫
0

‖ḣn(r) − ḣ(r)‖2
Hμ

dr

⎞⎠
1
2

≤
√

R
Mμ

2m
, t ∈ [0,R]. (5.26)

Finally we start estimating Gn,m
4 (t) by noting that for every t ∈ [0, R],

there exists kt ≤ 2m such that t ∈
[

(kt − 1) · R
2m

,
kt · R

2m

)
.

Note that on such interval rm = kt ·R
m . Then by Lemma 5.11 we have
2
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|Gn,m
4 (t)| ≤

∣∣∣∣kt−1∑
k=1

tk∫
tk−1

〈
v̄n

(
k · R
2m

)
, ϕY

(
uh

(
k · R
2m

))
(ḣn(r) − ḣ(r))

〉
H 1(B2R)

dr

+
t∫

tkt −1

〈
v̄n

(
(kt − 1) · R

2m

)
, ϕY

(
uh

(
(kt − 1) · R

2m

))
(ḣn(r) − ḣ(r))

〉
H 1(B2R)

dr

∣∣∣∣
≤

2m∑
k=1

∣∣∣∣
〈
v̄n

(
k · R
2m

)
, ϕY

(
uh

(
k · R
2m

)) tk∫
tk−1

(ḣn(r) − ḣ(r)) dr

〉
H 1(B2R)

∣∣∣∣
+ sup

1≤k≤2m

sup
tk≤t≤tk−1

∣∣∣∣
〈
v̄n

(
(k − 1) · R

2m

)
, ϕY

(
uh

(
(k − 1) · R

2m

)) t∫
tk−1

(ḣn(r) − ḣ(r)) dr

〉
H 1(B2R)

∣∣∣∣
≤

2m∑
k=1

∥∥∥∥v̄n

(
k · R
2m

)∥∥∥∥
H 1(B2R)

∥∥∥∥ϕY

(
uh

(
k · R
2m

)) tk∫
tk−1

(ḣn(r) − ḣ(r)) dr

∥∥∥∥
H 1(B2R)

+ sup
1≤k≤2m

sup
tk≤t≤tk−1

∥∥∥∥v̄n

(
(k − 1) · R

2m

)∥∥∥∥
H 1(B2R)

×
∥∥∥∥ϕY

(
uh

(
(k − 1) · R

2m

)) t∫
tk−1

(ḣn(r) − ḣ(r)) dr

∥∥∥∥
H 1(B2R)

�ϕ,B
2m∑
k=1

∥∥∥∥Y (uh

(
k · R
2m

)) tk∫
tk−1

(ḣn(r) − ḣ(r)) dr

∥∥∥∥
H 1(B2R)

+ sup
1≤k≤2m

sup
tk≤t≤tk−1

∥∥∥∥Y (uh

(
(k − 1) · R

2m

)) t∫
tk−1

(ḣn(r) − ḣ(r)) dr

∥∥∥∥
H 1(B2R)

=: Gn,m,1
4 + G

n,m,2
4 , (5.27)

where the right hand side does not depend on t . By invoking Lemmata 3.4, 5.4, the Hölder 
inequality, Lemma 5.11 and (5.25) we estimate Gn,m,2

4 as

G
n,m,2
4 �R sup

1≤k≤2m

sup
tk≤t≤tk−1

∥∥∥∥Y (uh

(
(k − 1) · R

2m

))∥∥∥∥
H 1(B2R)

⎛⎝ t∫
tk−1

‖ḣn(r) − ḣ(r)‖Hμ dr

⎞⎠
(5.28)

≤ sup
1≤k≤2m

sup
tk≤t≤tk−1

[
1 +

∥∥∥∥uh

(
(k − 1) · R

2m

)∥∥∥∥
H 1(B2R)

]⎛⎝ t∫
‖ḣn(r) − ḣ(r)‖Hμ dr

⎞⎠

tk−1

48
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�B sup
1≤k≤2m

(
R

2m

) 1
2

⎛⎝ tk∫
tk−1

‖ḣn(r) − ḣ(r)‖2
Hμ

dr

⎞⎠
1
2

≤
√

R
Mμ

2m
.

For Gn,m,1
4 recall that, by Lemma 3.4, for every φ ∈ H 1(B(x, r)) the multiplication operator

Y(φ) : K � k 
→ Y(φ) · k ∈ H 1(B(x, r)),

is γ -radonifying and hence compact. Hence by Lemma 5.14 we infer that for every k,

∥∥∥∥Y (uh

(
k · R
2m

)) tk∫
tk−1

(ḣn(r) − ḣ(r)) dr

∥∥∥∥
H 1(B2R)

→ 0 as n → 0. (5.29)

Hence each term of the sum in Gn,m,1
4 converges to 0 as n → ∞. Consequently, by substituting 

the computation between (5.24) and (5.27) into (5.23) we obtain

t∫
0

〈v̄n(r), ḡn(r)〉H 1(B2R) dr �R,LA,BA,ϕ,B

t∫
0

(1 + l(r, zn(r)))
(

1 + ‖ḣn(r)‖2
Hμ

)
dr

+
√

R
Mμ

2m
+

2m∑
k=1

∥∥∥∥Y (uh

(
k · R
2m

)) tk∫
tk−1

(ḣn(r) − ḣ(r)) dr

∥∥∥∥
H 1(B2R)

.

Therefore, with (5.22) and (5.17), from (5.20) we have

l(t, zn(t)) �
t∫

0

(1 + l(r, zn(r)))
(

1 + ‖ḣn(r)‖2
Hμ

)
dr +

√
R

Mμ

2m

+
2m∑
k=1

∥∥∥∥Y (uh

(
k · R
2m

)) tk∫
tk−1

(ḣn(r) − ḣ(r)) dr

∥∥∥∥
H 1(B2R)

, t ∈ [0,R],

and by the Gronwall Lemma, with the observation that all the terms in right hand side except the 
first are independent of t , and hn ∈ SM further we get

sup
t∈[0,R]

l(t, zn(t)) � eT +M

⎧⎨⎩
√

R
Mμ

2m
+

2m∑
k=1

∥∥∥∥Y (uh

(
k · R
2m

)) tk∫
tk−1

(ḣn(r) − ḣ(r)) dr

∥∥∥∥
H 1(B2R)

⎫⎬⎭ .

(5.30)

Hence, for given any α > 0 we can choose m such that√
R

Mμ

m
< α, for every n ∈N.
2
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Thus, for such chosen m, due to (5.29) by taking n → ∞ in (5.30) we conclude that, for every 
α > 0,

0 < lim sup
n→∞

sup
t∈[0,R]

l(t, zn(t)) < α. (5.31)

Therefore, due to (5.17) we conclude the proof of assertion (5.19). �
Hence, the Proposition 5.13 follows. �
Now we come back to the proof of Statement 1. The previous proposition shows that every 

sequence in KM has a convergent subsequence. Hence KM is sequentially relatively compact 
subset of XT . Let {zn}n∈N ⊂ KM which converges to z ∈ XT . But Proposition 5.13 shows that 
there exists a subsequence {unk

}k∈N which converges to some element zh of KM in the strong 
topology of XT . Hence z = zh and KM is a closed subset of XT . This completes the proof of
Statement 1.

Below we state a basic result that we have used in the proof of Proposition 5.13. A statement 
of this type can be found in [25], see the proof of Proposition 3.4.

Lemma 5.14. Let X, Y be separable Hilbert spaces and let C : X → Y be a compact operator. 
Then the operator K : L2(0, T ; X) → C([0, T ]; Y) defined as

Kg(t) = C

t∫
0

g(s) ds ,

where the integral 
∫ t

0 g(s) ds is meant in the Bochner sense, is compact. In particular, if gn → g

weakly in L2(0, T ; X) then Kgn converges to Kg strongly in C([0, T ]; Y).

Proof of Lemma 5.14. Clearly the operator K is bounded. Let BL2
T X stand for the centered unit 

ball in L2(0, T ; X). In order to prove compactness of K , in view of the Arzelà-Ascoli Theorem, 
see [62, Lemma 1] (and, for a very general formulation, [33, Theorem 8.2.10]), we only need to 
show that the following two conditions hold.

(1) for every fixed t ∈ [0, T ] the set{
Kg(t) : g ∈ BL2

T X

}
⊂ Y is relatively compact in Y ;

(2) the set of function {
Kg : g ∈ BL2

T X

}
⊂ C([0, T ];Y)

is uniformly equi-continuous.
To prove (1) we note first that for t ∈ [0, T ] fixed∣∣∣∣∣∣

t∫
g(s) ds

∣∣∣∣∣∣ ≤ √
T , g ∈ BL2

T X .
0 X
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Since C : X → Y is compact, the set⎧⎨⎩C

t∫
0

g(s) ds : g ∈ BL2
T X

⎫⎬⎭ ,

being an image of a bounded set in X, is relatively compact in Y .
To prove (2) it is enough to note that for any g ∈ BL2

T X and s, t ∈ [0, T ]

|Kg(t) − Kg(s)| ≤ ‖C‖
t∫

s

|g(r)|dr ≤ ‖C‖√|t − s| .

Thus the proof of Lemma 5.14 is complete. �
The following Lemma is about the Lipschitz property of the difference of solutions that we 

have used in proving Proposition 5.13.

Lemma 5.15. Let R > 0, I = [−a, a] and hn, h ∈ SM. There exists a positive constant C :=
C(R, B, M, a) such that for t, s ∈ [0, R] the following holds

sup
x∈I

‖vn(t) − vn(s)‖L2(B(x,2R)) � C |t − s| 1
2 , (5.32)

where vn is defined just after (5.14).

Proof of Lemma 5.15. Due to triangle inequality it is sufficient to show

sup
x∈I

‖vh(t) − vh(s)‖L2(B(x,2R)) � C|t − s| 1
2 , t, s ∈ [0,R].

From the proof of existence part in Theorem 4.1 we have, for t, s ∈ [0, R],

‖vh(t) − vh(s)‖L2(B(x,2R)) ≤
t∫

s

‖∂xxuh(r)‖L2(B(x,2R)) dr

+
t∫

s

[‖fh(r)‖L2B(x,2R)) + ‖gh(r)‖L2(B(x,2R))

]
dr, (5.33)

where

fh(r) := Auh(r)(vh(r), vh(r)) − Auh(r)(∂xuh(r), ∂xuh(r)), and gh(r) := Y(uh(r))ḣ(r).

But, since h ∈ SM, the Hölder inequality followed by Lemmata 3.4 and 5.4 yield
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sup
x∈I

t∫
s

‖gh(r)‖L2(B(x,2R)) dr ≤ |t − s| 1
2

⎛⎝ t∫
s

sup
x∈I

‖Y(uh(r))‖2
L2(B(x,2R))

‖ḣ(r)‖2
Hμ

dr

⎞⎠
1
2

�R,B,M |t − s| 1
2 , for t, s ∈ [0,R],

where we also applied 5.11 with 2R instead of T and, based on (5.21), we also have

sup
x∈I

t∫
s

‖fh(r)‖L2(B(x,2R)) dr ≤ |t − s| 1
2

⎛⎝ t∫
s

sup
x∈I

‖Auh(r)(vh(r), vh(r))‖2
L2(B(x,2R))

dr

⎞⎠
1
2

+ |t − s| 1
2

⎛⎝ t∫
s

sup
x∈I

‖Auh(s)(∂xuh(r), ∂xuh(r))‖2
L2(B(x,2R))

dr

⎞⎠
1
2

� |t − s| 1
2

⎛⎝ t∫
s

sup
x∈I

‖uh(r)‖2
L2(B(x,2R))

{‖vh(s)‖4
L2(B(x,2R))

+ ‖∂xuh(s)‖4
L2(B(x,2R))

}ds

⎞⎠
1
2

� |t − s| B 3
2 for t, s ∈ [0,R].

Finally, by the Hölder inequality and Lemma 5.11, we obtain, for t, s ∈ [0, R],

sup
x∈I

t∫
s

‖∂xxuh(s)‖L2(B(x,2R)) dr ≤
⎛⎝ t∫

s

1dr

⎞⎠
1
2
⎛⎝ t∫

s

sup
x∈I

‖uh(r)‖2
H 2(B(x,2R))

dr

⎞⎠
1
2

�
√
B|t − s|.

Therefore, by collecting the estimates in (5.33) we get the required inequality (5.32) and we are 
done with the proof of Lemma 5.15. �
5.3. Proof of Statement 2

Recall that M > 0 is given and a sequence {hn}n∈N ⊂ SM is also given which converges in 
law to h ∈ SM as εn → 0. It will be useful to introduce the following notation for the processes

Zn := (Un,Vn) = J εn

(
W + 1√

εn

hn

)
, zn := (un, vn) = J 0(hn).

Let us fix any x ∈ R. Then set N a natural number such that

N > ‖(u0, v0)‖H(B(x,T )).

For each n ∈N we define an Ft -stopping time
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τn(ω) := inf{t > 0 : ‖Zn(t,ω)‖H(B(x,T −t)) ≥ N} ∧ T , ω ∈ 	. (5.34)

Recall that for z = (u, v) ∈ Hloc , we set

e(t, T ;x, z) = 1

2

{
‖u‖2

H 2(B(x,T −t))
+ ‖v‖2

H 1(B(x,T −t))

}
= 1

2
‖z‖2

H(B(x,T −t)), t ∈ [0, T ].

In this framework we prove the following key result.

Proposition 5.16. Let us define Zn := Zn − zn. For τn defined in (5.34) we have

lim
n→∞ sup

x∈[−a,a]
E

⎡⎣ sup
t∈[0, T

2 ]
e(t ∧ τn, T ;x,Zn(t ∧ τn))

⎤⎦= 0.

Proof of Proposition 5.16. Let us fix any n ∈ N . To avoid complexity of notation we use an 
abuse of notation and write all the norms without reference of the center of the ball x and we 
will write e(t, z) in place of e(t, T ; x, z) unless any conflict arises. First note that under our 
notation Zn = (Un, Vn) and zn = (un, vn), respectively, are the unique global strong solutions to 
the Cauchy problem⎧⎪⎪⎨⎪⎪⎩

∂ttUn = ∂xxUn + AUn(∂tUn, ∂tUn) − AUn(∂xUn, ∂xUn) + Y(Un)ḣn,

+ √
εnY (Un)Ẇ ,

(Un(0), ∂tUn(0)) = (u0, v0) , where Vn := ∂tUn,

and {
∂ttun = ∂xxun + Aun(∂tun, ∂tun) − Aun(∂xun, ∂xun) + Y(un)ḣn,

(un(0), ∂tun(0)) = (u0, v0) , where vn := ∂tun.

Hence Zn solves uniquely the Cauchy problem, with null initial data,

∂ttUn = ∂xxUn − AUn(∂xUn, ∂xUn) + Aun(∂xun, ∂xun) + AUn(∂tUn, ∂tUn)

− Aun(∂tun, ∂tun) + Y(Un)ḣn − Y(un)ḣn + √
εnY (Un)Ẇ ,

where Vn := ∂tUn. This is equivalent to say, for all t ∈ [0, T2 ],

Zn(t) =
t∫

0

St−s

(
0

fn(s)

)
ds +

t∫
0

St−s

(
0

gn(s)

)
dW(s). (5.35)

Here

fn(s) := −AUn(s)(∂xUn(s), ∂xUn(s)) + Aun(s)(∂xun(s), ∂xun(s)) + AUn(s)(Vn(s),Vn(s))

− Aun(s)(vn(s), vn(s)) + Y(Un(s))ḣn(s) − Y(un(s))ḣn(s),
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and

gn(s) := √
εnY (Un(s)).

Invoking Proposition C.1, with that by taking k = 1, L = I , implies for every t ∈ [0, T2 ] and 
x ∈ [−a, a],

e(t, T ;x,Zn(t)) ≤
t∫

0

V (r,Zn(r)) dr +
t∫

0

〈Vn(r), gn(r)dW(r)〉L2(BT −r )

+
t∫

0

〈∂xVn(r), ∂x[gn(r)dW(r)]〉L2(BT −r )
, (5.36)

with

V (r,Zn(r)) = 〈Un(r),Vn(r)〉L2(BT −r )
+ 〈Vn(r), fn(r)〉L2(BT −r )

+ 〈∂xVn(r), ∂xfn(r)〉L2(BT −r )

+ 1

2

∞∑
j=1

‖gn(r)ej‖2
L2(BT −r )

+ 1

2

∞∑
j=1

‖∂x[gn(r)ej ]‖2
L2(BT −r )

,

for a given sequence {ej }j∈N of orthonormal basis of Hμ.
Observe that, for any τ ∈ [0, T ], by the Cauchy-Schwartz inequality

sup
0≤t≤τ

t∧τn∫
0

V (r,Zn(r)) dr ≤ 2

τ∧τn∫
0

e(r,Zn(r)) dr (5.37)

+ 1

2

τ∧τn∫
0

(
‖fn(r)‖2

H 1(BT −r )
+ ‖gn(r) · ‖2

L2(Hμ,H 1(BT −r ))

)
dr,

where gn(r)· denotes the multiplication operator in L2(Hμ, H 1(BT −r )), see Lemma 3.4.
Next, we define the process

Y(t) :=
t∫

0

〈Vn(r), gn(r)dW(r)〉H 1(BT −r )
. (5.38)

By taking 
∫ t

0 ξ(r) dW(r) with

ξ(r) : Hμ � k 
→ 〈Vn(r), gn(r)(k)〉H 1(BT −r )
∈R,

a Hilbert-Schmidt operator, note that
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Q(t) :=
t∫

0

ξ(r) ◦ ξ(r)� dr,

is quadratic variation of R-valued martingale Y . Thus

Q(t) ≤
t∫

0

‖ξ(r)‖L2(Hμ,R)‖ξ(r)�‖L2(R,Hμ) dr =
t∫

0

‖ξ(r)‖2
L2(Hμ,R) dr (5.39)

=
t∫

0

∞∑
j=1

|ξ(r)(ej )|2 dr =
t∫

0

∞∑
j=1

|〈Vn(r), gn(r)(ej )〉H 1(BT −r )
|2 dr, t ∈ [0,

T

2
].

On the other hand by the Cauchy-Schwartz inequality

∞∑
j=1

|〈Vn(r), gn(r)(ej )〉H 1(BT −r )
|2 ≤ ‖Vn(r)‖2

H 1(BT −r )
‖gn(r) · ‖2

L2(Hμ,H 1(BT −r ))
.

Therefore,

Q(t) ≤
t∫

0

‖Vn(r)‖2
H 1(BT −r )

‖gn(r) · ‖2
L2(Hμ,H 1(BT −r ))

dr, t ∈ [0,
T

2
]. (5.40)

Invoking the Davis inequality with (5.40) followed by the Young inequality gives

E

[
sup

0≤t≤τ

|Y(t ∧ τn)|
]

≤ 3E
[√

Q(τ ∧ τn)
]

≤ 3E

⎡⎢⎣ sup
0≤t≤τ∧τn

‖Vn(t ∧ τn)‖H 1(BT −t )

⎧⎨⎩
τ∧τn∫
0

‖gn(r) · ‖2
L2(Hμ,H 1(BT −r ))

dr

⎫⎬⎭
1
2
⎤⎥⎦

≤ 3E

⎡⎣ε sup
0≤t≤τ∧τn

‖Vn(t)‖2
H 1(BT −t )

+ 1

4ε

τ∧τn∫
0

‖gn(r) · ‖2
L2(Hμ,H 1(BT −r ))

dr

⎤⎦

≤ 6ε E

[
sup

0≤t≤τ∧τn

e(t,Zn(t))

]
+ 3

4ε
E

⎡⎣ τ∧τn∫
0

‖gn(r) · ‖2
L2(Hμ,H 1(BT −r ))

dr

⎤⎦ . (5.41)

By choosing ε such that 6ε = 1
2 and taking sup0≤s≤t followed by expectation E on the both sides 

of (5.36) after evaluating it at τ ∧ τn we obtain
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E

[
sup

0≤s≤t∧τn

e(s,Zn(s))

]
≤ E

⎡⎣ sup
0≤s≤t

s∧τn∫
0

V (r,Zn(r)) dr

⎤⎦+E

[
sup

0≤s≤t

Y(s ∧ τn)

]
.

Consequently, using (5.37) and (5.41) we infer that

E

[
sup

0≤s≤t∧τn

e(s,Zn(s))

]
≤ 4E

⎡⎣ t∧τn∫
0

e(r,Zn(r)) dr

⎤⎦+E

⎡⎣ t∧τn∫
0

‖fn(r)‖2
H 1(BT −r )

dr

⎤⎦

+ 19E

⎡⎣ t∧τn∫
0

‖gn(r) · ‖2
L2(Hμ,H 1(BT −r ))

dr

⎤⎦ . (5.42)

Now since the Hilbert-Schmidt operator gn(r)· is defined as

Hμ � k 
→ gn(r) · k ∈ H 1(BT −r ),

Lemmata 3.4 and 5.4 give,

sup
x∈[−a,a]

E

⎡⎣ t∧τn∫
0

‖gn(r) · ‖2
L2(Hμ,H 1(BT −r ))

dr

⎤⎦�T E

⎡⎣ t∧τn∫
0

‖√εnY (Un(r))‖2
H 1(BT −r )

dr

⎤⎦

≤ C2
Y,T εn E

⎡⎣ t∧τn∫
0

(
1 + ‖Zn(r)‖2

HT −r

)
dr

⎤⎦�T εn (1 + N2). (5.43)

Here we observe that the constant in inequality (5.43) does not depend on a due to Lemma 3.4. 
To estimate the terms involving fn we have

‖fn(r)‖2
H 1(BT −r )

� ‖AUn(r)(∂xUn(r), ∂xUn(r)) − Aun(r)(∂xun(r), ∂xun(r))‖2
H 1(BT −r )

+ ‖AUn(r)(Vn(r),Vn(r)) − Aun(r)(vn(r), vn(r))‖2
H 1(BT −r )

+ ‖Y(Un(r))ḣn(r) − Y(un(r))ḣn(r)‖2
H 1(BT −r )

=: f 1
n + f 2

n + f 3
n . (5.44)

By doing the computation based on Lemmata 4.7 and 5.4 we obtain

f 1
n � ‖AUn(r)(∂xUn(r), ∂xUn(r)) − Aun(r)(∂xUn(r), ∂xUn(r))‖2

H 1(BT −r )

+ ‖Aun(r)(∂xUn(r), ∂xUn(r)) − Aun(r)(∂xun(r), ∂xUn(r))‖2
H 1(BT −r )

+ ‖Aun(r)(∂xun(r), ∂xUn(r)) − Aun(r)(∂xun(r), ∂xun(r))‖2
H 1(BT −r )

�T ,x ‖Un(r) − un(r)‖2
2

(
1 + ‖∂xUn(r)‖2

1 + ‖∂xUn(r)‖2
1

)
×

H (BT −r ) H (BT −r ) H (BT −r )
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×
(

1 + ‖un(r)‖2
H 2(BT −r )

)
+ ‖un(r)‖2

H 2(BT −r )
‖∂x[Un(r) − un(r)]‖2

H 1(BT −r )
‖∂x[un(r)]‖2

H 1(BT −r )

� ‖Zn(r)‖2
HT −r

[(
1 + ‖Zn(r)‖2

HT −r

)(
1 + ‖zn(r)‖2

HT −r

)
+ ‖zn(r)‖4

HT −r

]
, (5.45)

and, by similar calculations,

f 2
n �T ,x ‖Zn(r)‖2

HT −r

[(
1 + ‖Zn(r)‖2

HT −r

)(
1 + ‖zn(r)‖2

HT −r

)
+ ‖zn(r)‖4

HT −r

]
. (5.46)

Furthermore, Lemmata 5.4 and 3.4 implies

f 3
n �T ,x ‖Un(r) − un(r)‖2

H 1(BT −r )

[
1 + ‖Un(r)|2H 1(BT −r )

+ ‖un(r)|2H 1(BT −r )

]
‖ḣn(r)‖2

Hμ

� ‖Zn(r)‖2
HT −r

(
1 + ‖Zn(r)‖2

HT −r
+ ‖zn(r)‖2

HT −r

)
‖ḣn(r)‖2

Hμ
. (5.47)

Hence by substituting (5.45)–(5.47) in (5.44) we get

‖fn(r)‖2
H 1(BT −r )

�T ,x ‖Zn(r)‖2
HT −r

[(
1 + ‖Zn(r)‖2

HT −r

)(
1 + ‖zn(r)‖2

HT −r

)
+ ‖zn(r)‖4

HT −r

]
+ ‖Zn(r)‖2

HT −r

(
1 + ‖Zn(r)‖2

HT −r
+ ‖zn(r)‖2

HT −r

)
‖ḣn(r)‖2

Hμ
,

consequently, the definition of τn and Lemma 5.11 suggest

E

⎡⎣ t∧τn∫
0

‖fn(r)‖2
H 1(BT −r )

dr

⎤⎦� E

⎡⎣ t∧τn∫
0

{
‖Zn(r)‖2

HT −r

[(
1 + N2

)(
1 +B2

)
+B4

]
+‖Zn(r)‖2

HT −r

(
1 + N2 +B2

) (
1 +B2

)
‖ḣn(r)‖2

Hμ

}
dr
]

� E

⎡⎣ t∧τn∫
0

e(r, T ;x,Zn(r)) CN,B
(

1 + ‖ḣn(r)‖2
Hμ

)
dr

⎤⎦ ,

(5.48)

for some constant CN,B > 0 depends on N, B, where B is a function of x which is bounded on 
compact sets. Then substitution of (5.43) and (5.48) in (5.42) implies, here we write dependency 
of e on x and T explicitly,

E

[
sup

0≤s≤t∧τn

e(s, T ;x,Zn(s))

]
�T ,x εn (1 + N2)

+ CN,BE

⎡⎣ t∧τn∫
0

[ sup
0≤s≤r∧τn

e(s, T ;x,Zn(s))]
(

1 + ‖ḣn(r)‖2
Hμ

)
dr

⎤⎦ .

Therefore, invoking the stochastic Gronwall Lemma, see [30, Lemma 3.9], gives,
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sup
x∈[−a,a]

E

[
sup

0≤s≤t∧τn

e(s, T ;x,Zn(s))

]
�T ,a εn (1 + N2) exp

[
CN,B(T +M)

]
. (5.49)

Since εn → 0 as n → ∞ and

E

[
sup

0≤s≤t∧τn

e(s, T ;x,Zn(s))

]
= E

[
sup

0≤s≤t

e(s ∧ τn, T ;x,Zn(s ∧ τn))

]
,

inequality (5.49) gives lim
n→∞ supx∈[−a,a] E 

[
sup0≤t≤T e(t ∧ τn, T ;x,Zn(t ∧ τn))

]= 0. Hence we 

are done with the proof of Proposition 5.16. �
To proceed further we also need the following stochastic analogue of Lemma 5.11.

Lemma 5.17. There exists a constant B := B(N, T , M) > 0 such that

lim sup
n→∞

sup
x∈[−a,a]

E

⎡⎣ sup
t∈[0, T

2 ]
e(t ∧ τn, T ;x,Zn(t ∧ τn))

⎤⎦≤ B.

Proof of Lemma 5.17. Let us fix sequence {ej }j∈N of orthonormal basis of Hμ. Let us also fix 
any n ∈ N . With the notation of this subsection, Proposition C.1, with k = 1, L = I , implies for 
every t ∈ [0, T2 ] and x ∈ [−a, a],

e(t, T ;x,Zn(t)) ≤
t∫

0

V (r, x,Zn(r)) dr +
t∫

0

〈Vn(r), gn(r)dW(r)〉H 1(B(x,T −r)),

with

V (r, x,Zn(r)) := 〈Un(r),Vn(r)〉L2(B(x,T −r)) + 〈Vn(r), fn(r)〉H 1(B(x,T −r))

+ 1

2

∞∑
j=1

‖gn(r)ej‖2
H 1(B(x,T −r))

,

where for simplification we avoid writing the dependency of l.h.s. on T explicitly, and

fn(r) := AUn(r)(Vn(r),Vn(r)) − AUn(r)(∂xUn(r), ∂xUn(r)) + Y(Un(r))ḣn(r),

gn(r) := √
εnY (Un(r)).

Next, we set

ψn(t, x) := E

[
sup

0≤s≤t

e(s ∧ τn, T ;x,Zn(s ∧ τn))

]
, t ∈ [0, T ].
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Z. Brzeźniak, B. Gołdys, M. Ondreját et al. Journal of Differential Equations 325 (2022) 1–69
Now, we intent to follow the procedure of Proposition 5.16. By the Cauchy-Schwartz inequality, 
for τ ∈ [0, T2 ] and x ∈ [−a, a], we have

sup
0≤t≤τ

t∧τn∫
0

V (r, x,Zn(r)) dr ≤ 2

τ∧τn∫
0

e(r, T ;x,Zn(r)) dr

+ 1

2

τ∧τn∫
0

(
‖fn(r)‖2

H 1(B(x,T −r))
+ ‖gn(r) · ‖2

L2(Hμ,H 1(B(x,T −r)))

)
dr.

Since the gn here is same as in Proposition 5.16, the computation of (5.38)–(5.43) fits here too 
and we have

E

[
sup

0≤s≤t∧τn

e(s, T ;x,Zn(s))

]
�T E

⎡⎣ t∧τn∫
0

e(r, T ;x,Zn(r)) dr

⎤⎦ (5.50)

+E

⎡⎣ t∧τn∫
0

‖fn(r)‖2
H 1(B(x,T −r))

dr

⎤⎦+ εn(1 + N2).

Invoking Lemmata 3.4 and 5.4 implies, to save space we write BT −r instead of B(x, T − r),

‖fn(r)‖2
H 1(BT −r )

� ‖AUn(r)(∂xUn(r), ∂xUn(r))‖2
H 1(BT −r )

+ ‖AUn(r)(Vn(r),Vn(r))‖2
H 1(BT −r )

+ ‖Y(Un(r))ḣn(r)‖2
H 1(BT −r )

�T ,x

(
1 + ‖Un(r)‖2

H 1(BT −r )

)[
1 + ‖∂xUn(r)‖2

H 1(BT −r )
+ ‖Vn(r)‖2

H 1(BT −r )
+ ‖ḣn(r)‖2

Hμ

]
�
(

1 + ‖Zn(r)‖2
HT −r

)[
1 + ‖Zn(r)‖2

HT −r
+ ‖ḣn(r)‖2

Hμ

]
.

So from (5.50) and the definition (5.34) we get

sup
x∈[−a,a]

E

[
sup

0≤s≤t∧τn

e(s, T ;x,Zn(s))

]
�T ,a N2E [t ∧ τn] + εn(1 + N2)

+ (1 + N2)E

⎡⎣ t∧τn∫
0

(
1 + N2 + ḣn(r)‖2

Hμ

)
dr

⎤⎦
�T N2T + (1 + N2)T +M+ εn(1 + N2).

Since lim
n→∞ εn = 0, taking lim supn→∞ on both the sides we get the required bound, and hence, 

the Lemma 5.17. �
Lemma 5.18. The sequence of XT -valued process {Zn}n∈N converges in probability to 0.
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Proof of Lemma 5.18. We aim to show that for every x ∈ R and R, δ, α > 0 there exists a 
natural number n0 such that

P

[
sup

t∈[0,T ]
‖Zn(t)‖HB(x,R)

> δ

]
< α for all n ≥ n0. (5.51)

Let us choose and fix x ∈ R, δ > 0, α > 0. In first step, we prove (5.51) for the case when R is 
set to be T . Let us also set T = 2T . Then, since ‖ · ‖HB(x,r)

is increasing in r and for t ∈ [0, T ]
we have T − t ≥ T = R, and

P

[
sup

t∈[0,T ]
‖Zn(t)‖HB(x,R)

> δ

]
≤ P

[
sup

t∈[0,T ]
‖Zn(t)‖HB(x,T −t)

> δ

]
. (5.52)

Further note that, since 0 ≤ e(t, T ; x, Zn(t, ω)) = 1
2‖Zn(t, ω)‖2

HB(x,T −t)
, due to (5.52) instead of 

showing (5.51), in the setting R = T , it is enough to show that there exists n0 ∈N such that

P

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t,ω)) > δ2/2

]
< α for all n ≥ n0. (5.53)

But, since x is fix in the argument now, there exists a > 0 such that x ∈ [−a, a] and the following 
holds

P

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t)) > δ2/2

]
≤ sup

x∈[−a,a]
P

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t)) > δ2/2

]
.

Consequently instead of (5.53) it is sufficient to show that the existence of n0 ∈N such that

sup
x∈[−a,a]

P

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t,ω)) > δ2/2

]
< α for all n ≥ n0. (5.54)

To prove (5.54), let us define a sequence {κn}n∈N of stopping time via replacing T by T in (5.34). 
Now choose N > ‖(u0, v0)‖Ha+T

and n0 ∈ N such that, based on Lemma 5.17 for T instead of 
T ,

2

N2 sup
n∈N

sup
x∈[−a,a]

E

[
sup

t∈[0,T ]
e(t ∧ κn,T ;x,Zn(t ∧ κn))

]
<

α

2
for all n ≥ n0, (5.55)

and, due to Proposition 5.16 for T instead of T ,

sup
x∈[−a,a]

E

[
sup

t∈[0,T ]
e(t ∧ κn,T ;x,Zn(t ∧ κn))

]
<

δ2α

4
for all n ≥ n0. (5.56)

Thus the Markov inequality followed by using of (5.55) and (5.56), for n ≥ n0, gives
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sup
x∈[−a,a]

P

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t)) > δ2/2

]

= sup
x∈[−a,a]

P

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t)) > δ2/2 and κn = T

]

+ sup
x∈[−a,a]

P

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t)) > δ2/2 and e(t,T ;x,Zn(t)) ≥ N2

2

]

≤ 2

δ2 sup
x∈[−a,a]

E

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t))

]

+ 2

N2 sup
x∈[−a,a]

E

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t))

]
< α. (5.57)

Now we move to prove (5.51) when R is not set to T . Since the closure of B(x, R) is compact 
and B(x, R) ⊂ ∪y∈B(x,R)B(y, T ), we can find finitely many center {xi}mi=1 such that B(x, R) ⊂
∪m

i=1B(xi, T ). Moreover, since B(x, R) is bounded, there exists a > 0 such that B(x, R) ∈
[−a, a]. In particular, xi ∈ [−a, a] for all i = 1, . . . , m. Then since ‖Zn(t, ω)‖HB(x,R)

≤∑m
i=1 ‖Zn(t, ω)‖HB(xi ,T )

, we have

sup
x∈[−a,a]

P

[
sup

t∈[0,T ]
‖Zn(t)‖HB(x,R)

> δ

]
≤ sup

x∈[−a,a]
P

[
sup

t∈[0,T ]

m∑
i=1

‖Zn(t)‖HB(xi ,T )
> δ

]

≤
m∑

i=1

sup
x∈[−a,a]

P

[
sup

t∈[0,T ]
‖Zn(t)‖HB(x,T )

> δ

]
≤ m sup

x∈[−a,a]
P

[
sup

t∈[0,T ]
e(t,T ;x,Zn(t)) > δ2/2

]
.

Now by taking α as α/m in (5.57), of course with new a, we get that there exists an n0 ∈N such 
that, for all n ≥ n0,

sup
x∈[−a,a]

P

[
ω ∈ 	 : sup

t∈[0,T ]
‖Zn(t,ω)‖HB(x,R)

> δ

]
< α.

Hence the Lemma 5.18. �
Now we come back to the proof of Statement 2. Recall that SM is a separable metric space. 

Since, by the assumptions, the sequence {L (hn)}n∈N of laws on SM converges weakly to the 
law L (h), the Skorokhod representation theorem, see for example [44, Theorem 3.30], there 
exists a probability space (	̃, F̃ , P̃ ), and on this probability space, one can construct processes 
(h̃n, h̃, W̃ ) such that the joint distribution of (h̃n, W̃ ) is same as that of (hn, W), the distribution 
of h̃ coincide with that of h, and h̃n −−−→

n→∞ h̃, P̃ -a.s. pointwise on 	̃, in the weak topology of 

SM . By Proposition 5.13 this implies that

J 0 ◦ h̃n → J 0 ◦ h̃ in XT P̃ -a.s. pointwise on 	̃.
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Next, we claim that

L (zn) = L (z̃n), for all n

where

zn := J 0 ◦ h : 	 → XT and z̃n := J 0 ◦ h̃n : 	̃ → XT .

To avoid complexity, we will write J 0(h) for J 0 ◦ h. Let B be an arbitrary Borel subset of XT . 
Thus, since from Proposition 5.13 J 0 : SM → XT is Borel, (J 0)−1(B) is Borel in SM. So we 
have

L (zn)(B) = P
[
J 0(hn)(ω) ∈ B

]
= P

[
h−1

n

(
(J 0)−1(B)

)]
= L (hn)

(
(J 0)−1(B)

)
.

But, since L (hn) = L (h̃n) on XT , this implies L (zn)(B) = L (z̃n)(B). Hence the claim and 
by a similar argument we also have L (zh) = L (z

h̃
).

Before moving forward, note that from Lemma 5.18, the sequence of XT -valued random 
variables, defined from 	, J εn(hn) −J 0(hn) converges in measure P to 0. Consequently, because 

L (hn) = L (h̃n) and J εn − J 0 is measurable, we infer that J εn(h̃n) − J 0(h̃n) 
P̃−→ 0 as n → ∞. 

Hence, we can choose a subsequence {J εn(h̃n) −J 0(h̃n)}n∈N , indexed again by n, of XT -valued 
random variables converges to 0, P̃ -almost surely.

Now we claim to have the proof of Statement 2. Indeed, for any globally Lipschitz continuous 
and bounded function ψ : XT →R, see [31, Theorem 11.3.3], we have∣∣∣∣∣∣∣

∫
XT

ψ(x)dL (J εn(hn)) −
∫
XT

ψ(x)dL (J 0(h))

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
XT

ψ(x)dL (J εn(h̃n)) −
∫
XT

ψ(x)dL (J 0(h̃))

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
	̃

{
ψ
(
J εn(h̃n)

)
− ψ

(
J 0(h̃n)

)}
dP̃

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫
	̃

ψ
(
J 0(h̃n)

)
dP̃ −

∫
	̃

ψ
(
J 0(h̃)

)
dP̃

∣∣∣∣∣∣∣ .
Since J 0(h̃n) −−−→

n→∞ J 0(h̃), P -a.s. and ψ is bounded and continuous, we deduce that the 2nd 

term in right hand side above converges to 0 as n → ∞. Moreover we claim that the 1st term 
also goes to 0. Indeed, it follows from the dominated convergence theorem because the term is 
bounded by
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Lψ

∫
	̃

|J εn(h̃n) − J 0(h̃n)|dP̃ ,

where Lψ is Lipschitz constant of ψ , and the sequence {J εn(h̃n) − J 0(h̃n)}n∈N converges to 0, 
P̃ -a.s.

Therefore, Statement 2 holds true and we complete the proof of Theorem 5.7.

Acknowledgments

Ben Gołdys was supported by the Australian Research Council Project DP200101866, 
Nimit Rana was supported by the Australian Research Council Projects DP160101755 and 
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Appendix A. Intrinsic and extrinsic formulation

Here we recall the intrinsic and extrinsic formulation of SGWE from [15] and state, without 
proof, the equivalence result between them. Consider the following SGWE Cauchy problem⎧⎪⎪⎨⎪⎪⎩

Dt ∂tu = Dx∂xu + Yu(∂tu, ∂xu) Ẇ ,

u(0, ·) = u0,

∂tu(t, ·)|t=0 = v0

(A.1)

Assume that u0, v0 are F0-measurable random variables with values in H 2
loc(R, M) and 

H 1
loc(R, T M) respectively such that u0(x, ω) ∈ M and v0(x, ω) ∈ Tu0(x,ω)M hold for every 

ω ∈ 	 and x ∈R.

Definition A.1 ([15, Definition 2.3]). A process u : R+ × R × 	 → M is called an intrinsic 
solution of problem (A.1) provided the following six conditions are satisfied:

(i) u(t, x, ·) is Ft -measurable for every x ∈R and every t ≥ 0,
(ii) u(·, ·, ω) belongs to C1(R+ ×R, M) for every ω ∈ 	,

(iii) R+ � t 
→ u(t, ·, ω) ∈ H 2
loc(R, M) is continuous for every ω ∈ 	,

(iv) R+ � t 
→ ∂tu(t, ·, ω) ∈ H 1
loc(R; T M) is continuous for every ω ∈ 	,

(v) u(0, x, ω) = u0(x, ω) and ∂tu(0, x, ω) = v0(x, ω) holds for every x ∈R almost surely,
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(vi) and for every vector field X on M , and every t ≥ 0 and R > 0

〈∂tu(t),X(u(t))〉Tu(t)M = 〈v0,X(u0)〉Tu(t)M +
t∫

0

〈Dx∂xu(s),X(u(s))〉Tu(s)M ds

+
t∫

0

〈∂tu(s),∇∂t u(s)X〉Tu(s)M ds

+
t∫

0

〈X(u(s)), Yu(s)(∂tu(s), ∂xu(s)) dW(s)〉Tu(s)M,

holds in L2(−R, R) almost surely.

Definition A.2 ([15, Definition 2.6]). A process u : R+ × R × 	 → M is called an extrinsic 
solution of problem (A.1) if and only if the following six conditions are satisfied.

(a) u(t, x, ·) is Ft -measurable for every t ≥ 0 and x ∈ R,
(b) R+ � t 
→ u(t, ·, ω) ∈ H 2

loc(R; Rn) is continuous for every ω ∈ 	,
(c) R+ � t 
→ u(t, ·, ω) ∈ H 1

loc(R; Rn) is continuously differentiable for every ω ∈ 	,
(d) u(t, x, ω) ∈ M for every x ∈R and every ω ∈ 	,
(e) u(0, x, ω) = u0(x, ω) and ∂tu(0, x, ω) = v0(x, ω) holds for every x ∈R almost surely,
(f) and for every t ≥ 0 and R > 0

∂tu(t) = v0 +
t∫

0

[
∂xxu(s) − Au(s)(∂xu(s), ∂xu(s)) + Au(s)(∂tu(s), ∂tu(s))

]
ds

+
r∫

0

Yu(s)(∂tu(s), ∂xu(s)) dW(s),

holds in L2((−R, R); Rn) almost surely.

The next result state the equivalence between the intrinsic solution and extrinsic solution to 
the problem (A.1).

Theorem A.3 ([15, Theorem 12.1]). Assume that u0, v0 are F0-measurable random variables 
with values in H 2

loc(R, M) and H 1
loc(R, T M) respectively such that u0(x, ω) ∈ M and v0(x, ω) ∈

Tu0(x,ω)M hold for every ω ∈ 	 and x ∈ R. Suppose also that M is a compact submanifold of 
Rn as in Definition A.2. Then a process u :R+ ×R ×	 → M is an intrinsic solution of problem 
(A.1) if and only if it is an extrinsic solution of the same problem.
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Appendix B. Existence and uniqueness result

In this part we recall a result about the existence of a uniqueness global solution, in strong 
sense, to problem (A.1). We ask the reader to refer [15, Theorem 11.1] for the proof.

Theorem B.1. Fix T > 0 and R > T . For every F0-measurable random variable u0, v0 with 
values in H 2

loc(R, M) and H 1
loc(R, T M), there exists a process u : [0, T ) ×R × 	 → M , which 

we denote by u = {u(t), t < T }, such that the following hold:

(1) u(t, x, ·) : 	 → M is Ft -measurable for every t < T and x ∈ R,
(2) [0, T ) � t 
→ u(t, ·, ω) ∈ H 2((−R, R); Rn) is continuous for almost every ω ∈ 	,
(3) [0, T ) � t 
→ u(t, ·, ω) ∈ H 1((−R, R); Rn) is continuously differentiable for almost every 

ω ∈ 	,
(4) u(t, x, ω) ∈ M , for every t < T , x ∈ R, P -almost surely,
(5) u(0, x, ω) = u0(x, ω) and ∂tu(0, x, ω) = v0(x, ω) holds, for every x ∈R, P -almost surely,
(6) for every t ≥ 0 and R > 0,

∂tu(t) = v0 +
t∫

0

[
∂xxu(s) − Au(s)(∂xu(s), ∂xu(s)) + Au(s)(∂tu(s), ∂tu(s))

]
ds

+
t∫

0

Yu(s)(∂tu(s), ∂xu(s)) dW(s),

holds in L2((−R, R); Rn), P -almost surely.

Moreover, if there exists another process U = {U(t); t ≥ 0} satisfy the above properties, then 
U(t, x, ω) = u(t, x, ω) for every |x| < R − t and t ∈ [0, T ), P -almost surely.

Appendix C. Energy inequality for stochastic wave equation

Recall the following slightly modified version of [15, Proposition 6.1] for a one (spatial) 
dimensional linear inhomogeneous stochastic wave equation. For l ∈ N , we use the symbol Dlh

to denote the Rn×1-vector 
(

dlh1

dxl , dlh2

dxl , · · · , dlhn

dxl

)
.

Proposition C.1. Assume that T > 0 and k ∈ N . Let W be a cylindrical Wiener process on a 
Hilbert space K . Let f and g be progressively measurable processes with values, respectively, 
in Hk

loc(R; Rn) and L2(K, Hk
loc(R; Rn)) such that, for every R > 0,

T∫
0

{
‖f (s)‖Hk((−R,R);Rn) + ‖g(s)‖2

L2(K,Hk((−R,R);Rn))

}
ds < ∞,

P -almost surely. Let z0 be an F0-measurable random variable with values in

Hk := Hk+1(R;Rn) × Hk (R;Rn).
loc loc loc

65



Z. Brzeźniak, B. Gołdys, M. Ondreját et al. Journal of Differential Equations 325 (2022) 1–69
Assume that an Hk
loc-valued process z = z(t), t ∈ [0, T ], satisfies

z(t) = Stz0 +
t∫

0

St−s

(
0

f (s)

)
ds +

t∫
0

St−s

(
0

g(s)

)
dW(s), 0 ≤ t ≤ T .

Given x ∈R, we define the energy function e : [0, T ] ×Hk
loc → R+ by, for z = (u, v) ∈ Hk

loc,

e(t, T ;x, z) = 1

2

{
‖u‖2

L2(B(x,T −t))
+

k∑
l=0

[
‖Dl+1u‖2

L2(B(x,T −t))
+ ‖Dlv‖2

L2(B(x,T −t))

]}
.

Assume that L : [0, ∞) → R is a non-decreasing C2-smooth function and define the second 
energy function E : [0, T ] ×Hk

loc → R, by

E(t, z) = L(e(t, T ;x, z)), z = (u, v) ∈ Hk
loc.

Let {ej } be an orthonormal basis of K . We define a function V : [0, T ] ×Hk
loc →R, by

V (t, z) = L′(e(t, T ;x, z))

[
〈u,v〉L2(B(x,T −t)) +

k∑
l=0

〈Dlv,Dlf (t)〉L2(B(x,T −t))

]

+1

2
L′(e(t, T ;x, z))

∑
j

k∑
l=0

|Dl[g(t)ej ]|2L2(B(x,T −t))
+

+1

2
L′′(e(t, T ;x, z))

∑
j

[
k∑

l=0

〈Dlv,Dl[g(t)ej ]〉L2(B(x,T −t))

]2

, (t, z) ∈ [0, T ] ×Hk
loc,

where we suppress the dependency of the left hand side on T and x. Then E is continuous on 
[0, T ] ×Hk

loc, and for every 0 ≤ t ≤ T ,

E(t, z(t)) ≤ E(0, z0) +
t∫

0

V (r, z(r) dr

+
k∑

l=0

t∫
0

L′(e(r, z(r)))〈Dlv(r),Dl[g(r) dW(r)]〉L2(B(x,T −r)), P -a.s.
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