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A B S T R A C T   

Estimation of a source term, i.e. release rate, of atmospheric radionuclide emissions is of key interest for nuclear 
emergency response and further accident analysis. The source term estimate is, however, often very inaccurate 
due to biases in atmospheric transport and used meteorological analysis. We propose a method for atmospheric 
plume bias correction which uses not only concentrations modeled at a measuring site but also the information 
on concentration gradient from the neighborhood of each measuring site, i.e. information already available from 
the atmospheric transport model. To properly regularize the model, we propose an elastic model of the plume 
bias correction based on regularization with the use of known topology of the measurement network. The 
proposed plume bias correction method can be coupled with an arbitrary source term estimation algorithm and 
can be instantly applied to any other atmospheric release of hazardous material. We demonstrate the method in 
two real cases. First, we use data from the European Tracer Experiment to validate the methodology. Second, we 
use data from the 106Ru occurrence over Europe in 2017 to demonstrate the methodology in a more demanding 
case where agreement with state-of-the-art estimates is shown with much better reconstruction of measurements.   

1. Introduction 

The accidental release of hazardous materials can have serious 
impact on environment. Particularly important and of public interest are 
atmospheric releases of radioactive materials, especially after Chernobyl 
and Fukushima Daiichi nuclear accidents (Evangeliou et al., 2017; 
Katata et al., 2012; Li et al., 2019). Therefore, smaller releases such as 
iodine-131 releases (Masson et al., 2018; Tichý et al., 2017), 75Se release 
(De Meutter and Hoffman, 2020), or recent 106Ru release (Saunier et al., 
2019; Tichý et al., 2021) raised also significant interest of public and 
scientific community. To trace the consequences of accidental releases, 
it is of great importance to know the source term of emission, i.e. its 
temporal release rates. When the source term can not be measured or 
estimated from core information (i.e., bottom-up methods), inverse 
approach can be employed where differences between the measure-
ments and the atmospheric model predictions are optimized under 
domain-specific assumptions. 

The source term estimations rely on two key aspects, the atmospheric 
transport model (ATM) (Leelőssy et al., 2018) coupled with selected 
meteorological data and the used source term estimation method 
(Hutchinson et al., 2017). For accidental atmospheric releases of 
radioactive materials, the standard approach is the linear approximation 

of the problem with source-receptor sensitivity (SRS) matrix calculated 
using the ATM describing the response of the measurement on the given 
time interval to the unit release (Seibert, 2001; Seibert and Frank, 2004). 
Assuming measurements aggregated in column vector y, SRS matrix M, 
and the source term in column vector x, the linear relationship is 
expressed as 

y = Mx. (1)  

However, the relation may be significantly inaccurate due to un-
certainties associated with ATM bias caused by, e.g., uncertainties in 
meteorological data (Leelőssy et al., 2017; Sørensen et al., 2020; De 
Meutter et al., 2021), uncertainties in ATM parametrization (Bocquet, 
2012; Ganesan et al., 2014; Mao et al., 2020; Ling et al., 2021), spatial 
quality of monitoring network (Tichý et al., 2017), or measurements 
processing (Kumar et al., 2020). Inaccurate prediction of the matrix M 
results in biased estimate of the source term x. Biases in the ATM model 
are the key reasons for discrepancies in estimated source terms for 
different model settings, see e.g. iodine release in 2011 (Tichý et al., 
2017) or ruthenium release in 2017 (Dumont Le Brazidec et al., 2021; 
Tichý et al., 2021), as well as for discrepancies between model predicted 
values and measurements, see e.g. iodine release in 2017 (Masson et al., 
2018) or Chernobyl source term (Evangeliou et al., 2017). 
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The majority of inversion methods focuses on modeling the sto-
chastic error between the measurements and the model predictions. The 
likelihood of this error is often chosen as Gaussian (Saunier et al., 2013; 
Zhang et al., 2017; Zhang and Huang, 2017; Tichý et al., 2020) or 
recently as log-normal (Liu et al., 2017; Dumont Le Brazidec et al., 2020) 
or as other logarithm-based distributions (Dumont Le Brazidec et al., 
2021) to compensate the mismatch. Although various parametrizations 
of covariance matrix and various estimation schemes have been 
employed, they can essentially compensate only specific aspects since 
they do not address the true source of the mismatch which is the SRS 
matrix. 

A more direct approach to correct the SRS matrix is to estimate 
corrections of the input parameters of the ATM such as scaling of wet 
scavenging and dry deposition (Bocquet, 2012), dispersion coefficients 
(Mao et al., 2020, 2021), or wind speed (Krysta et al., 2006; Kovalets 
et al., 2009). The wind speed perturbation was also used within 
ensemble Kalman Filter framework (Zhang et al., 2015) to lower the bias 
caused by the meteorological data and estimate the emission rate 
simultaneously. In such approaches, the SRS matrix is still generated 
from the ATM with perturbed input which is advantageous for regula-
rization of the inversion problem, but may become too rigid when more 
complex modifications of the weather conditions are required. More-
over, the inference procedure is typically computationally expensive 
due to required interactions with the ATM. 

More flexible approach bypassing the ATM model for SRS matrix 
correction was proposed by Li et al. (2018)) where the right side of Eq. 1 
is preconditioned by the diagonal matrix with coefficients to be esti-
mated besides the source term. This approach is similar to estimation of 
the measurement error and is reliable only if the majority of the mea-
surements are correct (Martinez-Camara et al., 2014). An improvement 
of this approach was proposed recently by Fang et al. (2021)) where a 
better preconditioning of the right side of Eq. 1 is proposed based on the 
work of Ganesan et al. (2014)). In the latter, the correlation matrix is 
constructed based on spatial distance between every pair of measure-
ments positions with automatically calculated autocorrelation scale. 
Both methods were tested on wind tunnel experiments with interesting 
performance. However, these plume bias correction methods rely only 
on the measurements and point predictions of the concentrations 
without any additional information for the ATM. 

The basic idea of our approach to plume bias correction is to combine 
the measurements with some elementary information from the ATM 
without the need of too many ATM runs and without the assumption that 
the ATM is correct. Specifically, we propose to use the ATM to estimate 
the sensitivity with respect the predicted concentration for each mea-
surement. Moreover, we assume that any measurement can be associ-
ated with a concentration predicted only in the limited spacial and 
temporal neighborhood. This also means that we seek only local cor-
rections of the concentration predictions of an ATM, not correction of 
the ATM parameters that would provide correction of the spatial dis-
tribution of concentrations for the whole domain. The method do not 
interact with an ATM and is much more computationally effective. The 
interpretation of our bias correction at each point is then represented by 
a shift in space and time corresponding to temporal and spacial 
displacement of the predicted concentrations. 

The proposed plume bias correction is highly over-parametrized and 
the challenge is to design a realistic regularization that allows stable 
estimation. We design the regularization using two principles: (i) the 
correction should be zero if the measurement is withing observation 
noise, and (ii) the correction vector of two nearby measurements should 
be similar (i.e. correlated). The second assumption is commonly used for 
measurement noise correlations (Ganesan et al., 2014), however we 
further relax it to allow for unknown correlation coefficients. The reg-
ularization is based on similar principles such as sparsity and smooth-
ness prior in source term determination (Tichý et al., 2016). 

The proposed model intends to improve the source term estimate 
using correction of the SRS matrix. The model is in essence a bi-linear 

model, i.e. linear in plume bias correction for known release, and 
linear in release for known bias correction. The Variational Bayes 
method has been shown to be an effective tool for such models (Smidl 
and Quinn, 2006). It results in an iterative algorithm alternating two 
essential steps: i) plume bias correction, and ii) source term determi-
nation. Due to this algorithmic structure, we can study performance of 
the proposed bias correction model in combination with established 
source term determination methods. Specifically, we will study source 
term determination using an optimization approach (Eckhardt et al., 
2008), and the least-square with adaptive prior covariance (LSAPC) 
method (Tichý et al., 2016). 

The proposed method is validated on source term determination 
from data from the European tracer experiment (ETEX) (Nodop et al., 
1998) with the use of HYSPLIT atmospheric transport model. Then, the 
performance of the method is tested on recent 106Ru release over Europe 
in 2017 (Masson et al., 2019) with the use of FLEXPART atmospheric 
transport model. 

1.1. Layout of the paper 

The rest of the paper is organized as follows. Section 2 is devoted to 
the formulation of the bilinear inverse problem and elastic plume bias 
correction model. The definition of the bilinear inverse problem and 
intuitive outlook on plume bias correction are given in Section 2.1. 
Section 2.2 propose elastic regularization of the bias correction using 
measurement network topology while its rigorous formulation using 
prior model is given in Section 2.3 and its variational Bayes solution in 
Section 2.4. Due to the modular structure of the plume bias correction 
method, arbitrary linear inverse method can be coupled with it as shown 
in Section 2.5. The experimental validation is given in Section 3 where 
the ETEX experiment is studied in Section 3.1 and the case of 106Ru 
release in 2017 is studied in Section 3.2. Conclusions are given in Section 
4. 

2. Materials and Methods 

We follow the concept of source-receptor-sensitivity (SRS) matrix 
which is used in a wide range of applications in regional or continental 
scale scenarios for linear inverse modeling (Seibert and Frank, 2004; Li 
et al., 2018; Fang et al., 2021). In this concept, the linear relationship is 
assumed between the source and the receptor as mij =

ĉij
xj

, where xj is the 
simulated activity of a release pulse at time j from the site, and ̂cij is the 
calculated response for this release at the ith measurement. Denoting 
spatial coordinates of the ith measurement sh,i, sv,i (longitudinal and 
latitudinal) and time interval of the measurement ti, the predicted con-
centration ĉij is evaluated as a discrete point in the 3D concentration 
field cj, i.e. ĉij = cj(sh,i, sv,i, ti), of the jth simulation. The concentration 
measurement yi can thus be explained as a superposition of concentra-
tions from all elements of the source term x weighted by the 
model-predicted mij, aggregated in the matrix M, summarized in matrix 
notation in Eq. 1. 

Note that, in this notation, the symbol yi refers to the ith measure-
ment at given location and for given time period. We assume to have p 
measurements in total, aggregating several measurements from multiple 
locations. 

2.1. Bilinear inverse model formulation 

In this subsection, we are concerned with modeling of the inverse 
problem with bias in the plume model. Specifically, we assume that the 
ATM is not accurate and the plume model is shifted in both space and 
time from the reality. Then, the measurement yi should not be matched 
with concentration evaluated at the nominal coordinates but at the 
shifted coordinates 
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c̃ij = cj(sh,i + hh,i, sv,i + hv,i, ti + ht,i), (2)  

where hh,i, hv,i are longitudinal and latitudinal components of the bias 
correction, and ht,i is the temporal component of the bias correction at the 
ith sensor. Naturally, the bias is not known and we aim to estimate it 
from the data, estimating three biases for each sensor h = [hh, hv, ht], 
forming the bias correction field. 

Estimating the bias from the full numerical model 2 would be too 
expensive. Therefore, we propose to linearize the concentration field in 
the close neighborhood of the ith measurement by the Taylor expansion 
yielding a linear model 

c̃ij ≈ ĉij + hh,i
∂c
∂sh

+ hv,i
∂c
∂sv

+ ht,i
∂c
∂t
, (3)  

where ĉij is the nominal prediction of the measurement (without 
correction). Calculation of the derivative is further approximated by 
finite difference estimates: 

c̃ij ≈ ĉij + hh,iΔch,i + hv,iΔcv,i + ht,iΔct,i,

Δch,i =
c(sh,i + Δsh, sv,i, ti) − c(sh,i − Δsh, sv,i, ti)

2Δsh
,

(4)  

where Δsh is the chosen discretization step in the longitudinal location of 
the receptor. The differences Δcv,i and Δct,i are obtained analogically 
using discretization steps Δsv and Δt. Since positions of the measure-
ments are known, we can pre-compute the required differences together 
with nominal values of the concentrations in the form of SRS matrices. 

Replacing the default prediction by the bias-corrected version yields 

a new matrix M̃, where m̃ij =
c̃i
xj 

with unit release xj at time j, in complete 
analogy to the linear definition: 

y = M̃x + e, (5)  

M̃ = M + HhMh + HvMv + HtMt. (6)  

Here, we have restructured the definition 4 to the matrix form, using the 
original matrix M and new sensitivity matrices Mh, Mv, Mt. The sensi-
tivity matrix to longitudinal space correction is defined as mh,ij =

Δch,i
xj

. 
The sensitivity matrices with latitudinal gradients and temporal gradi-
ents, Mv and Mt, are obtained analogically. Form 4 is then obtained by 
sum of M with sensitivity matrices Mh, Mv, Mt multiplied by correction 
terms 

Hh = diag(hh) =

⎛

⎜
⎜
⎝

hh1
hh2

⋱
hhp

⎞

⎟
⎟
⎠, (7)  

which is the diagonal matrix representing bias correction shifts of the 
concentration field at each measurement which need to be estimated. 
Matrices Hv = diag(hv), and Ht = diag(ht) are analogous matrices rep-
resenting shifts in the latitudinal and temporal dimension. 

Remark 1(Bilinear model): Note that the model 5 is bilinear; it 
means that with known variables Hh, Hv, and Ht (forming the corrected 
SRS matrix M̃), the model is linear in variable x and with known x, the 
model is linear in h. General estimation methods of such models typi-
cally use iterations of two steps solving individual linear problems 
independently. Hence, any inverse method of source term estimation 
may be coupled with bias correction estimation. Note however, that the 
number of unknowns in h is three times higher than the number of 
observations. Estimation of its values is thus strongly determined by the 
used regularization. 

2.1.1. Intuitive explanation of the model 
The idea of local correction of the bias field is illustrated in Fig. 1 on 

the case of measured concentration yi = 0.55 and model predicted 

concentration ci = 0.33. Since these two values are the only information 
for the linear model, the two cases depicted in Fig. 1 are for this model 
identical. However, the proposed model takes into account the local 
shape of the concentration. If the concentration profile is sharp as in 
Fig. 1 left, a small shift of the concentration model to the left can 
significantly minimize the mismatch between the model and measure-
ment. On the other hand, if the concentration profile in the neighbor-
hood is flat, a shift of the model does not improve the mismatch 
significantly. The additional information about local derivative of the 
concentration (stored in matrices Mh, Mv, Mt), via the local gradient Δc, 
Eq. 4, is thus essential in distinguishing these two cases. While in the 
first, only a small shift is sufficient to minimize the error of the fit, in the 
second case, even a shift by a maximum allowed distance hh = Δsh is not 
sufficient. The maximum allowed shift serves as a regularization term 
for preventing arbitrary shifts of the concentration field. 

2.1.2. Practical computation of bi-linear model inputs 
To summarize the input to the proposed bilinear model, we assume 

the availability of simulated concentrations also around each measuring 
site as an ATM output. In this case, we assume the simplest topology in 
the form of cross with the center in the receptor and shoulders in the 
east, west, south, and north, see Fig. 2 for illustration of one measuring 
site. In addition, we naturally assume the knowledge of concentrations 
shifted for one step in time backward and forward. These concentrations 
can be calculated in both, backward or forward, modes of an ATM. 
While all concentrations are already available for forward mode, there is 
need for six additional runs of an ATM in backward mode, four runs for 
shifted locations and two runs for temporal shift. 

To obtain gradient matrices (Mh, Mv, Mt), we compute SRS matrices 
from concentrations with east-shifted location, i.e. meast,ij =

c(sh,i+Δsh ,sv,i ,ti)
xj

, 

and west-shifted locations, i.e. mwest,ij =
c(sh,i − Δsh ,sv,i ,ti)

xj
. These matrices are 

subtracted yielding longitudinal gradient matrix Mh = 1
2Δsh

(Meast −

Mwest). The SRS matrices for latitudinal and time directions, i.e. south- 
shifted, north-shifted, backward-time-shifted, and forward-time- 
shifted, forming matrices Mv and Mt, are obtained analogically. 

2.2. Elastic regularization of the bias correction field 

The core of our proposed method is to estimate the correction bias h 
from the data. Since the number of unknowns is greater than the number 
of observations, the model has to be regularized. We propose two 
principles for its regularization: 

1. the bias correction for each measurement is bounded to a fixed in-
terval  

hh,i ∈ [ − Δsh,+Δsh], hv,i ∈ [ − Δsv,+Δsv],

ht,i ∈ [ − Δt,+Δt],∀i (8)   

2. the bias corrections of neighboring sensors are correlated with un-
known correlation coefficients. 

These two principles will be first illustrated for intuition, and later 
formalized using prior distributions. Soft correlation allows the bias 
corrections to behave like an elastic material, the move of the bias is 
greater with sufficiently high “pull” by the data. 

We have tested that using only the assumption of the maximum 
allowed shift 8 is not a sufficient regularization, since the space of 
available corrections is too large. Therefore, we add the assumption of 
correlations the meaning of which is illustrated in Fig. 3 using contour 
plot of the concentration predicted by the model (full line) and true 
concentration field (dashed line), from which the measurements are 
taken. The colors at the measured point (full circles) corresponds to 

O. Tichý et al.                                                                                                                                                                                                                                   



Journal of Hazardous Materials 425 (2022) 127776

4

colors of the dashed contours of the true concentration field on which 
they lie (i.e. blue and black). Following the Taylor expansion, we 
approximate the concentration at the sensor by a plane, with the 
gradient visualized by a dotted line. Under the assumption of indepen-
dent correction vectors, the correction vector would lie on the gradient, 
Fig. 3 top, pointing at different directions. However, if we impose strong 
correlation (i.e. that all vectors have to be the same), the correction 
vectors align in the right solution, i.e. the correction vectors denote the 
shift of the prediction model to match the measurements. 

Naturally, the assumption of the identical correction vectors is un-
realistic and the correlation factor has to be relaxed. This is commonly 
done using decaying with distance (Ganesan et al., 2014)) and many 
later works. However, it still prescribes the form of the correlation and 
relies on tuning parameter. We propose to relax the form of the corre-
lation coefficients, estimate them from the data using prior similar to the 
Bayesian sparsity and smoothness prior (Tichý et al., 2016). The effect of 
this choice is that the correlation is estimated to be very strong where 
the data allows for it, but it may be completely independent if the data 
do not fit this assumption. This principle intuitively corresponds to 
behavior of an elastic material, hence we denote it elasticregularization. 

In the next section, we will formulate the rigorous prior model for the 
SRS field correction coefficients hh, hv, and ht which formalizes all dis-
cussed assumptions. 

2.3. Complete probabilistic model 

In this Section, we define all components of the probabilistic model, 
the likelihood (data fitting) and the prior (regularization). Prior distri-
bution is also assigned to all tuning parameters since they will be also 

Fig. 1. Illustration of the value of information about the shape of the concentration field in the neighborhood of the measurements.  

Fig. 2. Illustrative example of one measuring site and information from its 
surrounding. 

Fig. 3. Illustration of independent bias correction and correlated bias correc-
tion of the concentration field in the neighborhood of the measurements. 
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estimated from the data using the power of the Bayesian approach. 
The observation model is selected to be the very standard mean- 

square error, which corresponds to Gaussian likelihood 

p(y|x,ω,hh,hv,ht) = N

(
y
⃒
⃒
⃒M̃x,ω− 1Ip

)
(9)  

The model introduced scalar variable ω which serves as the observation 
noise precision (extension to a known general covariance matrix is 
straightforward). The measurement precision is considered to be un-
known, thus, we propose to choose its prior model to be conjugate to the 
observation model 9 using Gamma distribution as 

p(ω) = G (ω|ϑ0, ρ0), (10)  

where ϑ0, ρ0 are scalar prior constants that serve as numerical stabilizers 
and are set to non-informative 10− 10. 

2.3.1. Bias correction field regularization via elasticity 
The key ingredient of the method is models of vectors hh, hv, and ht 

which are the weighting factors of the gradient matrices Mh, Mv, and Mt. 
For conciseness, we explain design of the prior for vector hh, the 
remaining are analogous. 

Probability of the whole vector can be written as product of proba-
bilities of each elements using the chain rule of probability 

p(hh) = p(hh1
⃒
⃒hh2,…hhp)p(hh2

⃒
⃒hh3,…hhp)…p(hhp), (11)  

and proposing model for each factor p(hhi∣hhi+1…hhp). Since we assume 
that the correlation is non-zero only in the neighborhood of the ith 
measurement, we impose conditional independence 

p(hi
⃒
⃒hi+1,…hp) ≡ p(hi

⃒
⃒
⃒h̃i), h̃i = [hj : j ∈ I i] (12)  

where I i⊂{i + 1,…, p} is the set of indexes of measurements that are in 
the spacial or temporal neighborhood of the ith measurement. This 
neighborhood is the same for longitudinal, latitudinal and temporal 
bias. Note that the number of elements ni of I i varies between zero (for 
i = p) to a small number ni ≪ p. 

We choose a linear Gaussian model 

p(hi) = N (hi

⃒
⃒
⃒l⊤i h̃i,w− 1

hi ), (13)  

where li is a vector of unknown correlations of length ni and whi is the 
unknown precision (inverse variance). Model 13 corresponds to 

hhi = −
∑ni

j=1
lh,jh̃hj + w− 1

2
hi ei, ei ∼ N (0, 1) (14)  

In multivariate notation, it can be written as 

hh = − L̃
⊤

h hh + W− 1
2

h e, (15)  

(Ip + L̃
⊤

h )hh = W− 1
2

h e, (16)  

where L̃h is (generally sparse) lower triangular matrix where correlation 
coefficients lhi are located in the ithe column of L̃h at indexes given by 
I i, and Wh is a diagonal matrix such that 

Wh = diag(wh) =

⎛

⎜
⎜
⎝

wh1
wh2

⋱
whp

⎞

⎟
⎟
⎠ (17)  

Defining Lh = L̃h + Ip and using transformation of variables, 16 can be 
rewritten as zero mean Gaussian with covariance matrix Σ− 1

h0 = LhWhLT
h . 

Combining this derivation with the assumption of bounded corrections 
8, we obtain the final prior distribution in the form of the truncated 

Gaussian distribution 

p(hh|Σh0) = tN (hh|0,Σh0, [− Δsh,Δsh])

∝

⎧
⎪⎪⎨

⎪⎪⎩

exp
(

−
1
2
hT

h Σ− 1
h0 hh

)

, ifhh ∈ [− Δsh,Δsh],

0 otherwise.

(18)  

which is defined properly in Appendix A and where symbol ∝ denotes 
equality up to normalizing constant. While it may look as a common 
Gaussian prior, the trick is in the structure of the covariance matrix, 
which allows efficient estimation of its coefficients Lh and Wh. It is a 
generalization of the sparsity and smoothness prior (Tichý et al., 2016). 

The number of non-zero elements of matrix Lh depends on the choice 
of the neighborhood. Specifically, the jth measurement yj belongs to I i 
when the spatial distance between ith measurement and jth measure-
ment locations is less than given distance and the time distance between 
ith measurement and jth measurement less than given period. 

2.3.2. Prior model of elastic coefficients 
The probabilistic model is completed by definition of the prior dis-

tribution of the unknown parameters Lh and Wh (and analogically of Lv, 
Wv, Lt and Wt). The prior distribution for the vector wh is Gamma dis-
tribution, similarly to previous noise model 10, 

p(whi) = G whi

(
whi

⃒
⃒κh

0, νh
0

)
, ∀i, (19)  

where, again, κh
0 and νh

0 are prior constants selected as non-informative 
10− 10. Since we prefer low number of corrections, the prior distribu-
tion for elastic coefficients vectors lhi is selected to favor sparse solution, 
i.e. with diagonal precision matrix diag(ςhi) which is estimated together 
with the other variables as 

p(lhi|ςhi) = N
(
lhi
⃒
⃒0, diag(ςhi)

− 1 )
, ∀i, (20)  

p
(
ςhi,j

)
= G

(
ςhi,j

⃒
⃒ζ0, η0

)
, ∀i,∀j ∈ 1,…, ni, (21)  

where prior constants ζ0 and η0 are selected as 10− 2 which allows 
parameter lhi vary in the range approximately 0 ± 100 which is 
considered sufficient (Tichý et al., 2016). 

The prior models for two other weighting vectors, hv and ht, are 
identical as for the vector hh. 

2.3.3. Prior model of the source term 
We consider two potential prior models of the source term: (i) the 

LSAPC prior (Tichý et al., 2016), and (ii) the optimization-based 
approach of Eckhardt et al. (2008)). LSAPC prior model for p(x∣lx, wx, 
ςx) has hyper-parameters lx, wx, ςx of the same distributions as 19–21. 
The tuning parameters of the optimization approach are selected by the 
designer and are thus not estimated. 

2.4. Variational Bayes solution 

The solution of the formulated prior model of the elastic bias field 
correction is based on the variational Bayes methodology (Smidl and 
Quinn, 2006) which seeks for approximation in the form of conditional 
independent posteriors. It is shown that the optimal solution minimize 
the Kullback-Leibler divergence (Kullback and Leibler, 1951) between 
the posterior and the hypothetical true parameters distribution. This 
results in the form of approximate posterior as 

p̃(θi|y)∝exp
(
Ẽp(θ∕i |y

)(lnp(θ, y))
)
, ∀i, (22)  

where θi denotes ith variable from the set of all considered variables, θ∕i 
denotes complement of θi in θ, and E() denotes expected value of given 
argument. The Eq. 22 forms a set of implicit equations which need to be 
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solved iteratively. This set is formulated in Appendix A and together 
with standard moments of respected distributions can be solved using 
iterative evaluation of the equations. 

The full model 9–21 contains variables x, hh, hv, ht with hyper- 
parameters for the elastic coefficients L = {lh,i, lv,i, lt,i}p

i=1, W =

{wh,i,wv,i,wt,i}
p
i=1 and S = {ςh,i, ςv,i, ςt,i}

p
i=1. Due to model structure, the 

hyperparameters of elastic coefficients are conditionally independent 
and the variational methodology allows very efficient estimation. 

The full Variational Bayes solution will be used for the LSAPC source 
term models, since it fully fits into the framework, using equations from 
(Tichý et al., 2016). The only exception is the matrix M which is 
replaced by its expected 〈M̃〉. We will use notation 〈θ〉 =

∫
θip̃(θi|y)dθi to 

denote expectation of its argument with respect to its posterior factor. 

Also, product MTM is replaced by 〈M̃
T
M̃〉. Solution of the model is based 

on iterative scheme that cyclically evaluates equations of the shaping 
parameters given in Appendix A. 

2.5. Combination with arbitrary source term determination method 

In this Section, we provide an algorithm for estimation of the bias 
correction for an arbitrary source term determination model. We assume 
that for a given bias corrected matrix M̃ the method can provide a dis-

tribution p(x
⃒
⃒
⃒M̃, y). Note that it includes methods providing point esti-

mates, since it can be interpreted as a Dirac distribution. Under this 
special choice, minimization of the KL divergence is equivalent to the 
expectation-maximization (EM) algorithm (Dempster et al., 1977), 
where the proposed bias correction estimate provides the E-step, while 
the source term determination method provides the M-step. 

In practical terms, the resulting scheme is an algorithm iterating two 
blocks: (i) source term determination, and (ii) bias correction. The 
source term determination method provides the expected value of the 
source term E(x) ≡ 〈x〉. The input of the source term estimation is the 
corrected SRS matrix M̃ and measurement y. The estimated 〈x〉 is input 
to the bias correction block (Appendix A) that will yield the updated 
estimate of the corrected SRS matrix M̃. The whole approach is sum-
marized in Fig. 4. 

The use of this algorithm has been demonstrated on the optimization 
method of Eckhardt et al. (2008)) where cost function imposing combi-
nation of the Tikhonov regularization term and the smoothness of the 
source term x is used. Indeed, any other source term estimation method 
can be used within this scope. 

Reference implementation of the elastic plume bias correction 
method, see Table 1, can be downloaded from: https://github.com/ond 
rej-tichy/BiasCorr/. 

3. Results 

We demonstrate the effects of the elastic plume bias correction 
methodology on two source term estimation methods from Section 2.5, 
the LSAPC and the optimization method, summarized in Table 1. We 
study two real world continental scale datasets. First, the European 
Tracer Experiment (ETEX) (Nodop et al., 1998) with known source term 
and fine resolution of measurements is used to validate the proposed 
bias correction and its interoperation with the source term determina-
tion methods. Second, the 106Ru occurrence over Europe in 2017 
(Masson et al., 2019) is used to demonstrate the effect of the bias 
correction to a much more demanding case without the known source 
term. Moreover, we tested the method for both, forward (the ETEX case) 
and backward (the 106Ru case), runs of atmospheric transport model. 

3.1. European Tracer Experiment (ETEX) 

The ETEX is one of a few large scale controlled releases with all 
available measurements and source term of the release published 

(Nodop et al., 1998) and, therefore, is widely used for methodology 
validation. In this paper, we consider the first ETEX release where a total 
of 340 kg of nearly inert perfluoromethylcyclohexane (PMCH) was 
released during nearly 12 h at the constant rate at Monterfil in Brittany, 
France, on 23 October 1994. The atmospheric concentration measure-
ments were collected from 168 measuring stations across the Europe 
with the sampling interval 3 h. In total, 3104 valid measurements were 
reported. 

3.1.1. Atmospheric modeling and the bias correction algorithm settings 
To obtain SRS fields for the ETEX release, we use the HYSPLIT at-

mospheric transport model (Stein et al., 2015; Draxler and Hess, 1997) 
in the forward mode driven by meteorological input data from the Eu-
ropean Center for Medium-Range Weather Forecasts (ECMWF) 
ERA-Interim reanalysis (Dee et al., 2011) with spatial resolution 0.5 
degree. The spatial domain is selected to cover all measuring stations as 
40–65 degrees in latitude and − 5–30 degrees in longitude and with 1 h 
temporal resolution of the output grid. The SRS readings occur from 22 
October to 27 October, i.e. 144 h are studied to properly surround the 
true release. 

For the elastic bias corrections, we consider 0.5 degree spatial sur-
roundings of each measurement station, i.e. the considered longitudinal 
and latitudinal shift, Δsh and Δsv. For time shift, Δt, we consider 1 h shift 

Fig. 4. The computational scheme of the elastic plume bias correction coupled 
with an arbitrary linear inverse algorithm. The hyper-parameters sets are 
defined as L = {lh,i, lv,i, lt,i}p

i=1, W = {wh,i,wv,i,wt,i}
p
i=1, and S =

{ςh,i, ςv,i, ςt,i}
p
i=1. Each hyper-parameter has its posterior distribution expressed 

as a function of its shaping parameters, e.g. hyper-parameter lh,i is defined by 
shaping parameters μlhi 

and Σlhi , which are given in Appendix A. 

Table 1 
Nomenclature of the tested methods.  

Methodology for linear 
inversion 

Linear inverse 
method 

Bias correction with linear 
inversion  

Tichý et al. (2016)) LSAPC BiasCorr-LSAPC  
Eckhardt et al. (2008)) Optimization BiasCorr-Optim  
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forward and backward in time for each measurement. To deal with 
boundary conditions for time shifts, we shorten the assumed temporal 
interval by one step from each end to 142 h which still sufficiently cover 
the release. We end up with the nominal SRS matrix M of the size 
3104 × 142 and gradient matrices Mh, Mv, and Mt of the same size 
representing local sensitivity for each measurement. For construction of 
index matrices I i of sparse shapes of matrices Lh, Lv, and Lt, we consider 
that two measurements neighboring if their spat ial distance is less than 
1.0 degree and temporal distance is less than 3 h. These are inputs for 
the elastic plume bias correction algorithm, Fig. 4. 

3.1.2. Results and discussion 
The key advantage of the ETEX experiment is that the true source 

term is known, see Fig. 6, top left panel where the true release is dis-
played using dashed red line. To test and validate the bias correction 
itself, we substitute the true source term in model 5 to obtain a linear 
model for the bias correction (Remark 1). The estimated bias correction 
for the true release at example time step T + 17 is given in Fig. 5, left 
column. Locations of all non-zero measurements are displayed using 
black dots and the release site is displayed using blue cross. The bias 
corrections are displayed using arrows for space coordinates of the bias 
and color for the time coordinate (blue arrows denote forward time shift 
and red denote backward time shift). In the top panels, the arrows are 
six-times enlarged for better visibility since the length of the correction 
is limited to 0.5 degree which is too small in this scale. The true scale of 
the estimated bias is used in the zoomed area in the bottom panels in 
Fig. 5. Agreement of the model with measurements is displayed in the 
top row of Fig. 6 using scatter plots of the model prediction against the 
measurements. The more closer to the axis of the first quadrant are the 
points on scatter plot, the better agreement between the model pre-
dictions and measurements is achieved. The improvement is indicated 
also using coefficient of determination, R2, defined as 

R2 = 1 −
∑

i

(
yi − (M〈x〉)i

)2

∑
i(yi − y)2 , (23)  

where y denotes mean of the measurements, with R2 equal to 0 being 
nominal value and R2 equal to 1 being the best fit. While for the nominal 
model, the agreement of the predictions using the true source term is 
poor (R2 = − 1.6), the agreement with the bias corrected predictions is 
much better with R2 = 0.65. The estimated bias correction for the linear 
model with the true source term will be used in comparisons with the 
estimates of the bi-linear model. 

Results of both algorithms for joint estimation of the bias correction 

and the source term are displayed in Fig. 5 (bias correction) and Fig. 6 
(source terms). Note that the bias correction fields for the BiasCorr- 
LSAPC (Fig. 5 middle) and the BiasCorr-Optim (Fig. 5 right) are very 
similar to those estimated using the true source term. For example, note 
the pattern in Hungary that systematically shifts the predicted plume to 
the north-west in the top panels. Moreover, Fig. 5 demonstrates the 
elasticity of the bias field correction where abrupt changes in the bias 
direction are less probable due to correlated directions in the neigh-
borhood. In general, the proposed algorithm increases the correlation 
coefficients around the estimated shifts that are correlated, increasing 
pressure on the neighboring biases to align with them. In effect, the 
neighboring corrections are very often correlated forming clusters with 
corrections favoring one spatial direction and temporal shift direction. 

The estimated field corrections have also positive impact on the 
estimated source terms. The true and the estimated source terms are 
given in Fig. 6 where the true release (best seen in the first row) is 
displayed by dashed red line and the estimated releases using the LSAPC 
(the second row) and the optimization (the third row) methods are 
displayed by blue lines. Each row in the plot displays results of esti-
mation for the nominal model (left columns) and the joint estimation 
with the bias correction (right column). Similarly to improvement for 
the scatter plot of the linear model with true source term, the agreement 
of the model predictions with measurements of the bi-linear estimates 
has also improved. In fact, the bi-linear model estimates achieve higher 
R2 than those with the known true release. Importantly, the shapes of 
scatter plots improved significantly, concentrating most of points 
around axis of the first quadrant. This is a consequence of higher number 
of parameters of the bi-linear model, indicating a minor over-fitting of 
the bi-linear models. This is not surprising due to poor conditioning of 
the inverse task. Note that all models achieved almost perfect agreement 
with the four highest measurements. The points where the agreement 
was not reached are also very similar in all methods. This may indicate 
that the true plume bias was higher than the limits imposed in the 
regularization. The estimated source terms for bi-linear models are also 
closer to the true release than those estimated using the nominal model. 

Detailed comparison of measurements and reconstructions are dis-
played using mapping toolbox (Greene et al., 2019) in Fig. 7. The 
measurements are used as the reference with which we compare re-
constructions for all six tested methods (including those using the true 
source term). The size of the circle is used to denote concentration value 
and the color is used to denote agreement with the measurement, see 
two legends in the bottom of Fig. 7. For better interpretation of the re-
sults, we also accompanied each map with the table of statistics of the 
number of reconstructions within factors 1.0–1.5, 1.5–2.0, 2.0–3.0, and 

Fig. 5. The exact bias correction fields are demonstrated for tested methods for particular times step (T + 17) where stations with non-zero measurements are 
displayed using black dots and the release site using blue cross. The full spatial domain is given in the first row with enlarged arrows for better visibility, i.e. di-
rections of bias corrections are given. The zoomed domain is given in the second row with true-scale arrows indicating bias correction using starts of each arrow. The 
coloring of arrows indicates the forward (blue) or backward (red) temporal shift of the SRS field. 
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higher than 3.0. In all cases, these tables demonstrate better agreement 
between measurements and results of bias corrected estimates than 
agreement between measurements and results using nominal model. 

To conclude the results on the ETEX experiment, we have demon-
strated that even small biases in the atmospheric transport model cause 
significant mismatch between measurements and model prediction. The 
proposed bias correction method can reduce this disproportion using 
information about gradients of concentration in the neighborhood of 
each measuring site. The proposed bias field correction is thus not based 
on ad hoc assumptions but reflects the numerical model and measure-
ment network topology to provide elastic transformation of the 
concentrations. 

3.2. Ruthenium-106 release in 2017 

The occurrence of low concentrations of 106Ru in Europe in 
September/October of 2017 is of particular interest in scientific com-
munity in recent years. Although the concentrations were low and pose 
no radiological risk, the origin of 106Ru is questioned. There were several 
hypotheses: a nuclear reactor accident was rejected because other ra-
dionuclides were not detected so as release from medical applications 
since it does not explain such a large source of 106Ru. Therefore, fresh 
nuclear fuel was considered as the most probable source due to the 
observation of ratio between 106Ru and 103Ru (Masson et al., 2019), 
probably from a fuel reprocessing plant. Multiple investigations have 
been performed and the Mayak plant (South Ural, Russian Federation) 
have been selected as the most probable source (Masson et al., 2019; 
Saunier et al., 2019; De Meutter et al., 2021; Dumont Le Brazidec et al., 
2020; Tichý et al., 2021), although Russian authorities did not confirm 
this findings. In this study, we assume that the location of the 106Ru 
release is the Mayak reprocessing plant. We use the largest dataset on 
this release from Masson et al. (2019)) and perform bias correction 
coupled with source term estimation methods similar to the previous 
case of ETEX release. Although the source term is not known, we 
compare our results with already published findings. 

3.2.1. Atmospheric modeling and bias correction algorithm settings 
FLEXPART version 10.4 (Pisso et al., 2019) was used in backward 

mode to calculate the SRS matrices needed for the bilinear model. 
FLEXPART releases computational particles that are tracked in time 
following 3-hourly operational meteorological analyses from the Euro-
pean Center for Medium-Range Weather Forecasts (ECMWF) with 137 
vertical layers and a spatial resolution of 1 × 1 degree. The model ac-
counts for dry and wet deposition (Grythe et al., 2017), turbulence 
(Cassiani et al., 2015), unresolved mezoscale motions (Stohl et al., 
2005), and convection (Forster et al., 2007). The spatial domain was 
selected as 30–75 degree in latitude and as − 10–100 in longitude to 
cover all measuring stations. The temporal domain is selected from 2 
August to 10 October 2017 (due to few long measurements times) with 
3 h temporal resolution of the output grid yielding 557 temporal ele-
ments. The SRS matrices M, Mh, Mv, and Mt were calculated for the 
Mayak location backward in time, at temporal intervals that matched 
measurements at each receptor site. 106Ru is tracked assuming gravita-
tional settling for spherical particles with an aerosol mean diameter of 
0.6 μm and a normalized standard deviation of 3.3 and a particle density 
of 2500 kg m− 3 (Masson et al., 2019). 

For bias field corrections, we assume 1.0 degree spatial surroundings 
for each measuring station and 3 h temporal surroundings for each 
measurement. For construction of sparse shapes of matrices Lh, Lv, and 
Lt, we consider that two measurements neighboring if they spatial dis-
tance is less than 2.0 degrees and temporal distance is less than 3 h. 

3.2.2. Results and discussion 
Since we can not compare the results with the ground truth, we show 

only impact of the bias correction of the estimates of the source term in  
Fig. 8. Here, the first two columns display results from the linear LSAPC 
and optimization methods and the next two columns display results for 
bi-linear model with the bias correction. In all cases, we display the 
estimated source term with 3 h discretization together with the associ-
ated scatter plot between measurements and reconstructions and with 
computed R2 values. Note that the temporal interval of the displayed 
source term is cropped to focus on non-zeros estimated activity while in 

Fig. 6. The true (dashed red lines) and estimated (full blue lines) releases from the ETEX experiment using methods given in titles. Each plot is associated (on the left 
side) with the scatter plot between measurements and reconstruction with computed R2 value. 
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Fig. 7. Measurements are shown in the first row. Other rows show a comparison between measurements and reconstructions using specified methods for three 
selected time steps (in columns). The size of each bullet indicates the measured/reconstructed value while the color of each bullet indicates the agreement between 
the measurement and the reconstructed value, see legends for details. Each map contains legend with the sum of bullets with given type of coloring for 
easier comparison. 
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the rest of the time domain, the releases are estimated as zeros. In all 
cases, we estimated the majority of the release between 24 September 
and 25 September while the total estimated release is 283 TBq for the 
LSAPC method, 261 TBq for the BiasCorr-LSAPC method, 200 TBq for 
the optimization method, and 195 TBq for the BiasCorr-Optim method. 
The main difference between the results with and without bias correc-
tion is in mass distribution of the release. Higher releases were observed 
on 25 September for the bias correction method than without bias 
correction. Although the LSAPC method provides sparser estimates than 
the optimization method, we observe clearly two main peaks of release 
in all cases, supporting the hypothesis that the release was not unimodal 
but had two or three peaks (see also small activity in 23 September in the 
case of optimization method). This supports the findings of Saunier et al. 
(2019)) where release of the magnitude less than 2 TBq in 23 September 
and even small one in 24 September was reported. Although we have no 
true source term, we can compare our findings with other published 
results. The main release was estimated by Western et al. (2020)) to 24 
September as 441 TBq and by Dumont Le Brazidec et al. (2021)) mainly 
to 25 September with release between 200 and 450 TBq, while other 
methods mostly estimated 25 and 26 September with activity 250 TBq 
(Saunier et al., 2019), 500 TBq (Shershakov et al., 2019), 237 TBq 
(Tichý et al., 2021), and between 100 and 200 TBq (Dumont Le Brazidec 
et al., 2020), based on the used prior model. Our findings are in agree-
ment in terms of the temporal resolution of the releases as our releases 
were estimated between 24 and 25 September. This also agrees 
regarding total released activity that results in the best R2 value for 
modelled and measured concentrations obtained using the 
BiasCorr-LSAPC method (total release activity of 261 TBq). 

The examples of detailed measurements reconstructions are given in  
Fig. 9 for given times specified in titles. The size of each bullet indicates 
the value of measurement (top row) or reconstruction (second to fifth 
rows) and the coloring indicates the difference of the reconstruction 
from the measurement, see legends bellow. As in the case of ETEX, we 
also computed the number of reconstructions differing from measure-
ments by factor 1.5, 2, 3, and more than 3, see legend given for each 
panel. Here, the improvement of reconstruction with the use of the bias 
correction is demonstrated in all cases. Also, Fig. 9 demonstrates slightly 
better reconstruction using the BiasCorr-LSAPC method than using the 
BiasCorr-Optim method, the third and the fifth rows. In the latter case, 
there are significantly miss-reconstructed values in the northern Ger-
many and the southern Norway which is not the case of the former case. 
This results in slightly higher R2 value in the former case. This is prob-
ably caused by the more smooth estimates using optimization leaving 
the residual activity in subsequent reconstruction which is not the case 

for the LSACP method where we observe two separated releases. This 
supports the hypothesis that there were two releases of 106Ru with 
similar strength approximately 9 h in a row. Notably, the bias correction 
algorithm was able to reduce the disproportion between measurements 
and reconstructions significantly in both cases. 

4. Conclusions 

We propose a method for improved estimation of the source term via 
better estimation of the plume bias. Our bias correction method uses not 
only concentrations modeled at measuring stations but also the infor-
mation from the neighborhood of each measuring station in the form of 
SRS coefficients. This provide quantitatively better information than 
other previous approaches which use the modeled point concentrations 
only. The proposed bias correction method is based on elastic trans-
formation of the SRS fields while the regularization of the correction is 
based on knowledge on the topology of the measuring network. Since all 
information necessary for the proposed bias correction is already 
available from the atmospheric transport model and the method can be 
combined with an arbitrary linear inverse method that uses the SRS 
matrix, the bias correction is widely applicable for improvement of 
estimation of the source term of atmospheric releases. 

The performance of the proposed method was studied in two real 
cases. First, we use data from the European Tracer Experiment (ETEX) 
where the true source term is known. We demonstrate that bias cor-
rections estimated without the knowledge of the true source term are 
very similar to those bias corrections estimated with the use of the true 
source term. Second, we study the case of occurrence of 106Ru over 
Europe in the fall of 2017. In this demanding case, we demonstrate that 
the method can correct atmospheric transport model biases and can 
significantly better explain the concentration measurements than linear 
inverse methods alone. 

We conclude that the proposed bias correction method provides 
general, effective, and flexible framework which can, coupled with a 
selected linear inverse method, reduce the model bias and provide more 
accurate estimate of the source term of an atmospheric release. 
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Appendix A. Truncated Gaussian distribution 

Truncated Gaussian distribution, denoted as tN , of a scalar variable x on interval [a; b] is defined as 

tN x(μ, σ, [a, b]) =
̅̅̅
2

√
exp((x − μ)2

)
̅̅̅̅̅̅
πσ

√
(erf(β) − erf(α))χ[a,b](x), (24)  

where α =
a− μ̅̅̅̅

2σ
√ , β =

b− μ̅̅̅̅
2σ

√ , function χ[a,b](x) is a characteristic function of interval [a, b] defined as χ[a,b](x) = 1 if x ∈ [a, b] and χ[a,b](x) = 0 otherwise. erf()

is the error function defined as erf(t) = 2̅ ̅
π

√
∫ t

0 e− u2 du. 
The moments of truncated normal distribution are 

〈x〉 = μ −
̅̅̅
σ

√
̅̅̅
2

√
[exp(− β2) − exp(− α2)]
̅̅̅
π

√
(erf(β) − erf(α)) , (25)  

〈x2〉 = σ + μx̂ −
̅̅̅
σ

√
̅̅̅
2

√
[bexp(− β2) − aexp(− α2)]

̅̅̅
π

√
(erf(β) − erf(α)) . (26)  

Appendix B. Shaping parameters of posterior distributions of bias correction 

Here, we provide posterior distributions and associated shaping parameters for the longitudinal bias correction, with subscript h. The posterior 
distribution and shaping parameters for the latitudinal and temporal bias correction are analogical while the full bias correction method is available 
online. 

The posterior distributions for longitudinal bias correction are identified as 

p̃(hh|y) = tN
(
hh
⃒
⃒μhh

,Σhh , [ − Δsh,Δsh]
)
, (27)  

p̃(wh|y) = G
(
wh

⃒
⃒κh, νh), (28)  

p̃(lhi|y) = N
(
lhi
⃒
⃒μlhi

,Σlhi

)
, ∀i, (29)  

p̃(ςhi|y) = G
(
ςhi

⃒
⃒ζh

i , ηh
i

)
, ∀i, (30)  

p̃(ω|y) = G (ω|ϑ, ρ) (31)  

The posterior distributions are functions of their shaping parameters, μhh
,Σhh ,κ

h, νh,μlhi
,Σlhi ,ζ

h
i ,ηh

i ,ϑ, ρ, which follows: 

Σhh = ()〈ω〉diagdiag
(
Mh〈xxT 〉MT

h

)
+

+〈Lhdiag
(
wh)LT

h 〉)− 1,
(32)  

μhh
= Σhh 〈ω〉()diag

(
Mh〈x〉yT )+

− diag
(
Mh〈xxT 〉MT )+

− diag
(
〈Hv〉Mv〈xxT 〉MT

h

)
+

− diag
(
〈Ht〉Mt〈xxT 〉MT

h

)
),

(33)  

κh = κh
0 +

1
2
1p,1, (34)  

νh = νh
0 +

1
2

diag
(
〈LT

h hhhT
h Lh〉

)
, (35)  

Σlhi =
(

〈wh
i 〉〈hh,I i hT

h,I i
〉 + diag(〈ςhi〉)

)− 1
, (36)  

μlhi
= Σlhi

(
− 〈wh

i 〉〈hh,ihT
h,I i

〉
)
, (37)  

ζh
i = ζh

0 +
1
2
1ni , (38)  

ηh
i = ηh

0 +
1
2

diag
(
〈lhilT

hi〉
)
, (39)  

ϑ = ϑ0 +
p
2
, (40)  

ρ = ρ0 +
1
2

trace
(

〈xxT 〉〈M̃
T
M̃〉

)
+ (41) 
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− yT 〈M̃〉〈x〉 +
1
2
yT y. (42)  

Here, the matrix M̃ is the corrected SRS matrix M̃ = M+ 〈Hh〉Mh + 〈Hv〉Mv + 〈Ht〉Mt. The moments, denoted as 〈θ〉, can be computed using standard 
equations for respected distributions, i.e. Gaussian, truncated Gaussian, and Gamma distributions. 
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