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A stochastic representation for the solution
of approximated mean curvature flow
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Abstract. The evolution by horizontal mean curvature flow (HMCF) is a
partial differential equation in a sub-Riemannian setting with applications
in IT and neurogeometry [see Citti et al. (SIAM J Imag Sci 9(1):212–
237, 2016)]. Unfortunately this equation is difficult to study, since the
horizontal normal is not always well defined. To overcome this problem
the Riemannian approximation was introduced. In this article we obtain a
stochastic representation of the solution of the approximated Riemannian
mean curvature using the Riemannian approximation and we will prove
that it is a solution in the viscosity sense of the approximated mean
curvature flow, generalizing the result of Dirr et al. (Commun Pure Appl
Math 9(2):307–326, 2010).
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1. Introduction

The evolution by mean curvature flow (MCF) has been studied extensively
and it has many applications in image processing and neurogeometry (see e.g.
[5,6] for further details). We say that a hypersurface evolves by MCF if it
contracts in the normal direction with the normal velocity proportional to its
mean curvature, see e.g. [9]. It is well-known that this evolution may develop
singularities in finite time in the Euclidean and Riemannian setting (as in the
case of the dumbbell, see [9] for further details). To deal with such a singu-
larities, many concepts of general solutions to study this evolution have been
developed. In particular in 1991, Chen et al. [4] and, independently, Evans
and Spruck [10] introduced the so called level set approach, which consists
in studying the evolving hypersurfaces as level sets of (viscosity) solutions of
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suitable associated nonlinear PDEs. We are interested in a degenerate version
of such an evolution, namely the evolution by horizontal mean curvature flow
(HMCF) and its approximation, the approximated Riemannian mean curva-
ture flow. The HMCF is, informally, the MCF defined in a suitable way in a
sub-Riemannian geometry. A sub-Riemannian geometry is a degenerate man-
ifold where the metric is defined defined along the fibers of a subbundle of the
tangent bundle. More specifically, we take X1, . . . , Xm smooth vector fields on
the manifold R

n and a metric g defined along the fibers of the distribution H
generated by such vector fields. Then it is possible to define intrinsic deriva-
tives of any order by taking the derivatives along the vector fields X1, . . . , Xm

and, as direct consequence, operators such as the horizontal Laplacian or the
horizontal divergence may be defined. This sub-Riemannian geometry can be
approximated to a Riemannian one by completing the basis of vector fields
{X1, . . . , Xm} with N − m vector fields Xε

m+1, . . . , X
ε
N which depend on a

parameter ε > 0. This basis is orthonormal w.r.t. a suitable metric gε. This
approximation is known as Riemmanian approximation.

In this paper we will study a stochastic representation of the viscosity
solution (see [7,12] for further details) of approximated mean curvature flow,
i.e. we will use a suitable stochastic optimal control problem in order to obtain
the viscosity solution of the approximated mean curvature flow. A connection
between some geometric evolution equations and some stochastic control prob-
lems was found independently by Buckdahn, Cardaliaguet and Quincampoix
in [2] and Soner and Touzi in [16,17] in 2001 (see also [18] for further remarks
on this topic). Roughly speaking, the increments of the stochastic process are
constrained by the control to a lower dimensional subspace of RN , while the
cost functional depends only on the terminal cost. However, we have to con-
sider an essential supremum and not, as in the standard control problem, an
expectation over the probability space. It is possible to show that the value
function of this stochastic optimal control problem solves (in viscosity sense)
the level set equation associated with the geometric evolution. Furthermore, it
is possible to prove that the set of points from which the initial hypersurface
can be reached almost surely in a given time by choosing an appropriate control
which coincides with the set evolving by mean curvature flow. This stochastic
approach can be generalized to a class of sub-Riemannian geometries which
respects a weak condition of regularity (the so called Hörmander condition)
by using an intrinsic Brownian motion associated with the sub-Riemannian
geometry, see Dirr, Dragoni and von Renesse in [8]. In the Euclidean setting
the stochastic dynamics can be expressed using the definition of the Itô in-
tegral while in the sub-Riemannian case we have to use the definition of the
Stratonovich integral. In the latter case the dynamics is far more complex be-
cause, informally, we have a deterministic part (related to first order derivatives
induced by the chosen geometry) and a stochastic one (related to some second
order derivatives induced by the chosen geometry). Our aim is to extend the
result obtained in [8] to the approximated Riemannian mean curvature flow,
with an ε > 0 fixed.
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The paper is organised as follows: in the Sect. 2 we define some prelimi-
nary concepts about sub-Riemannian geometries, in the Sect. 3 we introduce
the horizontal mean curvature flow, in the Sect. 4 we approximate it using a
Riemannian approximation and, finally, in the Sect. 5 we will find a stochastic
representation of the solution of approximated mean curvature flow.

2. Preliminaries

We recall some geometrical definitions which will be crucial for defining the
evolution by HMCF. For more definitions and properties about sub-Riemannian
geometries we refer to [15] and also [1] for the particular case of Carnot groups.

Definition 2.1. Let M be a N -dimensional smooth manifold, we consider for
every point p a subspace of TpM called Hp. We define the distribution as
H = {(p, v)| p ∈ M, v ∈ Hp}.

Definition 2.2. Let M be a manifold and X,Y two vector fields defined on this
manifold and f : M → R a smooth function, then we define the (Lie) bracket
between X and Y as [X,Y ](f) = XY (f) − Y X(f).

Let us consider X = {X1, . . . , Xm} spanning some distribution H ⊂ TM ,
we define the k bracket as L(k) = {[X,Y ]|X ∈ L(k−1), Y ∈ L(1)} with
ij ∈ {1, . . . , m} and L(1) = X . The associated Lie algebra is the set of all
brackets between the vector fields of the family

L(X ) := {[Xi,X
(k)
j ]|X(k)

j k-length bracket of X1, . . . Xm k ∈ N}.

The definition of the Hörmander condition below is crucial in order to
work with PDEs in a sub-Riemannian setting, because it allows us to recover
the whole tangent space for every point.

Definition 2.3. (Hörmander condition) Let M be a smooth manifold and H a
distribution defined on M . We say that the distribution is bracket generating if
and only if, at any point, the Lie algebra L(X ) spans the whole tangent space.
We say that a sub-Riemannian geometry satisfies the Hörmander condition if
and only if the associated distribution is bracket generating.

Definition 2.4. Let M be a smooth manifold and H = span{X1, . . . , Xm} ⊂
TM a distribution and g a Riemannian metric of M defined on the subbundle
H. A sub-Riemannian geometry is the triple (M,H, g).

Definition 2.5. Let (M,H, g) be a sub-Riemannian geometry and γ : [0, T ] →
M an absolutely continuous curve, we say that γ is an horizontal curve if and
only if

γ̇(t) ∈ Hγ(t), for a.e. t ∈ [0, T ],

or, equivalently, if there exists a measurable function h : [0, T ] → R
N such

that

γ̇(t) =
m∑

i=1

hi(t)Xi(γ(t)), for a.e. t ∈ [0, T ],
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where h(t) = (h1(t), . . . , hm(t)) and X1, . . . Xm are some vector fields spanning
the distribution H.

Under the Hörmander condition the following theorem holds true.

Theorem 2.6. ( [15])[Chow] Let M be a smooth manifold and H a bracket
generating distribution defined on M . If M is connected, then there exists a
horizontal curve joining any two given points of M .

2.1. Carnot type geometries

From this point we will consider only the case where the topological manifold
M is the Euclidean R

N . Moreover, in this paper we will concentrate on sub-
Riemannian geometries with a particular structure: the so called Carnot-type
geometries.

Definition 2.7. Let us consider (M,H, g) a sub-Riemannian geometry. We say
that X1, . . . , Xm, m < N , are Carnot-type vector fields if the coefficients of
Xi are 0 for j ∈ {1, . . . , m} \ {i}, the i-component is equal to 1 and the other
N − m components are polynomial in x.

For later use we also introduce the matrix associated to the vector fields
X1, . . . , Xm, which is the N × m matrix defined as

σ(x) = [X1(x), . . . , Xm(x)]T .

In general, for Carnot-type geometries, the matrix σ assumes the following
structure:

σ(x) =
[
Im×m A(x1, . . . xm)

]
(2.1)

where the matrix A(x1, . . . , xm) is a (N − m) × m matrix depending only on
the first m components of x.

Example. (The Heisenberg group) The most significant sub-Riemannian geom-
etry is the so called Heisenberg group. For a formal definition of the Heisenberg
group and the connection between its structure as non commutative Lie group
and its manifold structure we refer to [1]. Here we simply introduce the 1-
dimensional Heisenberg group as the sub-Riemannian structure induced on
R

3 by the vector fields

X1(x) =

⎛

⎝
1
0

−x2
2

⎞

⎠ and X2 =

⎛

⎝
0
1
x1
2

⎞

⎠ , ∀ x = (x1, x2, x3) ∈ R
3.

In the case of the Heisenberg group, the matrix σ is given by

σ(x) =
[
1 0 −x2

2
0 1 x1

2

]
, ∀x = (x1, x2, x3) ∈ R

3.

The introduced vector fields satisfy the Hörmander condition: in fact [X1,X2]

(x) =

⎛

⎝
0
0
1

⎞

⎠ for any x ∈ R
3.



NoDEA A stochastic representation for the solution Page 5 of 21 9

The previous structure, which applies to a large class of geometries, allows
us to consider an easy and explicit Riemannian approximation.

Let us consider a distribution H spanned by the Carnot-type vector fields
{X1, . . . , Xm} defined on R

N with m < N and satisfying the Hörmander
condition. It is possible to complete the distribution H by adding N − m
vector fields Xm+1, . . . , XN in order to construct an orthogonal basis for all
x ∈ R

N , i.e.

span
(
X1(x), . . . , Xm(x),Xm+1(x), . . . , XN (x)

)
= TxR

N ≡ R
N , ∀x ∈ R

N .

The geometry induced, for all ε > 0, by the distribution

Hε(x) = span{X1(x), . . . , Xm(x), εXm+1(x), . . . , εXN (x)}, ∀x ∈ R
N

is called Riemannian approximation of our starting sub-Riemannian geometry.
We remark that the associated basis is composed by orthonormal vector fields
w.r.t. the approximated Riemannian metric gε. The associated matrix is

σε(x) = [X1(x), . . . Xm(x), εXm+1(x) . . . , εXN (x)]T . (2.2)

We remark that det(σε(x)) �= 0.
We note that, in the case of Carnot-type geometries, we can always

choose

Xi(x) = ei, ∀i = m + 1, . . . , N ∀x ∈ R
N ,

where by ei we indicate the standard Euclidean unit vector with 1 at the i-th
component.

Example. (Riemannian approximation of H
1) In the case of the Heisenberg

group introduced in the previous example, the matrix associated to the Rie-
mannian approximation is, for every point x = (x1, x2, x3), given by

σε(x) =

⎡

⎣
1 0 −x2

2
0 1 x1

2
0 0 ε

⎤

⎦ .

Remark 2.8. This technique is called Riemannian approximation since, as ε →
0+, then the geometry induced by Riemannian approximation converges, in
sense of Gromov-Hausdorff (see [13] for further details), to the original sub-
Riemannian geometry (as shown, as example, in [5]).

3. Horizontal mean curvature evolution

Given a smooth hypersurface Γ, we indicate by nE(x) the standard (Euclidean)
normal to the hypersurface Γ at the point x. The following definitions will be
key for this paper (see [8] for further details).

Definition 3.1. Given a smooth hypersurface Γ, the horizontal normal at x ∈ Γ
is the renormalized projection of the Euclidean normal on the horizontal space
Hx, i.e.

n0(x) :=
prHnE(x)

|prHnE(x)|g =
α1(x)X1(x) + · · · + αm(x)Xm(x)√

α2
1(x) + · · · + α2

m(x)
∈ Hx ⊂ R

N .
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With an abuse of notation we will often indicate by n0(x) the associated m-
valued vector

n0(x) =
(α1(x), . . . , αm(x))T

√
α2

1(x) + · · · + α2
m(x)

∈ R
m. (3.1)

The main difference between the horizontal normal and the Euclidean
normal is that the first one may not exist even for smooth hypersurfaces. In
fact at some points the horizontal normal is not defined while the Euclidean
one exists. These points are called characteristic points.

Definition 3.2. Given a smooth hypersurface Γ, characteristic points occur
whenever nE(x) is orthogonal to the horizontal plane Hx, then its projection
on such a subspace vanishes, i.e.

α2
1(x) + · · · + α2

m(x) = 0.

We recall that, for every smooth hypersurface, the mean curvature at
the point x ∈ Γ is defined as the Euclidean divergence of the Euclidean nor-
mal at that point. Similarly, for every smooth hypersurface, we introduce the
horizontal mean curvature.

Definition 3.3. Given a smooth hypersurface Γ and a non characteristic point
x ∈ Γ, the horizontal mean curvature is defined as the horizontal divergence
of the horizontal normal, i.e. k0(x) = divHn0(x), where n0(x) is the m-valued
vector associated to the horizontal normal (see (3.1)) while divH is the diver-
gence w.r.t. the vector fields X1, . . . , Xm, i.e.

k0(x) = X1

(
α1(x)√∑m
i=1 α2

i (x)

)
+ · · · + Xm

(
αm(x)√∑m
i=1 α2

i (x)

)
.

Obviously the horizontal mean curvature is never defined at characteristic
points, since there the horizontal normal does not exist.

Definition 3.4. Let Γt be a family of smooth hypersurfaces in R
N . We say that

Γt is an evolution by horizontal mean curvature flow of Γ if and only if Γ0 = Γ
and for any smooth horizontal curve γ : [0, T ] → R

N such that γ(t) ∈ Γt for
all t ∈ [0, T ], the horizontal normal velocity v0 is equal to minus the horizontal
mean curvature, i.e.

v0(γ(t)) := gγ(t)(γ̇(t), n0(γ(t))) = −k0(γ(t)), (3.2)

where n0(γ(t)) and k0(γ(t)) as respectively the horizontal normal and the
horizontal mean curvature defined by Definitions 3.1 and 3.3 at the point γ(t).

We want to compute now the horizontal normal and the horizontal cur-
vature for a smooth hypersurface expressed as zero level set, i.e.

Γ =
{
x ∈ R

N |u(x) = 0
}
,

for some smooth function u : RN → R.
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As did in [8], the horizontal normal for the level set formulation may be
expressed as

n0(x) =

(
X1u(x)√∑m
i=1(Xiu(x))2

, . . . ,
Xmu(x)√∑m
i=1(Xiu(x))2

)
. (3.3)

Similarly, we write the horizontal mean curvature as

k0(x) =
m∑

i=1

Xi

(
Xiu(x)√∑m

i=1(Xiu(x))2

)
. (3.4)

Let Γt = {(x, t)|u(x, t) = 0} where u is C2. Applying (3.3) and (3.4) to the
Definition 3.4 we obtain that u solves the following PDE

ut = Tr((X 2u)∗) −
〈

(X 2u)∗ Xu

|Xu| ,
Xu

|Xu|
〉

(3.5)

where Xu is the horizontal gradient, that is

Xu := (X1u, . . . , Xmu)T

and (X 2u)∗ is the symmetrized horizontal Hessian, that is

((X 2u)∗)ij :=
Xi(Xju) + Xj(Xiu)

2
.

As remarked in [8], it is possible to write (3.5) in the form

ut = F (x,Du,D2u)

with

F (x, q, S) = − Tr(σ(x)SσT (x) + A(x, p))

+
〈(

σ(x)SσT (x) + A(x, p)
) σ(x)q

|σ(x)q| ,
σ(x)q
|σ(x)q|

〉
(3.6)

where

A(x, q) =
1
2

< ∇Xi
Xj(x) + ∇Xj

Xi(x), q > .

We observe that the function F (x, q, S) is well defined and continuous if
|σ(x)q| > 0, so we define the set V = {(x, q) ∈ Γ × TxΓ| σ(x)q = 0}. In
this way we observe that

F : (R2N \ V) × Sym(N) → R.

is well defined.
We remark that if we consider (x, q) ∈ V then F is not defined and it

cannot be extended continuously. Hence, in order to extend it to R
N × R, we

have to compute the upper and lower envelopes of F .

Definition 3.5. Let us consider a locally bounded function u : R × [0, T ] → R.
• The upper semicontinuous envelope is defined as

u∗(t, x) :=inf{v(t, x)| v cont. and v ≥ u}=lim sup
r→0+

{u(s, y)||y − x| ≤ r, |t − s| ≤ r}.
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• The lower semicontinuous envelope is defined as

u∗(t, x) := sup{u(t, x)| u cont. and v ≤ u}=lim inf
r→0+

{u(s, y)||y − x| ≤ r, |t − s| ≤ r}.

Remark 3.6. If the function u : RN × [0, T ] → R is continuous then it holds
true

u∗(t, x) = u(t, x) = u∗(t, x), for all (t, x) ∈ [0, T ] × R
N .

Remark 3.7. Applying the Definition 3.5 to the function F as defined in (3.6)
we obtain

F ∗(x, q, S) =

{
−Tr(S) +

〈
S σ(x)q

|σ(x)q| ,
σ(x)q

|σ(x)q|
〉

, |σ(x)q| �= 0,

−Tr(S) + λmax(S), |σ(x)q| = 0

and

F∗(x, q, S) =

{
−Tr(S) +

〈
S σ(x)q

|σ(x)q| ,
σ(x)q

|σ(x)q|
〉

, |σ(x)q| �= 0,

−Tr(S) + λmin(S), |σ(x)q| = 0

where S = σ(x)SσT (x) + A(x, q) with λmax and λmin the maximum and the
minimum eigenvalues of the matrix S.

4. Approximated Riemannian mean curvature flow

The Equation (3.5) can be approximated to a Riemannian mean curvature flow
using the Riemannian approximation. This leads the following generalizations
of the definitions of horizontal normal and horizontal divergence.

Definition 4.1. Given a smooth hypersurface Γ, the approximated Riemannian
normal at the point x ∈ Γ is the renormalized projection of the Euclidean
normal on the horizontal space Hε

x, i.e.

nε(x) : =
prHε

nE(x)
|prHε

nE(x)|gε

=
∑m

i=1 αi(x)Xi(x) + ε
∑N

i=m+1 αi(x)Xi(x)
√

α2
1(x) + · · · + α2

m(x) + ε2α2
m+1(x) + · · · + ε2α2

N (x)
∈ Hx ⊂ R

N .

With an abuse of notation, we will often indicate by nε(x) the associated
N -valued vector

nε(x) =
(α1(x), . . . , αm(x), εαm+1(x), . . . , εαN (x))T

√
α2

1(x) + · · · + α2
m(x) + ε2α2

m+1(x) + · · · + ε2α2
N (x)

∈ R
N . (4.1)

Definition 4.2. Given a smooth hypersurface Γ and a point x ∈ Γ, the approxi-
mated Riemannian mean curvature is defined as the approximated Riemannian
divergence of the approximated Riemannian normal, i.e. kε(x) = divHεnε(x),
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where nε(x) is the N -valued vector associated to the approximated Riemann-
ian normal (see (4.1)) while divHε is the divergence w.r.t. the vector fields
X1, . . . , Xm, εXm+1, . . . , εXN , i.e.

kε(x)=
m∑

i=1

Xi

⎛

⎝ αi(x)√∑m
j=1 α2

j (x) + ε2
∑N

k=m+1 α2
k(x)

⎞

⎠

+ ε

N∑

i=m+1

Xi

⎛

⎝ εαi(x)√∑m
j=1 α2

j (x) + ε2
∑N

k=m+1 α2
k(x)

⎞

⎠. (4.2)

Remark 4.3. In this setting we do not have characteristic points on the hy-
persurface Γ. Hence when the Euclidean normal is not zero, then at least one
αi(x) of (4.1) will be not zero.

We define the approximated Riemannian mean curvature flow, adapting
the definition of horizontal mean curvature flow (as stated in the Definition
3.4) to the approximated Riemannian case.

Definition 4.4. Let Γt be a family of smooth hypersurfaces in R
N . We say that

Γt is an evolution by approximated Riemannian mean curvature flow of Γ if
and only if Γ0 = Γ and for any smooth horizontal curve γε : [0, T ] → R

N such
that γε(t) ∈ Γt for all t ∈ [0, T ], the approximated Riemannian normal velocity
vε is equal to minus the approximated Riemannian mean curvature, i.e.

vε(γε(t)) := gεγε(t)(γ̇ε(t), nε(γε(t))) = −kε(γε(t)),

where nε(γε(t)) and kε(γε(t)) as respectively the approximated Riemannian
normal and the approximated Riemannian mean curvature defined by Defini-
tions 4.1 and 4.2 and gε the approximated Riemannian metric.

As did in Sect. 3, let us consider Γt = {(x, t)|u(x, t) = 0} where u is C2.
Developing all the computations following the example of [8] and recalling the
Definitions 4.1 and 4.2 adapted to the level set formulation as did in Sect. 3
of this paper, we obtain that u solves the following PDE

ut = Tr((X 2
ε u)∗) −

〈
(X 2

ε u)∗ Xεu

|Xεu| ,
Xεu

|Xεu|
〉

= Δεu − Δ0,∞,εu, (4.3)

where Xεu is the approximated Riemannian gradient, i.e.

Xεu = (X1u, . . . , Xmu, εXm+1u, . . . , εXNu)T

and (X 2
ε u)∗ is the approximated Riemannian symmetrized Hessian, i.e.

(X 2
ε u)∗

ij =
Xε

i (Xε
j u) + Xε

j (Xε
i u)

2
. (4.4)

We observe that we may write the Equation (4.3) as

ut + Fε(x,Du,D2u) = 0, (4.5)
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with

Fε(x, q, S) = − Tr(σε(x)SσT
ε (x) + Aε(x, q))

+
〈(

σε(x)SσT
ε (x) + Aε(x, q)

) σε(x)q
|σε(x)q| ,

σε(x)q
|σε(x)q|

〉
(4.6)

where

(Aε)ij(x, q) =
1
2

< ∇Xε
i
Xε

j + ∇Xε
j
Xε

i , q > .

Let us remark that the function Fε, due to the fact that det(σε(x)) �= 0 for
all x ∈ R

N , is always well defined everywhere except for q = 0. This change is
crucial to compute the upper and lower envelopes of Fε.

Remark 4.5. Applying the Definition 3.5 to the function Fε as defined in (3.6)
we obtain that the upper and lower envelopes are given by

F ∗
ε (x, q, S) =

{
−Tr(Sε) +

〈
Sε

σε(x)q
|σε(x)q| ,

σε(x)q
|σε(x)q|

〉
, |q| �= 0,

−Tr(Sε) + λmax(Sε), |q| = 0

and

Fε∗(x, q, S) =

{
−Tr(Sε) +

〈
Sε

σε(x)q
|σε(x)q| ,

σε(x)q
|σε(x)q|

〉
, |q| �= 0,

−Tr(Sε) + λmin(Sε), |q| = 0

where Sε = σε(x)SσT
ε (x) + Aε(x, q) with λmax and λmin the maximum and

the minimum eigenvalues of the matrix Sε.

Remark 4.6. Let us remark that, while in the horizontal case the upper (resp.
lower) envelope depends also from the sub-Riemannian geometry (i.e. |σ(x)q| >
0). in the approximated Riemannian geometry depends only on the variable q
(since det(σε(x)) �= 0 for all x ∈ R

N ).

4.1. The approximated Riemannian stochastic control problem

Let us consider a family of smooth vector fields X = {X1, . . . Xm} and its
Riemannian approximation Xε = {X1, . . . , Xm, εXm+1, . . . , εXN}.

Definition 4.7. We define the horizontal Brownian motion the process

dξ =
m∑

i=1

Xi(ξ) ◦ dBi
m,

where Bm is a m-dimensional Brownian motion, ◦ the Stratonovich differential
and Xi the vector fields of X which span the distribution H. We define the
approximated Riemannian horizontal Brownian motion as

dξε =
N∑

i=1

Xε
i (ξε) ◦ dBi

N

where BN is an N -dimensional Brownian motion and Xε
i the vector fields of

Xε which span the distribution Hε.
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Let (Ω,F , {Ft}t≥0,P) be a filtered probability space, Bj is a j-dimensional
Brownian motion adapted to the filtration {Ft}t≥0 with j = m,N , we recall
that a predictable process is a time-continuous stochastic process {ξ(t)}t≥0

defined on the filtered probability space (Ω,F , {Ft}t≥0,P), measurable with
respect to the σ-algebra generated by all left-continuous adapted processes (see
[3] and [11] for further details). Given a smooth function g : RN → R (which
parametrizes the starting hypersurface at time t = 0) we introduce ξt,x,ν , the
solution of the stochastic ODE

⎧
⎪⎨

⎪⎩

dξt,x,ν(s) =
√

2σT (ξt,x,ν(s)) ◦ dBν
m(s), s ∈ (t, T ],

dBν
m(s) = ν(s)dBm(s),

ξt,x,ν(t) = x,

(4.7)

where the matrix σ is defined in (2.1), ◦ represents the differential in the sense
of Stratonovich and

A =
{
ν : [t, T ] → Sym(m) predictable |ν ≥ 0, Im − ν2 ≥ 0, T r(Im − ν2) = 1

}
(4.8)

and the function V : [0, T ] × R
N → R defined as

V (t, x) := inf
ν∈A

ess sup
ω∈Ω

g(ξt,x,ν(T )(ω)). (4.9)

Similarly, for ε > 0 fixed, we define ξt,x,ν1
ε as the solution of the SDE

⎧
⎪⎨

⎪⎩

dξt,x,ν1
ε (s) =

√
2σT

ε (ξt,x,ν1
ε (s)) ◦ dBν1

N (s), s ∈ (t, T ],
dBν1

N (s) = ν1(s)dBN (s),
ξt,x,ν1
ε (t) = x,

(4.10)

where σε is the matrix defined in (2.2) and

A1 =
{
ν1 : [t, T ] → Sym(N) predictable | ν1 ≥ 0, IN − ν

2
1 ≥ 0, Tr(IN − ν

2
1 ) = 1

} (4.11)

and the function V ε : [0, T ] × R
N → R defined by

V ε(t, x) := inf
ν∈A1

ess sup
ω∈Ω

g(ξt,x,ν1
ε (T )(ω)). (4.12)

It is possible to show that the function V as in (4.9) solves in the viscosity
sense the level-set equation for the evolution by HMCF (see [8]).

Note also that the sets of controls (4.8) and (4.11) may be rewritten
respectively as

A = {ν2| ν ∈ A} = Co{Im − a ⊗ a| a ∈ R
m, |a| = 1},

and

A1 = {ν2
1 | ν1 ∈ A1} = Co{IN − a ⊗ a| a ∈ R

N , |a| = 1}.

Remark 4.8. Let us remark that the first equations of the systems (4.7) and
(4.10) have a differential in Stratonovich sense, while the second ones have a
differential in Itô sense.



9 Page 12 of 21 R. Grande NoDEA

Remark 4.9. Roughly speaking, it is possible to see (4.8) and (4.11) as sets
of controls which locally constrained the horizontal Brownian motion and ap-
proximated Riemannian Brownian motion to a tanget space of codimension
one (see [2,8] for further details).

Next we introduce the p-regularising approximation of the functions V
and V ε. These functions will be the p-approximation of the L∞ norms as
defined in of (4.9) and (4.12).

Definition 4.10. For p > 1, the p-approximation of the value function associ-
ated to the value function (4.9) is defined as

Vp(t, x) := inf
ν∈A

E[|g(ξt,x,ν)(T )(ω)|p] 1
p , (4.13)

where ξt,x,ν is as (4.7) and A is as in (4.8).
Similarly, we introduce the following ε-p-regularising function, that is the

p-value function associated to the value function (4.12),

V ε
p (t, x) := inf

ν1∈A1
E[|g(ξt,x,ν1

ε )(T )(ω)|p] 1
p . (4.14)

where ξt,x,ν1
ε is as (4.10) and A1 is as (4.11).

Definition 4.11. The Hamiltonian associated to the horizontal stochastic opti-
mal control problem (4.7) is

H(x, q, S) = sup
ν∈A

[
− Tr(σ(x)SσT (x)ν2(s)) +

m∑

i,j=1

(ν2(s))ij

〈∇Xi
Xj(x), q

〉]
.

where σ is defined as in (2.1), q ∈ R
N , S ∈ Sym(N) and A is as in (4.8).

Definition 4.12. The Hamiltonian associated to the approximated Riemannian
stochastic optimal control problem (4.10) is

Hε(x, q, S) = sup
ν1∈A1

[
− Tr(σε(x)SσT

ε (x)ν2
1 (s)) +

N∑

i,j=1

(ν2
1 (s))ij

〈∇Xε
i
Xε

j (x), q
〉]

.

where σε is defined as in (2.2), q ∈ R
N , S ∈ Sym(N) and A1 is as (4.11).

Remark 4.13. The function Vp solves in viscosity sense PDE:
{

−(Vp) + Hp(x,DVp,D
2Vp) = 0, t ∈ [0, T ), x ∈ R

N ,

Vp(T, x) = g(x), x ∈ R
N

(4.15)

where

Hp(x, q,M) := sup
ν∈A

[
− (p − 1)r−1Tr[ννT qqT ] + Tr[ννT M ]

]
, (4.16)

(see [2] for further details).
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Remark 4.14. Similarly to Remark 4.13, for ε > 0 and p > 1 fixed, the function
V ε

p solves in the viscosity sense the PDE
{

−(V ε
p ) + Hε

p(x,DV ε
p ,D2V ε

p ) = 0, t ∈ [0, T ), x ∈ R
N ,

V ε
p (T, x) = g(x), x ∈ R

N
(4.17)

where

H
ε
p(x, q, M) := Hp(x, qε, Mε) = sup

ν∈A1

[
− (p − 1)r

−1
Tr[νν

T
qεq

T
ε ] + Tr[νν

T
Mε]

]
, (4.18)

where A1 is given in (4.11) and, for all q ∈ R
N and M = (Mij)N

i,j=1 ∈ Sym(N),

qε :=

⎡

⎢⎢⎢⎢⎢⎢⎣

q1

. . .
qm

εqm+1

. . .
εqN

⎤

⎥⎥⎥⎥⎥⎥⎦

and

Mε :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 . . . M1m εM1(m+1) . . . εM1N

...
Mm1 . . . Mmm εM(m+1)m . . . εMNm

εM(m+1)1 . . . εM(m+1)m ε2M(m+1)(m+1) . . . ε2M(m+1)N

...
εM1N . . . εMmN ε2M(m+1)N . . . ε2MNN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5. V ε as viscosity solution

In this last section we will prove the main result of this paper. Before doing
it, we have to introduce some technical lemmas.

Lemma 5.1. (Comparison Principle) Let us consider 0 < ε < 1 fixed. Let g1,
g2 be uniformly continuous functions on [0, T ] ×R

N with g1 ≤ g2 and V ε
i (t, x)

for i = 1, 2 as defined in (4.12) with terminal costs gi then it holds true

V ε
1 (t, x) ≤ V ε

2 (t, x) on [0, T ] × R
N .

Proof. It follows from the assumption g1 ≤ g2 and from the properties of
infimum and essential supremum. �

Lemma 5.2. Let us consider 0 < ε < 1 fixed. Let g be a bounded and uniformly
continuous function on [0, T ] × R

N and let V ε(t, x) be defined as in (4.12)
with g as terminal cost. Let us consider φ : R → R continuous and strictly
increasing. Then

φ(V ε
g (t, x)) = V ε

φ(g)(t, x).
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Proof. Since φ is an increasing and continuous function, we remark that φ(inf A)
= inf φ(A) where A ⊂ R. Then, for every measurable function f : Ω → R it is
easy to see that

φ(ess sup f) = ess sup(φ(f))

and so we can conclude the proof. �

Remark 5.3. Lemmas 5.1 and 5.2 allow us to conclude that the set {V ε(t, x) ≤
0} depends only on the set {g(x) ≤ 0} and not on the specific form of g.
Furthermore we will show that V ε(t, x) solves (in the viscosity sense) the level
set equation for the evolution by horizontal mean curvature flow for a fixed
0 < ε < 1.

We state now the main theorem of the paper.

Theorem 5.4. Let us consider 0 < ε < 1 fixed. Let g : RN → R be a globally
bounded and Lipschitz function, T > 0 and

σε(x) = [X1(x), . . . , Xm(x), εEm+1(x), . . . , εEN (x)]T

a N × N matrix obtained from the Riemannian approximation of the m × N
Hörmander matrix σ(x) = [X1(x), . . . , Xm(x)]T with m ≤ N and smooth coef-
ficients and Ei = (0, . . . , 1, . . . , 0)T the vector fields where 1 is at the position
i. Assuming that σε and νε(x) =

∑N
i=1 ∇Xε

i
Xε

j (x) are Lipschitz (in order to
have the non-explosion for the solution of the SDE), then the value function
V ε(t, x) defined by (4.12) is a bounded lower semicontinuous viscosity solution
of the level set equation for the evolution by approximated Riemannian mean
curvature flow, with terminal condition V ε(T, x) = g(x).

In order to prove the Theorem 5.4 we have to introduce the half-relaxed
upper-limit, prove some preliminaries lemmas and theorems and, at the end,
verify that the terminal condition is satisfied.

Definition 5.5. We define the half-relaxed upper-limit of V ε
p (t, x)

V �,ε(t, x) := lim sup
(s,y)→(t,x) p→∞

V ε
p (s, y).

This lemma allows to use the definition of the upper half-relaxed limit
instead of the definition of upper envelope.

Lemma 5.6. Let us consider 0 < ε < 1 fixed. It holds true

V �,ε(t, x) = V ∗,ε(t, x) for all (t, x) ∈ [0, T ] × R
N

where the upper envelope and the half-relaxed upper limit are defined as in
Definitions 3.5 and 5.5.

Proof. We observe that V �,ε ≥ V ε and V �,ε is an upper semicontinuous func-
tion. Then, since V ∗,ε is the smallest upper envelope it holds V �,ε ≥ V ∗,ε. On
the other hand, recalling that V ε

p (t, x) ≤ V ε(t, x) for any t,x, and p > 1 and
ε > 0 fixed, then taking the lim sup in t,x and p we obtain that V �,ε ≤ V ∗,ε

and as consequence the result follows. �
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Another important observation is related to the Lp-norm related to V ε

(t, x), i.e. V ε
p (t, x) as in Definition 4.10.

We obtain the following result for 0 < ε < 1 fixed.

Lemma 5.7. Let us consider 0 < ε < 1 fixed. Under the assumptions of Theo-
rem 5.4, we have

V ε(t, x) = lim
p→∞ V ε

p (t, x) for all (t, x) ∈ [0, T ] × R
N

The convergence is pointwise.

Proof. As the Lp norms are bounded by essential supremum and increasing
we obtain immediately for each fixed control and ε > 0

V ε(t, x) ≥ V ε
p (t, x).

The other inequality will be proved as in [8]. Let us consider q ≥ 1, then by
the property of the infimum we can find a control νq such that

(
E[gp(ξt,x,ν1,q

ε (T ))]
) 1

q

≤ V ε
q (t, x) +

1
q
.

The controlled SDE (4.10) has a drift part which depends on the control only
through ν2

1 (we recall by assumption that ε > 0 is fixed) and our control set
is convex in ν2

1 . Proceeding as in [8], we obtain that there exists a probability
space (Ω,F , {Ft}t≥0,P, BN , ν1) such that for a subsequence qk the process
ξ

t,x,ν1,qk
ε converges weakly to ξt,x,ν1 and so for any fixed q ≥ 1

lim
k→∞

(
E[gq(ξ

t,x,ν1,qk
ε (T ))]

) 1
q

=
(
E[gq(ξt,x,ν1

ε (T ))]
) 1

q

.

Since the Lq norm is non decreasing in q
(
E[gq(ξt,x,ν1

ε (T ))]
) 1

q

≤ lim
q→∞ V ε

q (t, x).

Finally, using the convergence of the Lq norm to the L∞ norm we obtain

V ε(t, x) ≤ lim
q→∞ V ε

q (t, x).

�

In order to prove that V ε is a viscosity solution of approximated Rie-
mannian mean curvature flow we have to recall a further lemma.

Lemma 5.8. ( [2]) Let S ∈ Sym(N) such that the space of the eigenvectors
associated to the maximum eigenvalue is of the dimension one. Then, S →
λmax(S) is C1 in a neighbourhood of S. Moreover,

Dλmax(S)(H) =< Ha, a >,

for any a ∈ R
m the eigenvector associated to λmax(S) and |a| = 1.

The Theorem 5.4 is the consequence of the following theorem.
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Theorem 5.9. Let us consider 0 < ε < 1 fixed. Let g : RN → R be a globally
bounded and Lipschitz function, T > 0 and σε(x) a Riemannian approxima-
tion of the m × N -Hörmander matrix σ(x). Since the comparison principle
holds (see [14]), then the value function V ε(t, x) is the unique continuous vis-
cosity solution of approximated Riemannian mean curvature flow, satisfying
V ε(T, x) = g(x).

Proof. We divide this proof in two steps: we prove that V ε(t, x) is a viscosity
supersolution and V ε,�(t, x) is a viscosity subsolution.

• V ε is a viscosity supersolution: Let us consider φ ∈ C1([0, T ];C2(RN ))
such that V ε − φ has a local minimum at (t, x). Two cases are possible:

if Xεφ(t, x) �= (0, . . . , 0) we have to verify that

−φt(t, x) − Δεφ(t, x) + Δε,∞φ(t, x) ≥ 0

where the equation is given as in (4.3).
If Xεφ(t, x) = (0, . . . , 0) we have to verify that

−φt(t, x) − Δεφ(t, x) + λmax((X 2
ε φ)∗(t, x)) ≥ 0

where (X 2
ε φ)∗ is defined as (4.4).

For any p > 1 there exists a sequence (tp, xp) such that V ε
p − φ has

a local minimum at (tp, xp) and (tp, xp) → (t, x) a p → ∞. In fact, we
can always assume that (t, x) is a strict minimum in some BR(t, x) (to
obtain this it is sufficient to substitute a generic test function φ with the
test function φ + |x − xp|4). Set K = BR

2
(t, x), the sequence of minimum

points (tp, xp) converge to some (t, x) ∈ K. As V ε is the limit of V ε
p

as p → ∞ (see Lemma 5.7) and lower semicontinuous, therefore by a
standard argument yields that (t, x) is a minimum, hence it equals to
(t, x). Then it holds true

−φt(tp, xp) + Hε(xp, (p − 1)V −1
p Dφ(Dφ)T + D2φ)(tp, xp) ≥ 0.

If σε(x)Dφ(t, x) �= 0, we write the Hamiltonian in a more explicit way.
Set

S1 = (p − 1)V −1
p (Xεφ(tp, xp))(Xεφ(tp, xp))T

and

S2 = (X 2
ε φ)∗(tp, xp)

then

Hε(xp, S1, S2) = − Tr(S1 + S2) + λmax(S1 + S2)

= − Tr(S1) − Tr(S2) + λmax(S1 + S2)

= − (p − 1)(V ε
p )−1(tp, xp)|Xεφ(tp, xp)|2

− Δεφ(tp, xp) + λmax(S1 + S2) (5.1)
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since the trace operator is linear and Tr((Xεφ(xp))(Xεφ(xp))T = |Xεφ(xp)|2.
Now we use the Lemma 5.8 in order to expand the λmax. We consider
the matrix

S =
Xεφ(t, x)(Xεφ(t, x))T

V ε(t, x)

for which λmax(S) = |Xεφ(t,x)|2
V ε(t,x) and where a = Xεφ(t,x)

|Xεφ(t,x)| since Xεφ(t, x) �=
0 (see [2] for further remarks). Let us consider

Sp =
(Xεφ(tp, xp))(Xεφ(tp, xp))T

V ε
p (tp, xp)

,

it is immediate to observe that Sp converges to S as p → ∞. By Taylor’s
formula we know that there exists a θp ∈ (0, 1) such that

λmax

(
Sp +

(X 2
ε φ)∗(tp, xp)

p − 1

)
= λmax(Sp)

+
1

p − 1
Dλmax

(
Sp +

θp

p − 1
(X 2

ε φ)∗(tp, xp)
)

(X 2
ε φ)∗(tp, xp).

Using the fact that λmax is C1 in a neighbourhood of S and Sp → S to
get

λmax

(
Sp +

(X 2
ε φ)∗(tp, xp)

p − 1

)
= λmax(Sp)

+
1

p − 1
Dλmax(S)(X 2

ε φ)∗(tp, xp) + o

(
1
p

)

where po(1/p) → 0 when p → ∞. Hence we obtain

λmax

(
Sp +

(X 2
ε φ)∗(tp, xp)

p − 1

)

= λmax(Sp) +
< (X 2

ε φ)∗(tp, xp)Xεφ(t, x),Xεφ(t, x) >

(p − 1)|(Xεφ)(t, x)|2 .

Then, expanding the p-Hamiltonian (5.1) we obtain immediately the in-
equality. If Xεφ(t, x) = 0 then we use the subadditivity of S → λmax(S)
and remark that, since V ε

p is supersolution

0 ≤ − φt + Hε(xp,Dφ, (p − 1)(V ε
p )−1Dφ(Dφ)T + D2φ)

≤ − φt − (p − 1)(V ε
p )−1|Xεφ|2 − Tr((X 2

ε φ)∗)

+ λmax((p − 1)(V ε
p )−1Xεφ(Xεφ)T + (X 2

ε φ)∗)

≤ − φt − (p − 1)(V ε
p )−1|Xεφ|2 − Tr((X 2

ε φ)∗)

+ (p − 1)(V ε
p )−1|Xεφ|2 + λmax(X 2

ε φ)∗

= − φt − Tr((X 2
ε φ)∗) + λmax(X 2

ε φ)∗.

In the end, we can conclude now that V ε is a supersolution.
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• V ∗,ε is the subsolution: As consequence of Lemma 5.6 it is possible to
write V ∗,ε = V �,ε. Let φ ∈ C1([0, T ];C2(RN )) such that V �,ε − φ has
a strict maximum at (t0, x0). Let us consider a sequence of points of
maximum (tp, xp) for V ε

p − φ, then it is possible to find a subsequence
converging to (t, x). Since V ε

p is the solution of
⎧
⎪⎨

⎪⎩

−(Vp)t + Hε(x,DV ε
p , (p − 1)(V ε

p )−1DV ε
p (DV ε

p )T + D2V ε
p ) = 0

x ∈ R
N , t ∈ [0, T ),

V ε
p (T, x) = g(x), x ∈ R

N

(5.2)

then we have that

0 ≤ −φt + Hε(x, (p − 1)(V ε
p )−1Dφ(Dφ)T + D2φ) (5.3)

at the point (tp, xp). We define, for any z > 0, x, d ∈ R
Nand any N × N

symmetric matrix S

Hε
p(x, z, d, S) = − (p − 1)

z
|σε(x)d|2 − Tr(σT

ε (x)Sσε(x) + Aε(x, d))

+ λmax

(
(p − 1)

z
(σε(x)d)(σε(x)d)T + σT

ε (x)Sσε(x) + Aε(x, d)

)

and

(Hε)∗(x, d, S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−Tr(σT
ε (x)Sσε(x) + Aε(x, d))

+
〈

(σT
ε (x)Sσε(x) + Aε(x, d)) σε(x)d

|σε(x)d| ,
σε(x)d

|σε(x)d|

〉
,

|d| �= 0,

−Tr(σT
ε (x)Sσε(x) + Aε(x, d))
+λmax(σT

ε (x)Sσε(x) + Aε(x, d)), |d| = 0

and, as stated in [8], we can observe that

Hε
p(x, z, d, S) ≥ (Hε)∗(x, d, S).

We note that for |d| = 0 it is immediate, for |d| �= 0 we observe that

λmax

(
(p − 1)

z
(σε(x)d)(σε(x)d)T + σT

ε (x)Sσε(x) + Aε(x, p)
)

≥ (p − 1)
z

|σε(x)d|2 + λmax(σT
ε (x)Sσε(x) + Aε(x, p))

and, called Sε = σT
ε (x)Sσε(x) + Aε(x, p)

λmax(Sε) = max
|a|=1

< Sεa, a >

we obtain immediately the inequality. Let us consider ε > 0, set z =
φ−1(tp, xp) > 0, d = Dφ(tp, xp), S = D2φ(tp, xp), then taking the limsup
of (5.3) we obtain for p → ∞ and recalling that, by definition, (Hε)∗ ≥
(Hε)∗ we obtain

0 ≥ φt + (Hε)∗(x,Dφ,D2φ)

at (t, x). The result follows immediately. �
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Now, in order to conclude the proof the main theorem of this section, we
need a further lemma.

Lemma 5.10. Let us consider 0 < ε < 1 fixed. For any x ∈ R
N , V ε,�(T, x) ≤

g(x).

Proof. By contradiction, we assume that it is not true and that there exists a
point x0 such that V ε,�(T, x) ≥ g(x0) + δ, for δ > 0 sufficiently small. We use
as test function

φ(t, x) = α(T − t) + β|x − x0|2 + g(x0) +
δ

2
with α > −Cβ, with C a constant depending just on the data of the problem
and the point x0 and β > 1 sufficiently large. We remark that

φt(t, x) = α, Dφ(t, x) = 2β(x − x0), D2φ(t, x) = 2βId.

We can find a sequence (tk, xk) → (T, x0) and pk → ∞ as k → ∞ such that
V ε

pk
−φ has a positive local maximum at some point (sk, yk), for any k > 1. To

obtain the contradiction we use the fact that V ε
pk

is solution of the Eq. (5.2)
in order to obtain α +Cβ ≤ 0. We observe that the functions V ε

p are bounded
uniformly in p and ε is fixed so, by the growth of |x−x0|, the maximum points
are such that yk ∈ BR(x0) =: K with R independent of k. In the point (sk, yk)
it holds true

0 ≥α − Hε(yk, (p − 1)φ−1Dφ(Dφ)T + D2φ)

≥α − 2βTr(σε(yk)σT
ε (yk) + Aε(yk, yk − x0))

+ 2βλmin(σε(yk)σT
ε (yk) + Aε(yk, yk − x0)).

Then recalling that there is a compact set K such that yk ∈ K for all k, by
continuity, we get 0 ≥ α + Cβ, with

C = − max
x∈K

Tr(σε(x)σT
ε (x)) − max

x∈K
Aε(x, x − x0)

+ min
k∈K

λmin(σε(x)σT
ε (x)) + min

x∈K
λmin(Aε(x, x − x0))

with such estimate we obtain the contradiction, i.e. the thesis. �

We conclude this paper remarking that the solution is, in particular,
continuous since the comparison principle holds true.

Corollary 5.11. Let us consider 0 < ε < 1 fixed. Let g : RN → R be bounded
and Hölder continuous function, T > 0 and σε(x) a N ×N -Hörmander matrix
like in the Theorem 5.4. Since the comparison principle holds (see [14]), then
the value function V ε(t, x) is the unique continuous viscosity solution of the
level set Eq. (4.3), satisfying V ε(T, x) = g(x).

Proof. We have already shown that V ε,∗(t, x) = V ε,#(t, x) is a viscosity sub-
solution while V ε

∗ (t, x) = V ε(t, x) is a viscosity supersolution of (4.3) with
initial condition g. For Lemma 5.10 we know that V ε,#(t, x) ≤ g(x) and
V (T, x) = g(x) so, by comparison principle, it holds V ε,#(t, x) ≤ V ε(t, x).
By definition of lim sup we have V ε,#(t, x) ≥ V ε(t, x) i.e. V ε(t, x) is upper
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semicontinuous. Since V ε(t, x) is also lower semicontinuous we can conclude
immediately stating that V ε(t, x) is continuous. �
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