
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports

Bounded Wang tilings with integer
programming and graph‑based
heuristics
Marek Tyburec 1,2* & Jan Zeman 1

Wang tiles enable efficient pattern compression while avoiding the periodicity in tile distribution
via programmable matching rules. However, most research in Wang tilings has considered tiling the
infinite plane. Motivated by emerging applications in materials engineering, we consider the bounded
version of the tiling problem and offer four integer programming formulations to construct valid or
nearly-valid Wang tilings: a decision, maximum-rectangular tiling, maximum cover, and maximum
adjacency constraint satisfaction formulations. To facilitate a finer control over the resulting tilings,
we extend these programs with tile-based, color-based, packing, and variable-sized periodic
constraints. Furthermore, we introduce an efficient heuristic algorithm for the maximum-cover variant
based on the shortest path search in directed acyclic graphs and derive simple modifications to provide
a 1/2 approximation guarantee for arbitrary tile sets, and a 2/3 guarantee for tile sets with cyclic
transducers. Finally, we benchmark the performance of the integer programming formulations and
of the heuristic algorithms showing that the heuristics provide very competitive outputs in a fraction
of time. As a by-product, we reveal errors in two well-known aperiodic tile sets: the Knuth tile set
contains a tile unusable in two-way infinite tilings, and the Lagae corner tile set is not aperiodic.

Wang tiles, non-rotatable unit squares with colored edges, constitute a formalism introduced by Wang1 to visual-
ize the ∀∃∀ decidability problem of predicate calculus, asking for a general algorithm that decides emptiness of
the satisfiable set of all logical formulas of the form “for all x there is a y such that for all z...” followed by a logical
combination of predicates without quantifiers. Formulating an equivalent domino problem, Wang considered
an infinite number of copies of an arbitrary set of Wang tiles and investigated whether there exists a simply-
connected valid tiling of the infinite plane. Moreover, he conjectured2 that only the tile sets that form a torus, i.e.,
cover a periodic simply-connected rectangular domain with identical coloring of the opposite edges, generate
infinite valid tilings. Berger3 disproved the conjecture by finding a tile set that covers the infinite plane aperiodi-
cally by exploiting Kahr’s reduction of the Turing halting problem4,5 to the origin-constrained domino problem6.
Hence, the domino problem was proven to be undecidable and, consequently, no general finite algorithm for
producing infinite valid tilings exists.

Far less attention has been paid to the finite version of the domino problem, bounded tiling, i.e., searching for
a fixed-sized valid tiling generated by an arbitrary tile set. In contrast to the infinite variant, the bounded tiling
is NP-complete in general, and thus decidable, e.g.,7 or8, Theorem 7.2.1], so that finite-time algorithms can
be developed. However, most of the available approaches exploit specific properties of particular tile sets9–12 or
address the tile packing problem for edge-matching puzzles, in which all tiles from the set are placed exactly
once13–16. Another closely related problem emerges in tiling with polyominoes17.

In this work, we investigate the bounded Wang tiling problem in its full generality. To this goal, we first survey
the most significant aperiodic tile sets in “Aperiodic tile sets” section and applications of Wang tiles in “Appli-
cations of Wang tiles” section. In “Wang tiling generation algorithms” section, we list available algorithms for
generation of Wang tilings. Finally, our aims and contributions appear summarized in “Aims and novelty” section.

Aperiodic tile sets.  The originally unexpected property of Wang tile sets—aperiodicity—resulted in a long-
term competition among scientists in mathematical logic, computer science, discrete mathematics, and even rec-
reational mathematicians to find the aperiodic tile set of the minimum cardinality25, Chapter 11]. Starting from

OPEN

1Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7,
16000 Prague 6, Czech Republic. 2Department of Decision‑Making Theory, Institute of Information Theory and
Automation, Czech Academy of Sciences, Pod Vodárenskou věží 4, 18200 Prague 8, Czech Republic. *email:
marek.tyburec@cvut.cz

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-31786-3&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

the Berger tile set containing 20, 426 tiles in 19643,18, it took almost 50 years until the two sets of 11 tiles were
found and proved to be minimal33; see Fig. 1 for a graphical overview of the selected historical developments.

In 1966, Läuchli sent to Wang an aperiodic set of 40 tiles over 16 colors, but it remained unpublished until
197519. Meanwhile, unaware of the Läuchli’s result, Knuth22 simplified Berger’s set to 92 tiles over 26 colors;
and Robinson developed sets of 104 and 52 tiles over 8 colors in 196721, of 56 tiles over 12 colors in 197124, and
anticipated an existence of a set of 35 tiles24.

In 1973, Penrose developed a new approach based on kite and dart tiling, leading to a set of 34 tiles25. Rob-
inson, being in contact with Penrose, modified Penrose’s approach to reach a reduced set of 32 tiles over 16
colors25. Using the same technique together with Penrose rhombs tiling, Grünbaum and Shephard25 obtained
a set of 24 tiles over 9 colors in 1987.

Another two tile sets were discovered by Ammann. In 1978, he used the so-called Ammann bars to reach
16 tiles over 6 colors26. Building on the Ammann’s A2 tiling25, Robinson obtained a set of 24 tiles over 24 colors
in 197725.

Subsequent size reduction of the smallest aperiodic set occurred in 1996, when Kari28 developed a new
method based on Mealy machines multiplying Beatty sequences and presented a set of 14 tiles over 6 colors.
Čulík29, using the same approach, reduced the set even further to 13 tiles over 5 colors.

The search for the minimal aperiodic set was concluded by Jeandel and Rao33, who used an enumeration
approach to find aperiodic sets of 11 tiles over 4 and 5 colors and proved non-existence of an aperiodic set either
containing 10 or fewer tiles or labeled by less than 4 colors.

In addition to the original Wang tiles, in 2006, Lagae and Dutré34 described a subset of the Wang tiles, the corner
tiles (we refer to the Appendix section of the supplementary material for their relation to edge-based Wang tiles),
with the adjacency rules stored in the colored corners instead of the edges. In the same year, they constructed
multiple aperiodic sets of corner tiles35, out of which the set of 44 corner tiles over 6 colors was the smallest one.
The set was further simplified by Nurmi36 to 30 corner tiles over 6 colors and both were claimed to be aperiodic.

Applications of Wang tiles.  Thanks to the property of particular tile sets to generate aperiodic tilings,
Wang tiles gained interest among several disciplines. Building on the original purpose of Wang tiles, proofs in
the first-order logic2, they were also used in cellular automata theory37, topology, group theory38, and symbolic
dynamical systems39.

In computer graphics, Stam40 adopted Wang tiles to generate aperiodic textures by assigning a pattern to
each tile and assembled seamless continuous textures through valid tilings. After Cohen et al.9 recognized that
stochastic nonperiodic tilings are easier to handle computationally and provide larger degrees of freedom, the
Wang-tile-based approach to generating seamless textures became popular, also including the generation of point
patterns and volumes41 with predefined statistical properties9,42.

In science, Wang tiles and other related aperiodic tilings served as the key tool for understanding the 5-fold
symmetry of electron diffraction patterns of quasicrystals27,43. Another application at the nanoscale involved

1964 20,426 and 104 Wang tiles by Berger3,18

1966 40 Wang tiles over 16 colors by Läuchli19

1967 104 and 52 Wang tiles over 8 colors by Robinson20,21

1968 92 Wang tiles over 26 colors by Knuth22 (reducible to 86 tiles23)

1971 56 Wang tiles over 12 colors and 35 tiles by Robinson24

1973 34 Wang tiles by Penrose25

1973 32 Wang tiles over 16 colors by Robinson25

1977 24 Wang tiles over 24 colors by Robinson25

1978 16 Wang tiles over 6 colors by Ammann26

1987 24 Wang tiles over 9 colors by Grünbaum and Shephard25

1995 64 Wang tiles by Senechal27

1996 14 Wang tiles over 6 colors by Kari28

1996 13 Wang tiles over 5 colors by Čulík29

1999 696 Wang tiles by Kari and Papasoglu30 (deterministic tile set)

2008 104 Wang tiles by Ollinger12

2018 19 Wang tiles over 16 colors by Labbé31 (self-similar tile set)

2021 16 Wang tiles over 8 colors by Labbé and Lepšová32 (minimal self-similar tile set)

2021 11 Wang tiles over 5 and 4 colors by Jeandel and Rao33

Figure 1.   List of aperiodic Wang tile sets.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

molecular DNA-based realization of Wang tiles, introduced by Winfree et al.44, which provided a self-assembly
of biological nanostructures into aperiodic patterns. The self-assembly process of DNA Wang tiles also powered
custom DNA-based computations45, fueled by Turing completeness of Wang tiles3,19.

Beyond the nanoscale, Wang tiles have also been used for efficient compression46 and reconstruction47 of
microstructures, generalizing the traditional Periodic-Unit-Cell homogenization-based framework to the non-
periodic setting48. Consequently, numerical analyses of random heterogeneous materials can be accelerated
by exploiting the multiple tile occurrences in the physical domain49,50. For an inverse problem of designing
modular, nonperiodic structures or materials, we have developed a bilevel approach to optimize truss modules
based on the corner Wang tiling formalism51 and a clustering-based method for designing modular structures
and mechanisms with continuum topology optimization52. In these works, the colorings of the Wang tile edges
encode the information how modules can be assembled to maintain a mechanically-compatible design. Finally,
Jílek et al.53,54 developed a centimeter-scale self-assembly procedure building on the Wang tiling formalism.

Wang tiling generation algorithms.  To the best of our knowledge, no general approaches to solving the
bounded tiling problem have been reported in the literature; the only available results are specific to single fami-
lies of tile sets9–12, or consider infinite thin strips33. In what follows, we describe the gist of three tiling algorithms:
substitution-based, stochastic, and transducer-based.

Substitution‑based tiling algorithm.  Given a tile set T , substitution is a map S : T �→ T that assigns a tiling Tk
to each tile k ∈ T ; we refer the reader to “Notation and preliminaries” section for the definitions. Consequently,
arbitrary-sized tilings follow from a placed tile k and a recursively applied substitution rule12. Hence, the tiling
“grows” iteratively. Clearly, such a procedure has a low complexity, but only very specific tile sets allow for such
substitution rule that generates valid tilings.

Stochastic tiling algorithms.  In computer graphics, Wang tiles have mostly been used for generating visually
appealing yet compressed textures. For this, it is essential to generate these nonperiodic patterns quickly, which
is best achieved with stochastic tile sets—usually containing all combinations of edge labels for a given number
of colors. For example, in the stochastic tiling algorithm9, the tiling is generated row-wise, such that the neighbor
of any tile that has already been placed can always be selected from at least two tiles at random. This approach
was further extended towards the hash-based direct stochastic tiling algorithm11. Note that stochastic algorithms
enable straightforward enforcement of several tile- or edge-based constraints.

Transducer‑based tiling algorithm.  The transducer-based tiling algorithm33 builds on the fact that the 1D dom-
ino problem is decidable and can be solved in a polynomial time because the bi-infinite path is formed by an
arbitrary cycle in transducer graphs, see “Notation and preliminaries” section for clarification. To generate valid
tilings of multiple rows, the product of several transducers must be computed. Hence, we must enumerate all
feasible valid tilings for a requested height and unit width, and then find a path of the given length in the trans-
ducer graph of the just-formed tile set. Obviously, this approach works well for tiling thin strips; however, it is
impractical for larger nearly-square domains.

Aims and novelty.  In this contribution, we consider the bounded Wang tiling in its general form, thereby
allowing arbitrary tile sets and control over the resulting tilings. As follows from the above state-of-the-art sur-
vey, no such method has been published yet.

We believe that development of such algorithms is important from multiple reasons. First, we have
already investigated modeling and optimization of non-periodic and stochastic microstructures with Wang
tilings46,47,49–51,55. We hope that the extension of our methods to more general tile sets would enable characterizing
a broader class of non-periodic conventional materials and meta-materials48,56–58 and thus also improve upon the
performance of optimized designs. Due to their Turing completeness3,19, Wang tiles might also potentially bridge
the fields of meta-materials56 and mechanical computing59. In this direction, generation of bounded tiling repre-
sents a design of particular finite automaton from the (material) states defined by the design of individual tiles.

Apart from emerging applications in materials engineering, we believe that developing a unified methodology
is of independent interest, e.g., for the verification of the results available in the literature. Here we justify this
claim by finding two errors in well-established aperiodic tile sets.

To do this, we first provide the necessary definitions in “Notation and preliminaries” section to make the
manuscript self-contained. The subsequent part is devoted to four integer programming formulations for gen-
eration of valid tilings: decision variant in “Rectangular valid tiling” section, maximum rectangular valid tiling
in “Maximum rectangular valid tiling” section, maximum-cover in “Maximum cover” section, and maximum
adjacency constraint satisfaction in “Maximum adjacency constraints satisfaction” section. To allow for a finer
control over the resulting tilings, we also include simple extensions to prescribe tile- and color-based boundary
conditions, periodic constraints, and the tile-packing constraint in “Extensions” section.

Due to the complexity of the proposed formulations, in “Heuristic algorithm for the maximum cover tiling
problem” section we propose a heuristic graph-based algorithm to tackle the maximum-cover optimization vari-
ant from “Maximum cover” section. The developed algorithm relies on solutions to shortest path problems in
directed acyclic graphs, hence possesses a low asymptotic complexity. Further, we show that a slight modification
maintains an approximation ratio of 2/3 for the tile sets whose transducer graphs are cyclic.

“Results” section collects results from the computational assessment of the integer programming formula-
tions (“Integer programming formulations” section) and heuristics (“Heuristic algorithms” section), and on

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

the benchmarking of the periodic tile packing formulation against the algorithm of Lagae and Dutré14 (“Peri-
odic tile packing problem” section). We close the section with two surprising observations found with integer
programming for two well-known aperiodic tile sets: the Knuth22 tile set of 92 tiles contains a tile unusable in
infinite simply-connected valid tilings, “Unusable tile in the Knuth tile set” section, and the Lagae et al.35 tile set
of 44 corner tiles is not aperiodic, “Periodicity of the Lagae corner tile set” section. We summarize our results
in “Conclusions” section.

Notation and preliminaries
Considering a finite set of color codes C = {1, 2, . . . , nc} ⊂ N , the (Wang) tile k is a quadruple of the color codes
(cnk , c

w
k , c

s
k , c

e
k) , with cnk , c

w
k , c

s
k , and cek ∈ C standing for the color codes of the north, west, south, and east edge of

the tile k, respectively. Tiles can, therefore, be represented graphically as non-rotatable squares shown in Fig. 2a.
Without loss of generality, we further consider these squares to be of the unit size.

A tile set T represents a finite collection of nt tiles, see Fig. 2b. When ∀(cn, cw, cs, ce) ∈ C
4 : (cn, cw, cs, ce) ∈ T ,

we call the tile set complete.
Using the notation •̃ = • ∩ Z

2 to denote an intersection of the set • with the integer lattice points, tiling TA
of a bounded domain A ∈ R

2 is an arrangement of copies of the tiles from T such that the tiles are placed at Ã ,
and cover the entire domain A , cf. Fig. 3. More formally, tiling is a mapping TA : Ã → T assigning a single tile
k ∈ T to every coordinate (i, j) ∈ Ã . Consequently, we call tilings TA simply connected iff the domain A is so.

The tiling TA is rectangular if ∀i ∈ H,H = {1, . . . , nh}, and ∀j ∈ W,W = {1, . . . , nw} , it holds that
(i, j) ∈ Ã . Here, H and W are the sets of the height and width coordinates.

A valid tiling (Wang tiling) of A , denoted by TA

valid
 , is a tiling with equal color codes at the shared edges

between all pairs of adjoining tiles. Therefore, the mapping TA

valid
: Ã → T satisfies, in addition to the require-

ments for TA , the additional constraints

 provided that the axes are oriented accordingly to Fig. 3. If such TA

valid
 exists, we say that the domain A admits

a valid T-tiling, or that it is tileable by T.
Consider that B ⊆ A and Bmax rect ⊆ A are simply connected, rectangular, and T-tileable.

Then, the maximum rectangular valid tiling TA

v,max rect is a valid tiling of the domain Bmax rect , where
{Bmax rect ⊆ A , ∀B ⊆ A : |B̃max rect| ≥ |B̃ |} . Here, the notation | • | denotes cardinality of the set •.

The maximum cover TA

v,max cov is a valid tiling of Bmax cov , where B and Bmax cov are arbitrary T-tileable
subdomains in A and {Bmax cov ⊆ A , ∀B ⊆ A : |B̃max cov| ≥ |B̃ |}.

A rectangular valid tiling is said to be periodic, if the color codes at the opposite sides of the rectangle match.
If the valid tiling is not periodic, but the considered tile set allows for at least one periodic rectangular tiling, we
call it nonperiodic. Finally, if no such periodic pattern exists and the tile set still allows for a valid tiling of the

(1a)cs
T
A

valid
(i,j)

= cn
T
A

valid
(i+1,j)

, ∀(i, j) ∈ Ã : (i + 1, j) ∈ Ã ,

(1b)ce
T
A

valid
(i,j)

= cw
T
A

valid
(i,j+1)

, ∀(i, j) ∈ Ã : (i, j + 1) ∈ Ã ,

(cnk ,c
w
k ,c

s
k,c

e
k) ⇔

cnk
cwk

csk

cek

(a)

T =

{
cn1

cw1
cs1

ce1 ,
cn2

cw2
cs2

ce2 , . . . ,
cnnt

cwnt
csnt

cent

}

(b)

Figure 2.   Graphical representation of (a) a Wang tile k, and of (b) a tile set T.

W

H

1 2 3 4 nw
1

2

3

nh

cnp
cwp

csp

cep

cnq
cwq

csq

ceq

cnr
cwr

csr

cer

Figure 3.   Color matching among tiles p, q, and r ∈ T.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

infinite plane, it is referred to as aperiodic. Similarly, the tile set T is periodic if it permits periodic valid tilings;
and aperiodic if all feasible valid tilings are aperiodic.

Transducer graph28 Gt,h of the tile set T is a directed (multi-)graph representation of a Mealy machine without
any initial nor terminal state. It consists of |C | states (graph vertices) and |T | transitions (directed edges) Eh ,
where

For the dual transducer graph Gt,v , composed of the dual Wang tiles31 reflecting T along the major diagonal of
the tiles, the edge set is defined as

To illustrate the construction, we include a visual example in Fig. 4.

Integer programming formulations
In this section, we introduce four integer programming formulations for the generation of valid tilings. The first
one, in “Rectangular valid tiling” section, develops a decision variant. In the later sections, we investigate the
maximum rectangular tiling (“Maximum rectangular valid tiling” section), maximum cover (“Maximum cover”
section), and the maximum adjacency constraints satisfaction (“Maximum adjacency constraints satisfaction”
section). Finally, “Extensions” section proposes several extensions to facilitate finer control over the resulting
tilings.

Rectangular valid tiling.  Let us now consider the fundamental problem of finding TA

v or proving it does
not exist. From now on, we restrict A to be rectangular to simplify notation. However, the presented approach
also extends to the general case.

To achieve this, we introduce ∀(i, j, k) ∈ H ×W×T a binary decision variable xi,j,k ∈ {0, 1} denoting the
placement of the tile k at the (i, j) coordinate such that

Consequently, mapping TA (i, j) is expressed as

together with the requirement that every (i, j) coordinate is occupied by one tile,

Similarly, the color codes of a tile placed at (i, j) are expressed using the binary variables as

(2)Eh :=
⋃

k∈T

(
cwk

csk |c
n
k

−−→ cek

)
.

(3)Ev :=
⋃

k∈T

(
cnk

cek |c
w
k

−−−→ csk

)
.

(4)xi,j,k =

{
1 iff the tile k lies at coordinate (i, j),
0 otherwise.

(5)T
A (i, j) =

∑

k∈T

kxi,j,k ,

(6)
∑

k∈T

xi,j,k = 1, ∀(i, j) ∈ H ×W.

(7a)cn
TA (i,j)

=
∑

k∈T

cnk xi,j,k ,

(7b)cw
TA (i,j)

=
∑

k∈T

cwk xi,j,k ,

(7c)cs
TA (i,j)

=
∑

k∈T

cskxi,j,k ,

T =

{
0

1
1

0 ,
0

1
0

1 ,
1

0
0

1

}

(a)

0 1

0|1

1|0

0|0

(b)

0 1

0|1

1|0

1|1

(c)

Figure 4.   (b) Transducer and (c) dual transducer graphs of the tile set (a).

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

 Inserting (7) into (1a) and (1b) leads to the horizontal and vertical adjacency constraints expressed in terms of
the decision variables, as

 Combining (4), (5), (6), and (8) then provides us with a complete binary linear programming representation
of valid tiling TA

valid
.

For computational reasons, it proved to be advantageous to organize the constraints according to the color
codes:

 where, in the Iverson notation60,
∑

k∈T xi,j,k
[
csk = ℓ

]
 expresses that xi,j,k is added to the sum if and only if csk = ℓ.

The constraint (9a) requires that the number of tiles at (i, j) with the south edge colored by ℓ equals to the
number of tiles at (i + 1, j) with the north edge marked by the same ℓ , for all ℓ ∈ C . Because of (6), there are either
no tiles with the shared edge colored by ℓ , or there is a single tile at each of the coordinates with its common
edge labeled by ℓ . Analogously to the vertical adjacency constraint, the horizontal constraint (9b) also enforces
equality among the number of tiles at (i, j) with the east edge colored by ℓ and the number of tiles at (i, j + 1)
having the west edge colored by identical ℓ.

Finally, combining (4), (6), and (9), while noticing that the constraints (6) naturally propagate with the adja-
cency constraints from the domain boundaries (compare (10d, 10e with (6)), leads to the binary programming
formulation

 that provides a complete representation of the bounded tiling problem, i.e., all valid tilings solve the integer pro-
gram, and conversely, all feasible solutions to (10) are valid tilings. Moreover, observe that the problem consists
of two totally unimodular constraints if considered independently: (10c, 10e) representing row tilings, and (10b,
10d) being column tilings. When considered simultaneously, the resulting problem becomes NP-complete7,8.

Maximum rectangular valid tiling.  When a solution to (10) cannot be found in an acceptable time
period or when no such solution exists, one can resort to relaxing the requirement of a valid tiling of A and
search for a valid tiling of the largest rectangular subdomain.

Without loss of generality, let us assume that the maximum rectangular valid tiling always contains an anchor
tile placed at (1, 1), i.e.,

On the other hand, all the other coordinates may contain a tile or be empty, thus

(7d)ce
TA (i,j)

=
∑

k∈T

cekxi,j,k .

(8a)
∑

k∈T

cskxi,j,k −
∑

k∈T

cnk xi+1,j,k = 0, ∀(i, j) ∈ H \ {nh} ×W,

(8b)
∑

k∈T

cekxi,j,k −
∑

k∈T

cwk xi,j+1,k = 0, ∀(i, j) ∈ H ×W \ {nw}.

(9a)
∑

k∈T

xi,j,k[c
s
k = ℓ] −

∑

k∈T

xi+1,j,k[c
n
k = ℓ] = 0, ∀(i, j, ℓ) ∈ H \ {nh} ×W× C ,

(9b)
∑

k∈T

xi,j,k[c
e
k = ℓ] −

∑

k∈T

xi,j+1,k[c
w
k = ℓ] = 0, ∀(i, j, ℓ) ∈ H ×W \ {nw} × C ,

(10a)find x

(10b)s.t.
∑

k∈T

xi,j,k[c
s
k = ℓ] −

∑

k∈T

xi+1,j,k[c
n
k = ℓ] = 0, ∀(i, j, ℓ) ∈ H \ {nh} ×W× C ,

(10c)
∑

k∈T

xi,j,k[c
e
k = ℓ] −

∑

k∈T

xi,j+1,k[c
w
k = ℓ] = 0, ∀(i, j, ℓ) ∈ H ×W \ {nw} × C ,

(10d)
∑

k∈T

xi,j,k = 1, ∀(i, j) ∈ {1, nh} ×W,

(10e)
∑

k∈T

xi,j,k = 1, ∀(i, j) ∈ H × {1, nw},

(10f)xi,j,k ∈ {0, 1}, ∀(i, j, k) ∈ H ×W×T ,

(11)
∑

k∈T

x1,1,k = 1.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Let us now pick two vertically adjacent coordinates (i, j) and (i + 1, j) . If there is a tile q placed at (i + 1, j) ,
another tile p has to be placed at (i, j), as, otherwise, there is no simply-connected rectangular tiling contain-
ing both the tiles at (1, 1) and at (i + 1, j) . Validity of the tiling also requires identical color codes at the shared
edges. On the other hand, if no tile is placed at (i + 1, j) , a coordinate (i, j) may be either occupied or empty. The
allowed and forbidden combinations are shown in Fig. 5a–d. Formally stated in terms of the decision variables,
these considerations are expressed as

Similar arguments hold also for the coordinates (i, j) and (i, j + 1) , resulting in the constraints

The allowed and forbidden combinations for this case are shown in Fig. 5e–h.
The developed constraints (11)–(14) enforce simple connectedness; however, they do not guarantee that the

resultant tiling will be rectangular. For any 4 adjacent tiles p, q, r, and s placed at (i, j), (i + 1, j) , (i, j + 1) , and
(i + 1, j + 1) , respectively, these constraints allow for the assemblies shown in Fig. 6. Because the combination
6b cannot appear in any simply-connected rectangular tiling, we must exclude it from the feasible set,

Finally, combining Eqs. (4), (11), (12), (13), (14), and (15) together with an objective function to maximize
|B̃max rect| provides us with the binary maximum rectangular valid tiling optimization program

(12)
∑

k∈T

xi,j,k ≤ 1, ∀(i, j) ∈ Ã \ (1, 1).

(13)
∑

k∈T

xi,j,k[c
s
k = ℓ] −

∑

k∈T

xi+1,j,k[c
n
k = ℓ] ≥ 0, ∀(i, j, ℓ) ∈ H \ {nh} ×W× C .

(14)
∑

k∈T

xi,j,k[c
e
k = ℓ] −

∑

k∈T

xi,j+1,k[c
w
k = ℓ] ≥ 0, ∀(i, j, ℓ) ∈ H ×W \ {nw} × C .

(15)
∑

k∈T

xi+1,j,k +
∑

k∈T

xi,j+1,k −
∑

k∈T

xi+1,j+1,k ≤ 1, ∀(i, j) ∈ H \ {nh} ×W \ {nw}.

(16a)max
x

∑

i∈H

∑

j∈W

∑

k∈T

xi,j,k

(16b)s.t.
∑

k∈T

xi,j,k[c
s
k = ℓ] −

∑

k∈T

xi+1,j,k[c
n
k = ℓ] ≥ 0, ∀(i, j, ℓ) ∈ H \ {nh} ×W× C ,

(16c)
∑

k∈T

xi,j,k[c
e
k = ℓ] −

∑

k∈T

xi,j+1,k[c
w
k = ℓ] ≥ 0, ∀(i, j, ℓ) ∈ H ×W \ {nw} × C ,

(16d)
∑

k∈T

xi+1,j,k +
∑

k∈T

xi,j+1,k −
∑

k∈T

xi+1,j+1,k ≤ 1, ∀(i, j) ∈ H \ {nh} ×W \ {nw},

j

i

i+1

cnp
cwp

csp

cep

cnq
cwq

csq

ceq

(a)

j

i

i+1

cnp
cwp

csp

cep

(b)

j

i

i+1

(c)

j

i

i+1
cnq

cwq
csq

ceq

(d)

j j+1

i
cnp

cwp
csp

cep

cnr
cwr

csr

cer

(e)

j j+1

i
cnp

cwp
csp

cep

(f)

j j+1

i

(g)

j j+1

i
cnr

cwr
csr

cer

(h)

Figure 5.   Admissible tile placements (a)–(c) and (e)–(g), and forbidden placements (d) and (h) in the
maximum rectangular valid tiling formulation.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

 In contrast to (10), a feasible solution to the optimization program (16) can be found in a polynomial time, e.g.,
by tiling the first row or column of the 1D bounded tiling problem. However, finding an optimal solution to
(16) is NP-hard, because the optimization problem (16) is reducible to the decision version (10) by fixing the
value of the objective function to |Ã | , which enforces equalities in (16b), (16c), and (16f), making the constraint
(16d) redundant as a consequence.

Maximum cover.  Another option for avoiding the infeasibility of (10) rests in neglecting the requirement of
(simple) connectedness, hence allowing for a placement of empty tiles (voids). In this section, we therefore search
the maximum cover of A , or equivalently a valid tiling of the (possibly disconnected) domain Bmax cov ⊆ A .
For the maximum cover formulation, we assume that any two adjacent tiles satisfy the edge-matching con-
straints of valid tilings, but these are also satisfied by any of the tile-void, void-tile, or void-void combination,
where

∑
k∈T xi,j,k = 0 for a void located at (i, j) ∈ Ã.

Thus, each coordinate (i, j) is occupied either by a tile or a void, implying that

and the vertical and horizontal edge matching conditions become

Finally, the combination of Eqs. (17), (18a), (18b) with the objective function to maximize |B̃max cov | leads
to the binary optimization problem

(16e)
∑

k∈T

x1,1,k = 1,

(16f)
∑

k∈T

xi,j,k ≤ 1, ∀(i, j) ∈ Ã \ (1, 1),

(16g)xi,j,k ∈ {0, 1}, ∀(i, j, k) ∈ H ×W×T .

(17)
∑

k∈T

xi,j,k ≤ 1, ∀(i, j) ∈ H ×W,

(18a)
∑

k∈T

xi,j,k[c
e
k = ℓ] +

∑

k∈T

xi,j+1,k[c
w
k �= ℓ] ≤ 1, ∀(i, j, ℓ) ∈ H ×W \ {nw} × C ,

(18b)
∑

k∈T

xi,j,k[c
s
k = ℓ] +

∑

k∈T

xi+1,j,k[c
n
k �= ℓ] ≤ 1, ∀(i, j, ℓ) ∈ H \ {nh} ×W× C .

(19a)max
x

∑

i∈H

∑

j∈W

∑

k∈T

xi,j,k

j j+1

i

i+1

cnp
cwp

csp

cep

cnq
cwq

csq

ceq

cnr
cwr

csr

cer

cns
cws

css

ces

(a)

j j+1

i

i+1

cnp
cwp

csp

cep

cnq
cwq

csq

ceq

cnr
cwr

csr

cer

(b)

j j+1

i

i+1

cnp
cwp

csp

cep

cnq
cwq

csq

ceq

(c)

j j+1

i

i+1

cnp
cwp

csp

cep

cnr
cwr

csr

cer

(d)

j j+1

i

i+1

cnp
cwp

csp

cep

(e)

j j+1

i

i+1

(f)

Figure 6.   Six possible placements of tiles p, q, r, and s. While the combinations (a) and (c)–(f) can appear in
rectangular tilings, the combination (b) cannot.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

The program (19) is trivially NP-hard: Requiring the objective function (19a) to be at least |Ã | implies that

i.e., all positions are occupied by a Wang tile. Moreover, (19b) and (19c) require all adjacent tiles to share the
color codes at their common edges. Consequently, the resulting tiling is void-free and valid, and solves the NP

-complete bounded tiling problem.

Maximum adjacency constraints satisfaction.  Because the decision problem (10) also constitutes
a specific instance of the constraint satisfaction problem (CSP), another optimization variant comes from the
formulation of the max-CSP problem, maximizing the number of satisfied clauses—color matches in our case.

Therefore, for each vertical and horizontal edge we introduce a new variable hvi,j ∈ R≥0 , where
(i, j) ∈ H ×W \ nw , and hhi,j ∈ R≥0 , with (i, j) ∈ H \ nh ×W , respectively. The adjacency constraints (9) are
then relaxed by considering

 instead. Indeed, if hhi,j = 0 , the edge-matching requirement of the neighboring tiles at (i, j) and (i + 1, j) is satis-
fied; and it is violated otherwise. Similarly, hvi,j = 0 guarantees color matches among the tiles at (i, j) and (i, j + 1).

Finally, rewriting absolute values in (21) by two linear inequalities while supplying an objective function to
maximize the number of color matches yields the binary optimization problem

 that is NP-hard due to the reduction to (10) after setting all hvi,j and hhi,j to zeros. A feasible solution can
be found in a polynomial time by finding valid row/column tilings for each row/column, so that either term ∑

i∈H

∑
j∈W\nw

hvi,j or
∑

i∈H\nh

∑
j∈W hhi,j equals zero.

(19b)s.t.
∑

k∈T

xi,j,k[c
e
k = ℓ] +

∑

k∈T

xi,j+1,k[c
w
k �= ℓ] ≤ 1, ∀(i, j, ℓ) ∈ H ×W \ {nw} × C ,

(19c)
∑

k∈T

xi,j,k[c
s
k = ℓ] +

∑

k∈T

xi+1,j,k[c
n
k �= ℓ] ≤ 1, ∀(i, j, ℓ) ∈ H \ {nh} ×W× C ,

(19d)
∑

k∈T

xi,j,k ≤ 1, ∀(i, j) ∈ H ×W,

(19e)xi,j,k ∈ {0, 1}, ∀(i, j, k) ∈ H ×W×T .

(20)
∑

k∈T

xi,j,k = 1, ∀(i, j) ∈ H ×W,

(21a)

∣∣∣∣∣∣

∑

k∈T

xi,j,k[c
s
k = ℓ] −

∑

k∈T

xi+1,j,k[c
n
k = ℓ]

∣∣∣∣∣∣
≤ hhi,j , ∀(i, j, ℓ) ∈ H \ {nh} ×W× C ,

(21b)

∣∣∣∣∣∣

∑

k∈T

xi,j,k[c
e
k = ℓ] −

∑

k∈T

xi,j+1,k[c
w
k = ℓ]

∣∣∣∣∣∣
≤ hvi,j , ∀(i, j, ℓ) ∈ H ×W \ {nw} × C

(22a)max
x

∑

i∈H

∑

j∈W\nw

(
1− hvi,j

)
+

∑

i∈H\nh

∑

j∈W

(
1− hhi,j

)

(22b)s.t.
∑

k∈T

xi,j,k[c
s
k = ℓ] −

∑

k∈T

xi+1,j,k[c
n
k = ℓ] ≤ hhi,j , ∀(i, j, ℓ) ∈ H \ {nh} ×W× C ,

(22c)
∑

k∈T

xi+1,j,k[c
n
k = ℓ] −

∑

k∈T

xi,j,k[c
s
k = ℓ] ≤ hhi,j , ∀(i, j, ℓ) ∈ H \ {nh} ×W× C ,

(22d)
∑

k∈T

xi,j,k[c
e
k = ℓ] −

∑

k∈T

xi,j+1,k[c
w
k = ℓ] ≤ hvi,j , ∀(i, j, ℓ) ∈ H ×W \ {nw} × C ,

(22e)
∑

k∈T

xi,j+1,k[c
w
k = ℓ] −

∑

k∈T

xi,j,k[c
e
k = ℓ] ≤ hvi,j , ∀(i, j, ℓ) ∈ H ×W \ {nw} × C ,

(22f)
∑

k∈T

xi,j,k = 1, ∀(i, j) ∈ H ×W,

(22g)xi,j,k ∈ {0, 1}, ∀(i, j, k) ∈ H ×W×T ,

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Extensions.  Up to now, we have focused solely on the (re)formulations of the bounded tiling problem,
searching for arbitrary valid tilings. However, some potential applications may require finer control over the
resulting tilings. Thus, in this section, we state some simple extensions to enforce tile- and color-based bound-
ary conditions to solve the tile packing problem14 and to enforce (variable-sized) periodic boundary conditions.

Tile‑based boundary conditions.  At first, we consider boundary conditions in the form of prescribed tiles. As
the simplest one, we enforce the placement of a tile k at (i, j):

Similarly, we may prevent tile k from being placed there:

Placement of an identical tile at the coordinates (i, j) ∈ Ã and (p, q) ∈ Ã requires

Conversely, different tiles at these coordinates are secured with

Color‑based boundary conditions.  In addition to the tile-based constraints, we may also enforce specific color
codes for individual edges. To do this, the color of the north edge at (i, j) ∈ Ã is set to ℓ by

On the contrary, we may prevent this color by requiring

Further, the same color codes at the north edge of (i, j) ∈ Ã and at the west edge of (p, q) ∈ Ã are established with

and a different color with

Periodic tiling.  In the domino problem, Wang1 investigated the existence of tile sets admitting infinite aperiodic
tilings. Here, we consider a similar setting for the finite domain A : examining periodicity through periodic
color-based boundary conditions.

We begin with requiring equal coloring at the fixed opposite domain boundaries,

 When adding (31) to the decision problem (10), we thus ask for an existence of a fixed-sized periodic Wang tiling.
In a natural generalization, we ask for an existence of finite-sized periodic Wang tilings, thus relying on the

maximum rectangular valid tiling formulation (16). Naturally, the domain size is not known in this case. There-
fore, we must consider ∀(i, j, ℓ) ∈ H ×W× C constraints of the form

 Here, (32a) prevents a color mismatch of the north edge of (1, j) ∈ Ã and the south edge of (i, j) ∈ A iff there
is no tile placed at (i, j + 1) ∈ Ã . Similarly, in the case of (32b), we prevent a color mismatch of the west edge at
(i, 1) ∈ Ã and the east edge at (i, j) ∈ Ã iff the position (i + 1, j) ∈ Ã is empty.

Finally, when adding the constraints (32) to (16, we usually search for the smallest periodic pattern rather
than the largest,

(23)xi,j,k = 1, (i, j, k) ∈ H ×W×T .

(24)xi,j,k = 0, (i, j, k) ∈ H ×W×T .

(25)xi,j,k − xp,q,k = 0, {i, p} ∈ H, {j, q} ∈ W,∀k ∈ T .

(26)xi,j,k + xp,q,k ≤ 1, {i, p} ∈ H, {j, q} ∈ W, ∀k ∈ T .

(27)
∑

k∈T

xi,j,k[c
n
k = ℓ] = 1, (i, j, ℓ) ∈ H ×W× C .

(28)
∑

k∈T

xi,j,k[c
n
k = ℓ] = 0, (i, j, ℓ) ∈ H ×W× C .

(29)
∑

k∈T

xi,j,k[c
n
k = ℓ] −

∑

k∈T

xp,q,k[c
w
k = ℓ] = 0, {i, p} ∈ H, {j, q} ∈ W, ∀ℓ ∈ C ,

(30)
∑

k∈T

xi,j,k[c
n
k = ℓ] +

∑

k∈T

xp,q,k[c
w
k = ℓ] ≤ 1, {i, p} ∈ H, {j, q} ∈ W, ∀ℓ ∈ C .

(31a)
∑

k∈T

x1,j,k[nk = ℓ] −
∑

k∈T

xnt,h,j,k[sk = ℓ] = 0, ∀(j, ℓ) ∈ W× C ,

(31b)
∑

k∈T

xi,1,k[wk = ℓ] −
∑

k∈T

xi,nt,w ,k[ek = ℓ] = 0, ∀(i, ℓ) ∈ H × C .

(32a)
∑

k∈T

xi,j,k[ek �= ℓ] +
∑

k∈T

xi,1,k[wk = ℓ] −
∑

k∈T

xi,j+1,k[j < nt,w] ≤ 1,

(32b)
∑

k∈T

xi,j,k[sk �= ℓ] +
∑

k∈T

x1,j,k[nk = ℓ] −
∑

k∈T

xi+1,j,k[i < nt,h] ≤ 1.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Tile packing problem.  Our last extension constitutes the setting of the tile-packing problem14: we require each
tile to be placed exactly once yet form a fixed-sized valid tiling,

Note here that this extension requires that |T | = |Ã | as, otherwise, no solution exists.

Heuristic algorithm for the maximum cover tiling problem
In the previous sections, we have introduced several integer programming formulations for the bounded Wang
tiling problem and their extensions. Because of the asymptotic complexity of the integer programming formula-
tions, we further develop a simple heuristic algorithm for one of the optimization variants, the maximum cover.

Maximum row cover tilings.  Let us start with revising the decision program (10). In this formulation,
neglecting any pair of the constraints (10b, 10d) or (10c, 10e) provides a totally unimodular constraint matrix,
recall “Rectangular valid tiling” section. Consequently, such simplified problems are deterministically solvable
using the simplex method. Moreover, this setting agrees with the maximum flow problem61, as (10d) and (10e)
correspond to the flow balances in the source and sink, whereas (10b) and (10c) correspond to the Kirchhoff law
equations. Further complexity reduction is possible by recognizing the (shortest) path problem structure, since
the source and sink capacities are equal to one, allowing only a single source-to-sink path with positive flow to
emerge. Omitting any of these constraint pairs produces valid tilings of (finite) stripes, i.e., of rows or columns.
However, the edges shared by the neighboring stripes may not comply with the edge matching rules. Starting
with this observation, we first focus on an efficient approach to generate valid tilings of the rows.

As follows from “Notation and preliminaries” section, any valid tiling of a row can be visualized as a |W|-long
path in the transducer graph Gt,h , recall “Notation and preliminaries” section. To simplify subsequent develop-
ments, we represent the row-tiling problem by a transducer-based directed acyclic graph (DAG) composed of
|W| + 3 vertex layers. While both the first and the last layer contain only a single vertex (the source s and terminal
t), the intermediate layers include |C | vertices to represent the vertical (east and west) color codes of the tiles, i.e.,
the states in the transducer graph. The source vertex is connected to all vertices in the second layer, facilitating
an arbitrary coloring of the west edge of the first tile, and, similarly, all the vertices in the penultimate layer are
linked to the terminal to allow for all colors in the last east edge. The intermediate layers are bridged with the
transducer edges Eh ; see Fig. 7. Consequently, any s → t path in the yet-established directed graph forms a valid
tiling of the row, and conversely, any valid tiling builds a s → t path.

However, because such paths do not exist for tile sets that forbid a valid tiling of the row, we also need to incor-
porate voids. Clearly, we can add “void” tiles as edges that would interconnect the layers, i.e., any two consecutive
layers would form a complete bipartite graph. However, such an approach requires adding at most |W||C |2
edges to the graph. Therefore, we add supplementary intermediate layers with a single vertex only, symbolizing
the “void” tile type, and connect it to all vertices in the preceding and subsequent layer, see the dashed vertices
and edges in Fig. 8. Consequently, we generate at most 2|W||C | new edges altogether.

In addition, we assign unitary costs to the edges incoming to the void vertices and zero costs elsewhere. Hence,
the s → t path cost is equivalent to the number of voids in the row tiling. Furthermore, because the emergent
graph is acyclic and single-sourced, the maximum row-cover tiling is found in O (|V | + |E |) time using the
DAG-shortest-path algorithm61, where V denotes the set of the graph vertices and E the set of the graph edges.
In our case, we have

(33)min
x

∑

i∈H

∑

j∈W

∑

k∈T

xi,j,k .

(34)
∑

i∈H

∑

j∈W

xi,j,k = 1, ∀k ∈ T .

(35a)|V | = 2+ (|W| + 1)|C | + |W| = 2+ |W| + |C | + |W||C |,

s

1

2

...

|C |

1

2

...

|C |

. . .

. . .

. . .

. . .

1

2

...

|C |

t

ed
ge
s
E
h

ed
ge
s
E
h

ed
ge
s
E
h

Tile 1 Tile 2 Tile |W |

Figure 7.   Transducer-based directed acyclic graph for generation of valid row tilings.

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

 Thus, the overall asymptotic complexity to generate a maximum row cover tiling evaluates as

Interestingly, the running time (but not the asymptotic complexity) of the DAG-shortest-path algorithm can
be improved by recognizing that the topological order of the graph vertices—which is required for the DAG-
shortest-path algorithm—is known from the graph construction method in advance.

Any path with total cost ct contains exactly ct voids in the row tiling. Because the shortest path algorithm
therefore minimizes the number of voids, it generates the maximum row cover as its output. These considera-
tions are summarized below.

Proposition 4.1  The shortest path in the graph in Fig. 8 is equivalent to the maximum row cover.

Tiling consecutive rows.  Assuming already covered rows i − 1 and i + 1 , e.g., initially by voids, we aim to
generate the maximum cover of the i-th row. Interestingly, this only requires a minor modification of the graph
in Fig. 8.

For this, we first check the north-east compatibility for each tile k ∈ T placed at (i, j). Notice that the compat-
ibility is never violated when the neighbors are voids. For color mismatch cases, we remove the edges denoting
these incompatible tiles from the graph.

Assume that the rows (i − 1) and (i + 1) are voids. Then, clearly, inappropriate tiles at the i-th row may pre-
vent the vertically-adjacent positions to be populated by tiles. To limit the appearance of such introduced voids,
we include a small penalty of ǫ = 1/2(|W| + 1)−1 to the tiles that admit a single vertical neighbor only, and
ǫ = (|W| + 1)−1 to tiles not admitting any vertical neighbor. Notice that these costs are selected such that, in
the worst case, the total penalty due to these void-preventing weights amounts to |W|/(|W| + 1) < 1 , i.e., the
maximum number of tiles is placed even if the void positions forbid any vertical neighbors. Hence, Proposition
4.1 remains satisfied.

Consequently, we can build a simple heuristic algorithm, Algorithm 1, that requires |H| maximum row-cover
iterations, rendering the overall complexity to be O (|Ã ||C | + |Ã ||T |).

Although Algorithm 1 usually generates relatively large ratio of the number of placed tiles |B̃cov | to |Ã | ,
it probably lacks a guaranteed lower bound. Such bounds can, however, be provided by fairly straightforward
modifications introduced next.

(35b)|E | = 2|C | + 2|W||C | + |W||T |.

(36)O (|V | + |E |) = O (2+ |W| + 3|C | + 3|W||C | + |W||T |) = O (|W||C | + |W||T |).

s

0

1

...

|C |

0

1

...

|C |

. . .

. . .

. . .

. . .

0

1

...

|C |

tvoid void void

+ edges Eh + edges Eh + edges Eh

0.
0

0.0

0.0

0.0

0.0

0.
0

1.0

1.0

1.
0

0.
0

0.0

0.0

1.0

1.0

1.
0

0.
0

0.0

0.0

1.0

1.0

1.
0

0.
0

0.0
0.0

Tile 1 Tile 2 Tile |W |

Figure 8.   Transducer-based directed acyclic graph for computing the maximum row cover.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

1/2‑approximation algorithm for general tile sets.  In this section, we modify Algorithm 1 to main-
tain the 1/2 approximation ratio. We start with the following observation:

Proposition 4.2  Consider the maximum row-cover tiling of the odd rows of the initially void domain A given in
“Maximum row cover tilings” section. Then, |B̃cov | ≥ 1/2|B̃max cov |.

Proof  Consider that the maximum row-cover problem alone terminates with |B̃max rowcov | tiles. Based on
the maximum row-cover property in Proposition 4.1, none of the rows of Ã admit a tiling by more than
|B̃max rowcov | tiles. Hence, we have |B̃cov | ≥ ⌈1/2|H|⌉|B̃max rowcov | and |B̃max cov | ≤ |H||B̃max rowcov | , so that
|B̃cov | ≥ ⌈1/2|H|⌉|B̃max rowcov | ≥ 1/2|H||B̃max rowcov | ≥ 1/2|B̃max cov | , where ⌈•⌉ rounds • to the nearest
greater or equal integer. 	� �

To exploit Proposition 4.2 in Algorithm 1, we modify the row processing order to {1, 3, 2, 5, 4 . . . } . Indeed,
then each odd row contains exactly |B̃max rowcov | tiles. Nevertheless, covering the i-th (odd) row without acknowl-
edging which tiles are placed in the (i − 2)-th row may result in an unnecessarily empty (i − 1)-th row. To avoid
such situations, we do not check for compatibility with the (i − 1)-th row voids, but rather we check using the
dual transducer graph with the tiles in the (i − 2)-th row. For each south color code in the (i − 2)-th row, we find
admissible colors (states) in the dual transducer graph as the states reachable by an edge-long path. Indeed, the
reached states are exactly the admissible north colors of compatible tiles in the i-th row. For the special case of
voids in the (i − 2)-th row, all color codes are assumed to be compatible. Finally, we penalize the incompatibilities
with the cost ǫ = 1/2(|W| + 1)−1 as before. The final algorithm then reads as Algorithm 2, allowing us to state
the following, slightly stronger result:

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Proposition 4.3  Assume a tile set T with the longest path in its transducer graph Gt,h of at least 2. Then, Algorithm 2
terminates with |B̃cov | ≥ 1/2|Ã |.

Proof  When |B̃max rowcov | = |W| , the proof follows directly from Proposition 4.2. For the other cases, the odd
rows must contain |B̃max rowcov | tiles due to Proposition 4.1. Because these row-covers are maximal, the sequence
of consecutive voids in these rows cannot exceed two, as we could have placed an additional tile otherwise, con-
tradicting with the maximum row-cover property. Moreover, without loss of generality, the cost of the shortest
path in the i-th row is at most |B̃max rowcov | + (|W| − |B̃max rowcov |)ǫ , which occurs when the (i − 2)-th and i-th
row have the same tile-void patterns. Because the longest void sequence is at most two and the longest path in
Gt,h is at least two, we can always place tiles to the north of the voids of the i-th row. 	� �

2/3‑approximation algorithm for tilesets with cyclic transducers.  Another improvement in the
approximation factor of Algorithm 2 is possible for tile sets with all the states in the transducer graphs Gt,h and
Gt,v being in at least one graph cycle. Notice that this situation occurs for all tile sets that tile the infinite plane.

To this goal, we modify the assignment of costs to graph, and the row processing order to
{1, 4, 3, 2, 3, 7, 6, 5, 6, . . . } . We begin with (i) tiling the maximum row-cover of the first row. Then, we (ii) find
the maximum row-cover of the 4th row such that we penalize possible incompatibilities with the first row based
on the dual transducer graph by ǫ . The step (iii) encompasses finding a cover of the 3rd row with penalized
incompatibilities with the first row and enforced voids at even positions. Finally, we find the maximum covers
for rows 2 and 3. We repeat the procedure for the row numbers iteratively increased by 3, see Algorithm 3. Then,
we can make the following statement:

Lemma 4.1  Consider that all states in the transducer graphs Gt,h and Gt,v are in at least one graph cycle. Then,
Algorithm 3 terminates with at least 2

3
|Ã | placed tiles.

Proof  Since the tile set allows for valid tiling of the row, the {1, 4, . . . } rows are occupied by exactly |W| tiles.
The {3, 6, . . . } rows are then populated by at least 1/2|W| tiles because each tile from rows {4, 7, . . . } admits
a vertical neighbor. Finally, the {2, 5, . . . } rows contain at least the complement of the number of tiles used in
the preceding row, because the tiles in the {1, 4, 6, . . . } row admit a south neighbor. Depending on the number
of rows, the algorithm places at least

tiles. 	� �

(37)|B̃cov | ≥ min

{
|Ã |,

3

4
|Ã |,

2

3
|Ã |,

3

4
|Ã |,

7

10
|Ã |,

2

3
|Ã |, . . .

}
=

2

3
|Ã |

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Iterative improvements.  Similarly to finding the maximum row covers, we can search for the maxi-
mum cover of columns. When combining these two methods, we end up with our final algorithm that has the
O (|Ã |2|C | + |Ã |2|T | + |C |2) complexity and provides the approximation ratios adjustable by algorithm
choice (Algorithms 1, 2 or 3) at line 2 of Algorithm 4.

Proposition 4.4  Algorithm 4 runs in a polynomial time and terminates in a finite number of steps.

Proof  We have already shown that finding a maximum row-cover has O (|W||C | + |W||T |) complexity.
Further, finding the 2-long paths in the transducer graph possesses the |C |2 complexity and can be run only
once prior to the algorithm main loop. Altogether, Algorithm 3 requires at most 4/3|H| inner iterations so that
we have the O (|Ã ||C | + |Ã ||T | + |C |2) overall complexity.

Regardless of the method at line 2 of Algorithm 4, the improving loop runs at most |Ã | times. Consequently,
the algorithm is finite and possesses the O (|Ã |2|C | + |Ã |2|T | + |C |2) complexity. 	� �

Results
Having developed several exact and heuristic methods, this section is devoted to their numerical examination.
We begin with assessing the performance of the integer programming formulations in “Integer programming
formulations” section. Then, in “Heuristic algorithms” section, we also relate these results to the outputs of the
heuristic algorithms.

Extensions of the integer programs are investigated in subsequent sections. First, we demonstrate the useful-
ness of the packing constraint by comparing the efficiency of the solution to the tile-packing problem using our
method with the times reported by Lagae and Dutré14, “Periodic tile packing problem” section. Subsequently,
we also present two unexpected discoveries revealed when testing formulations: the Knuth22 tile set contains
a tile unusable in infinite tilings, “Unusable tile in the Knuth tile set” section, and the Lagae et al.35 tile set of 44
corner tiles lacks aperiodicity, “Periodicity of the Lagae corner tile set” section.

We implemented all the methods described above in C++. As the integer programming solver, we used the
state-of-the-art optimizer Gurobi 9.5.062 dynamically linked to the compiled binary. Numerical tests were evalu-
ated on a personal laptop running the Ubuntu 18.04 operating system equipped with 24 GB of RAM and Intel�
Core� i5-8350U CPU clocked at 1.70GHz.

Integer programming formulations.  In this section, we investigate the performance of all integer pro-
gramming formulations from “Integer programming formulations” section, i.e., the decision program (10), the

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

maximum rectangular tiling (16), the maximum cover (19), and the maximum adjacency constraint satisfaction
problem (22).

We are unaware of any standard sets for bounded tiling problems except for the specific, mostly aperiodic tile
sets listed in the literature, recall “Aperiodic tile sets” section. Hence, we consider a set of benchmark problems
consisting of five aperiodic tile sets (11 tiles over 4 colors by Jeandel and Rao33, 13 tiles over 5 colors by Čulík29,
14 tiles over 6 colors by Kari28, 16 tiles over 6 colors by Ammann25, and 56 tiles over 12 colors by Robinson24),
two stochastic tile sets introduced in computer graphics (8 tiles over 2 colors by Cohen et al.9 and a set of 16 tiles
over 4 edge colors by Lagae and Dutré34), two periodic tile sets (10 tiles over 4 colors by Wang19 and the set of
30 tiles over 17 edge colors by Lagae et al.35 and Nurmi36). In addition, in Fig. 9, we introduce two tile sets that
do not allow for a valid tiling of the infinite domain.

For all these tile sets, we aimed at generating valid tilings sized, respectively, 20× 20 , 25× 25 , and 30× 30 .
The running time of the Gurobi solver was limited to 300 seconds for the single-threaded mode.

The results shown in Table 1 illustrate that the performance of the decision program (10) surpasses any of
the candidate variants. However, it failed to find an existent feasible solution in the time limit four times. In
these cases, the output of the optimization problems (16, 19, 22) provided at least some output. Interestingly,
the decision problem (10) also was more efficient in the case of proving that the domain |A | lacks T-tilability.

Comparison of the optimization variants hints that the maximum cover (19) and the maximum adjacency
constraint satisfaction (22) problems scale better than the maximum rectangular tiling (16). Indeed, generating
any smaller rectangular domain remains NP-complete, preventing any polynomial-time approximation algo-
rithm to exist. On the other hand, both the formulations (19) and (22) admit simple heuristics, recall “Integer
programming formulations” section, allowing the solver to obtain higher-quality feasible solutions faster.

Heuristic algorithms.  Second, we compare the performance of the maximum cover formulation (19)
solved with the heuristic Algorithm 4 supplied with three different initial coverings, i.e., based on Algorithms 1,
2 and 3.

Algorithm 4 ran sequentially. In order to limit the dependence of the heuristic algorithm on the ordering of
tiles, we randomized the edge order in the directed acyclic graphs. Thus, we evaluated Algorithm 4 100 times
for each of the tested option, and listed the best, worst, and mean results in Table 2.

From Table 2, it follows that the initialization with the cover from Algorithm 1 is the most efficient for the
tested tile sets, both in terms of speed and performance. The remaining two initializations seem to be fairly
comparable on average. While for Algorithm 1, at least 82% of tiles were always placed, only more than 60% fol-
lowed from Algorithm 2. Using Algorithm 3, we obtained at least 70% tile placement.

When comparing Table 1 with Table 2, a few patterns emerge. First, the heuristic algorithm always gener-
ates valid tilings if (any of) the stochastic tile sets are used. For aperiodic and periodic tile sets, Gurobi required
a considerably longer time to reach feasible solutions of a similar quality, but usually surpassed the developed
algorithms in the time limit of 300 s. In the case of Algorithm 1, it can be seen that the resulting covers are very
competitive to the outputs of (19) and also obtained in much shorter times.

Periodic tile packing problem.  As the second numerical example, we consider the periodic tile packing
problem investigated in computer graphics applications14. Considering a complete edge tile set, Lagae and Dutré
searched for a periodic square valid tiling with each tile from the tile set used exactly once. Clearly, such tilings
not only contain the entire (textural) information stored in individual tiles but also maintain compatibility with
the traditional periodic arrangement.

While Lagae and Dutré14 proposed a backtracking-based algorithm to generate periodic packings, we rely
here on a solution to the decision program (10) supplemented with the packing (34) and fixed periodicity (31)
constraints. The resulting core times spent in the search for a single feasible solution (Table 3) illustrate the higher
effectiveness of our method. Consequently, we were able to find a periodic tile packing for the stochastic set of
625 Wang tiles over 5 colors, see Fig. 10.

Unusable tile in the Knuth tile set.  One of the oldest aperiodic tile sets, containing 92 tiles over 26
colors, is from Knuth22, Exercise 5 in Section 2.3.4.3]. Generating valid tilings from the Knuth tile set using the
decision program (10) together with the tile-based boundary conditions, recall “Tile-based boundary condi-
tions” section, led to an unexpected observation that enforced placement of the tile labeled by βUS in the Knuth
nomenclature22 makes the program (10) infeasible under certain circumstances.

1
3

1
1

2
3

2
1

0
0

1
0

1
0

2
3

2
1

2
0

2
1

0
1

1
3

1
0

(a)

11
2
11

6
11

4
14

6
14

7
11

5
14

8
14

1
11

8
14

0
14

9
14

5
13

8
15

2
15

9
15

7

15
7
13

7
15

6
15

4
10

5
15

7
15

6
10

8
12

5
15

9
10

1
12

8
10

0
10

8
12

5
10

3

(b)

Figure 9.   New tile sets (a) Finite1 of 7 tiles over 4 colors, and (b) Finite2 of 16 tiles over 16 colors used in our
algorithmic tests.

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

After a careful investigation, it indeed turned out that there is not any 2× 2 valid tiling with the βUS tile
placed at (2, 2). Moreover, there is also not any 4× 3 valid tiling with the βUS tile placed at (3, 1). Thus, using
the maximum-cover optimization variant (19) and the βUS tile enforced at the respective coordinate, there are
exactly 31 optimal solutions with the objective function equal to 3, and 498 optimal solutions with the objective
function equal to 11.

Consequently, the βUS tile can appear only in the strip of at most 3 consecutive infinite columns and does not
allow for simply-connected valid tilings of the infinite plane. In a private communication, Knuth confirmed the
issue and discovered another 5 tiles that are unnecessary but usable in infinite valid tilings, allowing for a possible
reduction of the tile set to 86 tiles. For more information, we refer the interested reader to Knuth’s discussion
about the reduced tile set23, Exercise 221 in 7 Section 7.2.2.1].

Periodicity of the Lagae corner tile set.  Analogously to the Wang tiles, with the connectivity informa-
tion stored in the edges, Lagae and Dutré34 introduced corner tiles with colored corners. As Wang19 noted in
1975, these formalisms are interchangeable if the (infinite) domino problem is considered, because every set of
Wang tiles can be represented by sets of corner tiles with greater or equal cardinality35. However, corner tiles
avoid the so-called corner problem of Wang tiles in computer graphics34, motivating Lagae et al.35 to develop
conversion methods for transforming Wang tiles to corner tiles, and vice versa. A direct product of these conver-
sions are aperiodic tile sets of corner tiles35.

Table 1.   Benchmark results. Values marked by an asterisk denote a premature termination of the integer
programming solver. The objective function values are equal to the best feasible lower bounds for the
individual formulations found by the optimization algorithm. In these formulations, the objective function
values denote feasibility, rectangular area, covered area and the number of satisfied adjacency constraints,
respectively.

Tile set Size

Dec. prog. (10) Max. rect. (16) Max. cov. (19) Max. CSP (22)

Time (s) Objective Time (s) Objective Time (s) Objective Time (s) Objective

Aperiodic1 (11/4)33

20 × 20 0.111 0 129.897 400 300.053 *398 300.056 *745

25 × 25 90.810 0 300.070 *150 300.083 *606 300.071 *1135

30 × 30 300.069 *Infeasible 300.084 *150 300.097 *861 300.089 *1628

Aperiodic2 (13/5)29

20 × 20 0.114 0 145.300 400 300.055 *399 300.059 *742

25 × 25 178.337 0 300.070 *125 300.082 *612 300.078 *1184

30 × 30 300.069 *Infeasible 300.089 *60 300.098 *876 300.111 *1655

Aperiodic3 (14/6)28

20 × 20 275.339 0 181.171 400 300.058 *397 300.058 *752

25 × 25 300.057 *Infeasible 300.072 *100 300.086 *619 300.086 *1178

30 × 30 300.073 *Infeasible 300.092 *90 300.107 *863 300.104 *1610

Aperiodic4 (16/6)25

20 × 20 0.142 0 171.136 400 176.584 400 71.141 760

25 × 25 0.196 0 300.063 *100 300.251 *577 300.085 *1030

30 × 30 0.251 0 300.265 *60 300.132 *794 300.115 *1616

Aperiodic5 (56/12)24

20 × 20 0.294 0 300.107 *20 300.214 *350 302.442 *688

25 × 25 0.440 0 300.155 *25 300.354 *553 300.197 *1055

30 × 30 0.648 0 300.228 *30 300.434 *795 301.102 *1569

Stochastic1 (8/2)9

20 × 20 0.066 0 0.101 400 0.046 400 4.195 760

25 × 25 0.091 0 0.125 625 0.089 625 5.598 1200

30 × 30 0.116 0 0.225 900 0.110 900 10.021 1740

Stochastic2 (16/4)34

20 × 20 0.114 0 0.107 400 0.129 400 3.226 760

25 × 25 0.141 0 0.175 625 0.210 625 6.118 1200

30 × 30 0.183 0 0.217 900 0.283 900 6.846 1740

Periodic1 (10/4)19

20 × 20 0.121 0 107.475 400 111.982 400 54.696 760

25 × 25 0.153 0 274.813 625 300.066 *584 224.734 1200

30 × 30 0.193 0 300.977 *81 302.606 *824 300.087 *1628

Periodic2 (30/17)36

20 × 20 0.236 0 109.860 400 252.700 400 88.721 760

25 × 25 0.325 0 300.103 *25 300.222 *545 300.150 *1017

30 × 30 0.473 0 300.158 *30 300.300 *786 300.204 *1521

Finite1 (7/4)

20 × 20 0.066 Infeasible 300.025 *120 300.051 *378 300.076 *725

25 × 25 0.086 Infeasible 300.038 *125 300.054 *585 300.061 *1108

30 × 30 0.105 Infeasible 300.046 *108 300.069 *826 300.080 *1628

Finite2 (16/16)

20 × 20 0.100 Infeasible 300.273 *40 300.207 *326 300.077 *684

25 × 25 0.133 Infeasible 300.067 *50 300.111 *493 300.094 *1029

30 × 30 0.168 Infeasible 300.084 *30 300.131 *690 300.128 *1525

18

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Two of these methods, called horizontal and vertical translations, were used to convert the Ammann set of
16 Wang tiles over 6 colors25 to the set of 44 corner tiles over 6 colors, and the resulting isomorphic corner tile
sets were claimed aperiodic35. In 2016, Nurmi36 noticed that, in this set, 14 tiles are unusable in infinite valid
tilings, and reduced the corner tile set to 30 tiles over 6 colors. Quite surprisingly, neither Lagae et. al. nor Nurmi
recognized that the tile set forms a torus, and is therefore periodic, as we show next.

Instead of developing a new formulation for another type of tiles, we first notice that corner tiles are actually
a subset of Wang tiles, and therefore every set of corner tiles can be represented by a set of Wang tiles with the
same cardinality, see Appendix. For these tiles, we solve the rectangular tiling formulation (16) with periodic
boundary conditions (32) and an objective function to find the smallest tiling (33). As its output, we receive the
optimal value of 6 and 12 optimal periodic rectangular tilings of the size 2× 3 . Not surprisingly, all these solu-
tions follow from only two periodic patterns shown in Fig. 11 by translations over the infinite plane.

Having revealed the smallest periodic solutions, it remains to be shown why the Lagae conversion methods
failed. Lagae et al.35 mentioned that their methods lack bijectiveness in general but they assumed it was not the
case here. Therefore, we believe it is useful to state the conditions under which the methods are bijective and
show that they are not satisfied for the Ammann tile set.

Lemma 5.1  The horizontal translation method from Lagae et al.35 is bijective iff the dual transducer graph GT,v of
the input tile set T does not contain any parallel arcs.

Table 2.   Numerical tests of the maximum-cover heuristics, Algorithm 4, initialized based on Algorithms 1,
2, and 3. Best mean runs are highlighted in bold. The objective function values in the “min”, “avg”, and “max”
columns denote the smallest, average, and the largest areas covered during 100 independent runs of the
heuristic algorithms.

Tile set Size

Algorithm 4 with Algorithm 1 Algorithm 4 with Algorithm 2 Algorithm 4 with Algorithm 3

t [s] Min Avg Max t [s] Min Avg Max t [s] Min Avg Max

Aperiodic1 (11/4)33

20 × 20 0.024 358 368.99 380 0.056 342 360.22 372 0.029 334 347.60 360

25 × 25 0.040 562 575.38 586 0.101 543 563.67 582 0.046 524 537.68 547

30 × 30 0.065 813 829.66 843 0.160 792 812.33 835 0.080 758 779.91 798

Aperiodic2 (13/5)29

20 × 20 0.043 354 369.86 381 0.054 326 359.86 373 0.051 326 353.21 373

25 × 25 0.065 564 577.31 590 0.099 504 564.92 581 0.118 520 557.49 586

30 × 30 0.123 818 831.60 847 0.179 800 817.11 837 0.186 760 806.65 838

Aperiodic3 (14/6)28

20 × 20 0.034 362 375.40 386 0.032 353 365.57 381 0.042 355 378.87 388

25 × 25 0.058 564 585.56 604 0.056 548 569.15 597 0.065 562 592.28 604

30 × 30 0.092 813 843.19 857 0.095 799 830.93 860 0.102 827 855.68 871

Aperiodic4 (16/6)25

20 × 20 0.031 351 366.09 381 0.077 293 333.98 351 0.092 281 339.30 368

25 × 25 0.052 555 573.19 591 0.149 469 524.82 549 0.187 442 533.27 562

30 × 30 0.096 795 825.44 860 0.234 666 758.52 785 0.276 743 773.66 802

Aperiodic5 (56/12)24

20 × 20 0.054 344 360.55 381 0.149 256 341.48 364 0.171 290 332.83 349

25 × 25 0.110 540 563.41 607 0.289 402 527.68 563 0.472 484 529.63 552

30 × 30 0.147 782 811.17 856 0.473 598 782.99 809 0.601 706 759.48 786

Stochastic1 (8/2)9

20 × 20 0.014 400 400.00 400 0.012 400 400.00 400 0.014 400 400.00 400

25 × 25 0.013 625 625.00 625 0.014 625 625.00 625 0.021 625 625.00 625

30 × 30 0.016 900 900.00 900 0.016 900 900.00 900 0.019 900 900.00 900

Stochastic2 (16/4)34

20 × 20 0.013 400 400.00 400 0.015 400 400.00 400 0.015 400 400.00 400

25 × 25 0.017 625 625.00 625 0.017 625 625.00 625 0.019 625 625.00 625

30 × 30 0.025 900 900.00 900 0.022 900 900.00 900 0.026 900 900.00 900

Periodic1 (10/4)19

20 × 20 0.026 342 354.82 374 0.059 325 339.42 353 0.044 323 337.66 346

25 × 25 0.043 533 553.13 573 0.103 507 528.02 546 0.065 512 527.11 537

30 × 30 0.065 770 797.26 830 0.165 745 764.69 784 0.097 729 758.36 770

Periodic2 (30/17)36

20 × 20 0.092 366 382.23 400 0.419 259 337.18 368 0.346 281 345.72 369

25 × 25 0.153 559 595.04 620 0.808 503 533.30 568 0.649 537 563.63 575

30 × 30 0.237 825 854.86 887 1.259 724 760.08 802 1.131 768 800.74 822

Finite1 (7/4)

20 × 20 0.023 353 360.71 369 0.047 352 362.98 376 0.054 348 357.72 366

25 × 25 0.039 548 561.15 570 0.073 348 559.37 580 0.091 539 554.12 566

30 × 30 0.056 789 807.79 819 0.111 789 809.48 830 0.128 791 804.21 826

Finite2 (16/16)

20 × 20 0.065 334 344.36 363 0.113 286 331.80 353 0.104 291 328.83 355

25 × 25 0.101 518 536.20 552 0.198 493 529.24 545 0.140 511 544.78 559

30 × 30 0.191 745 770.34 789 0.393 695 761.45 780 0.382 678 750.89 790

19

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Proof  The horizontal translation method is formally a mapping T ×T �→ Tcorner that generates
∀(p, q) ∈ T

2 : cep = cwq a corner tile (cnp , csp, csq, cnq) . To be bijective, the cardinality of the output needs to be equal
to the cardinality of the input, and the mapping has to produce unique output for each input. Consequently, all
the tiles p ∈ T in the original tile set must be uniquely determined by cnp and csp , as the color codes of the vertical
edges of T are avoided in the construction of Tcorner.

Figure 10.   Periodic packing of a complete set of 625 tiles over 5 colors.

Table 3.   Periodic tile packing problem: comparison of core times needed to find a single feasible solution by
integer programming (second column) and by the backtracking method (third column) proposed in Lagae and
Dutré14 to find a feasible solution.

Tile set

Time Time

(10, 31, 34) Lagae and Dutré14

Stochastic edge (16/2) < 1 s < 1 s

Stochastic edge (81/3) < 1 s < 1 s

Stochastic edge (256/4) 9 s 140 days

Stochastic edge (625/5) 4 days –

2

3 0

1 1

0 3

2

3

5 1

0 0

1 5

3

5

2 1

1 1

1 2

5

(a)

2

3 0

1 1

0 3

2

3

4 0

0 0

0 4

3

4

2 1

0 0

1 2

4

(b)

Figure 11.   Rectangular periodic valid tilings. Translating a 2× 3 rectangle over the infinite valid tiling
generated from (a) or (b) leads to 6 different periodic patterns of the same size. Consequently, the tile set allows
for 12 periodic rectangles of the size 2× 3.

20

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Let us now consider that the dual transducer graph contains a parallel arc connecting the state cn with cs .
Then, there may exist two tiles colored by (cn, cwp , cs, cep) and (cn, cwq , cs, ceq) that are indistinguishable in Tcorner ,
which contradicts the bijection. For the other option, if the transducer graph does not contain any parallel arcs,
then each cnq , csq identifies with a single arc labeled by cwq |ceq , i.e., with a single tile, which completes the proof. ��

Rotating the tile set by 90 degrees, the arguments in Lemma 5.1 provide us with the conditions for the bijec-
tiveness of the vertical translation method:

Lemma 5.2  The vertical translation method of Lagae et al.35 is bijective iff the transducer graph GT,h of the input
tile set T does not contain any parallel arcs.

For the Ammann tile set, we obtain the transducer graph GT,h = GT,v shown in Fig. 12. Clearly, there exist
parallel arcs 1 → 0 . Moreover, using the same approach, we can show that the horizontal translation method
also fails for the Robinson tile set of 24 tiles over 24 colors25, contrary to the claims in35, and the corresponding
corner tile set is also periodic.

Conclusions
In this contribution, we investigated methods for generating bounded Wang tilings for arbitrary tile sets. To this
goal, we developed four binary linear programming formulations, namely decision (10), maximum-cover (19),
maximum adjacency constraint satisfaction (22), and maximum rectangular tiling (16) variants. We supple-
mented them with extensions for controlling individual tiles and their colors and variable-sized tiling periodic-
ity constraints. The second part of the manuscript was devoted to developing efficient heuristic approximation
algorithms for the maximum-cover integer program variant, one maintaining a 1/2 approximation ratio for
arbitrary tile sets and another a 2/3 ratio for tile sets with cyclic transducers.

For readers’ convenience, we summarize the outputs of this study as follows:

1.	 Based on the numerical testing on a collection of 11 tile sets, the decision program (10) is the most efficient.
However, when a time limit is imposed or if the tile set does not allow for valid tiling of the entire domain,
then the maximum cover (19) and maximum adjacency constraint satisfaction problems (22) appear to be
similarly efficient.

2.	 The maximum rectangular tiling (16) formulation exhibits the worst scalability.
3.	 The formulation (10) supplemented with the packing constraint (34) maintains a better solution efficiency

for the Wang tile packing problem than the Lagae and Dutré14 backtracking approach.
4.	 The integer programming formulations allow to disprove theoretical results in Wang tilings. We illustrated

this by

(a)	 revealing a tile in the Knuth22 tile set that is unusable in two-way infinite tilings,
(b)	 proving that the Lagae et al.35 tile set of corner tiles lacks aperiodicity. We also included an explana-

tion for why the tile set construction method failed.

5.	 Among the three proposed heuristic algorithms, the setup of Algorithm 4 initialized with the cover generated
by Algorithm 1 produced the best results on average. Such algorithm was faster and provided competitive
results with the Gurobi software running for 300s.

Having summarized our contributions, we believe that this work has not only introduced new methods that
can possibly be applied to materials engineering, but also a simple and quite extensible framework to verify
theoretical results on Wang tilings.

Data availability
Source code available at: https://​gitlab.​com/​tybur​ec/​tilopt.

0

1

1|
0

3|4

5|2

2 |4 5|
3 2

5

4

3
3|2

3|5

3|3

1|1

2|5

4|3
0|1

2|2

4|2

0|1

0|0

Figure 12.   Transducer graph of the Ammann set of 16 Wang tiles over 6 colors.

https://gitlab.com/tyburec/tilopt

21

Vol.:(0123456789)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

Received: 20 September 2022; Accepted: 17 March 2023

References
	 1.	 Wang, H. Dominoes and the AEA case of the decision problem. In Symposium on Mathematical Theory of Automata 23–55 (1963).
	 2.	 Wang, H. Proving theorems by pattern recognition-II. Bell Syst. Tech. J. 40, 1–41. https://​doi.​org/​10.​1002/j.​1538-​7305.​1961.​tb039​

75.x (1961).
	 3.	 Berger, R. The undecidability of the domino problem. Mem. Am. Math. Soc.https://​doi.​org/​10.​1090/​memo/​0066 (1966).
	 4.	 Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. s2–42, 230–265.

https://​doi.​org/​10.​1112/​plms/​s2-​42.1.​230 (1937).
	 5.	 Davis, M. Computability & Unsolvability. Dover Books on Computer Science Series (Dover Publications, 1958).
	 6.	 Kahr, A. S., Moore, E. F. & Wang, H. Entscheidungsproblem reduced to the ∀∃∀ case. Proc. Natl. Acad. Sci. 48, 365–377. https://​

doi.​org/​10.​1073/​pnas.​48.3.​365 (1962).
	 7.	 Lewis, H. R. Complexity of Solvable Cases of the Decision Problem for the Predicate Calculus 35–47 (IEEE, 1978).
	 8.	 Lewis, H. & Papimitriou, C. Elements of the Theory of Computation. Prentice-Hall Software Series (Pearson Education Canada,

1981).
	 9.	 Cohen, M. F., Shade, J., Hiller, S. & Deussen, O. Wang tiles for image and texture generation. ACM Trans. Graph. 22, 287–294.

https://​doi.​org/​10.​1145/​882262.​882265 (2003).
	10.	 Derouet-Jourdan, A., Kaji, S. & Mizoguchi, Y. A linear algorithm for brick Wang tiling. Jpn. J. Ind. Appl. Math. 36, 749–761. https://​

doi.​org/​10.​1007/​s13160-​019-​00369-z (2019).
	11.	 Lagae, A. & Dutré, P. A procedural object distribution function. ACM Trans. Graph. 24, 1442–1461. https://​doi.​org/​10.​1145/​10958​

78.​10958​88 (2005).
	12.	 Ollinger, N. Two-by-two substitution systems and the undecidability of the domino problem. In Logic and Theory of Algorithms

476–485 (Springer, 2008). https://​doi.​org/​10.​1007/​978-3-​540-​69407-6_​51
	13.	 Kovalsky, S. Z., Glasner, D. & Basri, R. A global approach for solving edge-matching puzzles. SIAM J. Imaging Sci. 8, 916–938.

https://​doi.​org/​10.​1137/​14098​7869 (2015).
	14.	 Lagae, A. & Dutré, P. The tile packing problem. Geombinatorics 17, 8–18 (2007).
	15.	 Rui Yu, C. R. & Agapito, L. Solving jigsaw puzzles with linear programming. In Proceedings of the British Machine Vision Confer‑

ence (BMVC) (eds Wilson, R. C., Hancock, E. R. & Smith, W. A. P.) 139.1–139.12 (BMVA Press, 2016). https://​doi.​org/​10.​5244/C.​
30.​139.

	16.	 Salassa, F., Vancroonenburg, W., Wauters, T., Della Croce, F. & Berghe, G. V. MILP and max-clique based heuristics for the Eternity
II puzzle (2017). arXiv:​1709.​00252.

	17.	 Garvie, M. R. & Burkardt, J. A parallelizable integer linear programming approach for tiling finite regions of the plane with poly-
ominoes. Algorithms 15, 164. https://​doi.​org/​10.​3390/​a1505​0164 (2022).

	18.	 Berger, R. The Undecidability of the Domino Problem. Ph.D. thesis, Harvard University (1964).
	19.	 Wang, H. Notes on a class of tiling problems. Fundam. Math. 82, 295–305 (1975).
	20.	 Robinson, R. M. Seven polygons which permit only nonperiodic tilings of the plane. Not. Am. Math. Soc. 14, 835 (1967).
	21.	 Poizat, B. Une théorie finiement axiomatisable et superstable. Groupe d’étude des théories stables 3, 1–9 (1980).
	22.	 Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamental Algorithms (Addison-Wesley Educational Publishers Inc,

1968).
	23.	 Knuth, D. E. The Art of Computer Programming, Volume 4B, Fascicle 5: The: Mathematical Preliminaries Redux; Backtracking;

Dancing Links (Addison-Wesley Professional, 2018).
	24.	 Robinson, R. M. Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209. https://​doi.​org/​10.​1007/​

bf014​18780 (1971).
	25.	 Grünbaum, B. & Shephard, G. C. Tilings and Patterns (Dover Publications, 2016).
	26.	 Robinson, R. M. Undecidable tiling problems in the hyperbolic plane. Invent. Math. 44, 259–264. https://​doi.​org/​10.​1007/​bf014​

03163 (1978).
	27.	 Senechal, M. Quasicrystals and Geometry (Cambridge University Press, 1996).
	28.	 Kari, J. A small aperiodic set of Wang tiles. Discrete Math. 160, 259–264. https://​doi.​org/​10.​1016/​0012-​365x(95)​00120-l (1996).
	29.	 Čulík, K. An aperiodic set of 13 Wang tiles. Discrete Math. 160, 245–251. https://​doi.​org/​10.​1016/​s0012-​365x(96)​00118-5 (1996).
	30.	 Kari, J. & Papasoglu, P. Deterministic aperiodic tile sets. Geom. Funct. Anal. 9, 353–369. https://​doi.​org/​10.​1007/​s0003​90050​090

(1999).
	31.	 Labbé, S. A self-similar aperiodic set of 19 Wang tiles. Geom. Dedicata 201, 81–109. https://​doi.​org/​10.​1007/​s10711-​018-​0384-8

(2019).
	32.	 Labbé, S. & Lepšová, J. A numeration system for Fibonacci-like Wang shifts. In Lecture Notes in Computer Science 104–116 (Springer

International Publishing, 2021). https://​doi.​org/​10.​1007/​978-3-​030-​85088-3_9.
	33.	 Jeandel, E. & Rao, M. An aperiodic set of 11 Wang tiles. Adv. Comb. 1, 1–37. https://​doi.​org/​10.​19086/​aic.​18614 (2021).
	34.	 Lagae, A. & Dutré, P. An alternative for Wang tiles: Colored edges versus colored corners. ACM Trans. Graph. 25, 1442–1459.

https://​doi.​org/​10.​1145/​11832​87.​11832​96 (2006).
	35.	 Lagae, A., Kari, J. & Dutré, P. Aperiodic sets of square tiles with colored corners. Report CW (2006).
	36.	 Nurmi, T. From checkerboard to cloverfield: Using Wang tiles in seamless non-periodic patterns. In Bridges Finland Conference

Proceedings (2016).
	37.	 Kari, J. Reversibility of 2D cellular automata is undecidable. Phys. D: Nonlinear Phenom. 45, 379–385. https://​doi.​org/​10.​1016/​

0167-​2789(90)​90195-u (1990).
	38.	 Conway, J. & Lagarias, J. Tiling with polyominoes and combinatorial group theory. J. Comb. Theory Ser. A 53, 183–208. https://​

doi.​org/​10.​1016/​0097-​3165(90)​90057-4 (1990).
	39.	 Mozes, S. Tilings, substitution systems and dynamical systems generated by them. J. d’Analyse Mathématique 53, 139–186. https://​

doi.​org/​10.​1007/​BF027​93412 (1989).
	40.	 Stam, J. Aperiodic Texture Mapping. Technical report R046 (European Research Consortium for Informatics and Mathematics,

1997).
	41.	 Liu, X., Li, C., Lu, L., Deussen, O. & Tu, C. Fabricable multi-scale Wang tiles. Comput. Graph. Forum 41, 149–159. https://​doi.​org/​

10.​1111/​cgf.​14610 (2022).
	42.	 Hiller, S., Deussen, O. & Keller, A. Tiled blue noise samples. In Proceedings of the Vision Modeling and Visualization Conference

265–272 (Stuttgart, Germany, 2001).
	43.	 Radin, C. Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. 1, 1157–1191. https://​doi.​org/​10.​1142/​S0217​

97928​70016​75 (1987).
	44.	 Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394,

539–544. https://​doi.​org/​10.​1038/​28998 (1998).
	45.	 Seeman, N. C., Mao, C., LaBean, T. H. & Reif, J. H. Logical computation using algorithmic self-assembly of DNA triple-crossover

molecules. Nature 407, 493–496. https://​doi.​org/​10.​1038/​35035​038 (2000).

https://doi.org/10.1002/j.1538-7305.1961.tb03975.x
https://doi.org/10.1002/j.1538-7305.1961.tb03975.x
https://doi.org/10.1090/memo/0066
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1073/pnas.48.3.365
https://doi.org/10.1073/pnas.48.3.365
https://doi.org/10.1145/882262.882265
https://doi.org/10.1007/s13160-019-00369-z
https://doi.org/10.1007/s13160-019-00369-z
https://doi.org/10.1145/1095878.1095888
https://doi.org/10.1145/1095878.1095888
https://doi.org/10.1007/978-3-540-69407-6_51
https://doi.org/10.1137/140987869
https://doi.org/10.5244/C.30.139
https://doi.org/10.5244/C.30.139
http://arxiv.org/abs/1709.00252
https://doi.org/10.3390/a15050164
https://doi.org/10.1007/bf01418780
https://doi.org/10.1007/bf01418780
https://doi.org/10.1007/bf01403163
https://doi.org/10.1007/bf01403163
https://doi.org/10.1016/0012-365x(95)00120-l
https://doi.org/10.1016/s0012-365x(96)00118-5
https://doi.org/10.1007/s000390050090
https://doi.org/10.1007/s10711-018-0384-8
https://doi.org/10.1007/978-3-030-85088-3_9
https://doi.org/10.19086/aic.18614
https://doi.org/10.1145/1183287.1183296
https://doi.org/10.1016/0167-2789(90)90195-u
https://doi.org/10.1016/0167-2789(90)90195-u
https://doi.org/10.1016/0097-3165(90)90057-4
https://doi.org/10.1016/0097-3165(90)90057-4
https://doi.org/10.1007/BF02793412
https://doi.org/10.1007/BF02793412
https://doi.org/10.1111/cgf.14610
https://doi.org/10.1111/cgf.14610
https://doi.org/10.1142/S0217979287001675
https://doi.org/10.1142/S0217979287001675
https://doi.org/10.1038/28998
https://doi.org/10.1038/35035038

22

Vol:.(1234567890)

Scientific Reports | (2023) 13:4865 | https://doi.org/10.1038/s41598-023-31786-3

www.nature.com/scientificreports/

	46.	 Novák, J., Kučerová, A. & Zeman, J. Compressing random microstructures via stochastic Wang tilings. Phys. Rev. E 86, 4–7. https://​
doi.​org/​10.​1103/​PhysR​evE.​86.​040104 (2012).

	47.	 Doškář, M., Novák, J. & Zeman, J. Aperiodic compression and reconstruction of real-world material systems based on Wang tiles.
Phys. Rev. E 90, 062118. https://​doi.​org/​10.​1103/​PhysR​evE.​90.​062118 (2014).

	48.	 Braides, A., Riey, G. & Solci, M. Homogenization of Penrose tilings. C. R. Math. 347, 697–700. https://​doi.​org/​10.​1016/j.​crma.​
2009.​03.​019 (2009).

	49.	 Doškář, M. & Novák, J. A jigsaw puzzle framework for homogenization of high porosity foams. Comput. Struct. 166, 33–41. https://​
doi.​org/​10.​1016/j.​comps​truc.​2016.​01.​003 (2016).

	50.	 Doškář, M., Zeman, J., Rypl, D. & Novák, J. Level-set based design of Wang tiles for modelling complex microstructures. Comput.
Des. 123, 102827. https://​doi.​org/​10.​1016/j.​cad.​2020.​102827 (2020).

	51.	 Tyburec, M., Zeman, J., Doškář, M., Kružík, M. & Lepš, M. Modular-topology optimization with Wang tilings: An application to
truss structures. Struct. Multidiscip. Optim. 63, 1099–1117. https://​doi.​org/​10.​1007/​s00158-​020-​02744-8 (2020).

	52.	 Tyburec, M., Doškář, M., Zeman, J. & Kružík, M. Modular-topology optimization of structures and mechanisms with free material
design and clustering. Comput. Methods Appl. Mech. Eng. 395, 114977. https://​doi.​org/​10.​1016/j.​cma.​2022.​114977 (2022).

	53.	 Jílek, M., Somr, M., Kulich, M., Zeman, J. & Přeučil, L. Towards a passive self-assembling macroscale multi-robot system. IEEE
Robot. Autom. Lett. 6, 7293–7300. https://​doi.​org/​10.​1109/​LRA.​2021.​30967​48 (2021).

	54.	 Jilek, M. et al. Self-stabilizing self-assembly. IEEE Robot. Autom. Lett. 7, 9763–9769. https://​doi.​org/​10.​1109/​lra.​2022.​31917​95
(2022).

	55.	 Doškář, M., Zeman, J., Jarušková, D. & Novák, J. Wang tiling aided statistical determination of the Representative Volume Element
size of random heterogeneous materials. Eur. J. Mech. A/Solids 70, 280–295. https://​doi.​org/​10.​1016/j.​eurom​echsol.​2017.​12.​002
(2018).

	56.	 Coulais, C., Teomy, E., de Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature
535, 529–532. https://​doi.​org/​10.​1038/​natur​e18960 (2016).

	57.	 Yang, W., Liu, Q., Gao, Z., Yue, Z. & Xu, B. Theoretical search for heterogeneously architected 2D structures. Proc. Natl. Acad. Sci.
115, E7245–E7254. https://​doi.​org/​10.​1073/​pnas.​18067​69115 (2018).

	58.	 Nežerka, V. et al. A jigsaw puzzle metamaterial concept. Compos. Struct. 202, 1275–1279. https://​doi.​org/​10.​1016/j.​comps​truct.​
2018.​06.​015 (2018).

	59.	 Yasuda, H. et al. Mechanical computing. Nature 598, 39–48. https://​doi.​org/​10.​1038/​s41586-​021-​03623-y (2021).
	60.	 Knuth, D. E. Two notes on notation. Am. Math. Mon. 99, 403–422. https://​doi.​org/​10.​1080/​00029​890.​1992.​11995​869 (1992).
	61.	 Korte, B. & Vygen, J. Combinatorial Optimization (Springer, 2006).
	62.	 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual (2022). http://​gurobi.​com.

Acknowledgements
We thank Stephanie Krueger for proofreading the initial draft of this manuscript.

Author contributions
M.T.: conceptualization, methodology, software, writing—original draft, J.Z.: methodology, writing—review and
editing, supervision, funding acquisition.

Funding
This research was funded by the Czech Science Foundation, project No. 19-26143X.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​31786-3.

Correspondence and requests for materials should be addressed to M.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1103/PhysRevE.86.040104
https://doi.org/10.1103/PhysRevE.86.040104
https://doi.org/10.1103/PhysRevE.90.062118
https://doi.org/10.1016/j.crma.2009.03.019
https://doi.org/10.1016/j.crma.2009.03.019
https://doi.org/10.1016/j.compstruc.2016.01.003
https://doi.org/10.1016/j.compstruc.2016.01.003
https://doi.org/10.1016/j.cad.2020.102827
https://doi.org/10.1007/s00158-020-02744-8
https://doi.org/10.1016/j.cma.2022.114977
https://doi.org/10.1109/LRA.2021.3096748
https://doi.org/10.1109/lra.2022.3191795
https://doi.org/10.1016/j.euromechsol.2017.12.002
https://doi.org/10.1038/nature18960
https://doi.org/10.1073/pnas.1806769115
https://doi.org/10.1016/j.compstruct.2018.06.015
https://doi.org/10.1016/j.compstruct.2018.06.015
https://doi.org/10.1038/s41586-021-03623-y
https://doi.org/10.1080/00029890.1992.11995869
http://gurobi.com
https://doi.org/10.1038/s41598-023-31786-3
https://doi.org/10.1038/s41598-023-31786-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Bounded Wang tilings with integer programming and graph-based heuristics
	Aperiodic tile sets.
	Applications of Wang tiles.
	Wang tiling generation algorithms.
	Substitution-based tiling algorithm.
	Stochastic tiling algorithms.
	Transducer-based tiling algorithm.

	Aims and novelty.
	Notation and preliminaries
	Integer programming formulations
	Rectangular valid tiling.
	Maximum rectangular valid tiling.
	Maximum cover.
	Maximum adjacency constraints satisfaction.
	Extensions.
	Tile-based boundary conditions.
	Color-based boundary conditions.
	Periodic tiling.
	Tile packing problem.

	Heuristic algorithm for the maximum cover tiling problem
	Maximum row cover tilings.
	Tiling consecutive rows.
	12-approximation algorithm for general tile sets.
	23-approximation algorithm for tilesets with cyclic transducers.
	Iterative improvements.

	Results
	Integer programming formulations.
	Heuristic algorithms.
	Periodic tile packing problem.
	Unusable tile in the Knuth tile set.
	Periodicity of the Lagae corner tile set.

	Conclusions
	References
	Acknowledgements

