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Restoration of Fast Moving Objects
Jan Kotera , Member, IEEE, Jiří Matas , and Filip Šroubek , Member, IEEE

Abstract— If an object is photographed at motion in front
of a static background, the object will be blurred while the
background sharp and partially occluded by the object. The
goal is to recover the object appearance from such blurred
image. We adopt the image formation model for fast moving
objects and consider objects undergoing 2D translation and
rotation. For this scenario we formulate the estimation of the
object shape, appearance, and motion from a single image
and known background as a constrained optimization problem
with appropriate regularization terms. Both similarities and
differences with blind deconvolution are discussed with the latter
caused mainly by the coupling of the object appearance and
shape in the acquisition model. Necessary conditions for solution
uniqueness are derived and a numerical solution based on the
alternating direction method of multipliers is presented. The
proposed method is evaluated on a new dataset.

Index Terms— Blind deconvolution, motion deblurring, object
deblurring, motion estimation, image matting, shape estimation,
alternating direction method of multipliers.

I. INTRODUCTION

MANY applications produce images in which moving
objects appear blurred and partially blended with the

background. Sports videos provide diverse examples with
various ball-like objects flying at high speed; surveillance
cameras record e.g. fast-driving cars; for other examples, see
Fig. 1. To invert the image formation process and recover
the sharp object appearance, we must consider the role of
the background, object trajectory, appearance, and shape. One
particular property of the problem is that the area where fore-
ground and background are both visible and blended together
is proportional to the ratio of trajectory length and object size,
for large blurs or small objects the image then cannot be hard-
segmented as foreground/background and treated separately.

The notion of the fast moving object (FMO) was introduced
in [1] in the context of object tracking. FMO was defined as
an object that moves over a distance exceeding its size during
the camera exposure time. The authors of [1] define the image
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Fig. 1. Examples of objects that appear blurred due to their intra-frame
motion: (left-to-right, top-to-bottom) car, motorcycle, model airplane, skier,
volleyball, ping-pong ball.

formation model and present an algorithm for the inverse prob-
lem of estimating the object appearance from a single image
if the background image, and object shape and trajectory are
known. The inverse problem was later generalized by another
tracking algorithm [2] that simultaneously estimates the object
trajectory, shape, and appearance. The estimation task is called
deblatting to emphasize that two inverse problems are being
solved: motion deblurring and image matting. FMO tracking
methods are based on the novel idea that blur is a cue for
motion, and they focus on estimating the blur kernel, which
defines the trajectory, and not the object appearance, as the
tracked object is assumed to be known in standard tracking
methodologies, e.g. it is specified by the user in one video
frame as the region of interest.

In this work, we study the deblatting inverse problem from
the perspective of robust estimation of the latent object shape
(a binary mask) and appearance (a color image) without any
knowledge of the object blur. Similarities to blind deconvolu-
tion (BD) are evident, yet the task differs in several important
ways. The target scenario of most BD methods is a static
scene blurred by camera motion or incorrect focus. In the
deblatting problem, the object image and background are
blended together as the background is partially occluded by
the moving object. More importantly, the unknown object is
not represented by a standard rectangular image, as it is in
BD, but can have arbitrary shape which must be estimated
from the blurred input. In its full generality, the deblatting
problem deals with 3D object motion (including rotation),
which cannot be modeled by convolution. All these differences
make the deblatting problem a challenging endeavor as well
as a separate research topic rather than an application of BD.

The 3D case requires full 3D modeling of the object and
the camera projection onto the image plane, which is beyond
the scope of this work. Instead, we consider 2D deblatting
and extend our preliminary results in [3] by fully blind shape
estimation. We assume 2D objects undergoing arbitrary 2D
motion and rotation. The 2D case is general enough to model
some interesting 3D cases as well; in particular, 3D objects
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moving in a plane perpendicular to the camera optical axis
with imperceptible rotation or with in-plane rotation. We also
make an assumption that the background is known, which is
not restrictive if we use video sequences. The FMO tracking
methods [1], [2] show that the 2D approximation of many real
scenarios is locally valid and that the background image can
be inferred from a video sequence with sufficient accuracy.

The contributions of this work are:
1) We adopt the image formation model for moving objects

and propose a solution of the corresponding blind
inverse problem of deblatting restricted to 2D motion.
From a single image and known background we esti-
mate the object shape and appearance as well as its
motion blur including rotation. The proposed method is
quantitatively evaluated on a new dataset of real images
acquired by a highspeed camera.

2) We identify necessary conditions for solution unique-
ness, propose novel regularization terms, and discuss
similarities and differences with BD in terms of problem
solvability.

Three observations follow from the necessary conditions
for solution uniqueness that we demonstrate on examples:
(i) deblatting for color images is similar to multiframe BD
and is thus better posed than the same problem for grayscale
images, (ii) small blur can be detrimental to successful restora-
tion, which is in a stark contrast to BD, and (iii) uniform
background causes solution ambiguity.

In the rest of the paper, we discuss related work in detail,
formulate the problem and propose a solution, analyze and dis-
cuss necessary conditions for uniqueness, and finally evaluate
and compare the proposed solution.

II. RELATED WORK

The problem of BD has received considerable attention
by the image processing and computer vision community;
see surveys in [4], [5]. Most methods consider the space-
invariant case where one unknown blur degrades the whole
image. The key idea of robust algorithms is to tackle the ill-
posedness of BD by Variational Bayesian inference [6], [7]
and marginalization [8]. Coordinate descent methods search-
ing for the classical maximum a posteriori were repeatedly
proposed in parallel [9]–[12] and if augmented by various
edge-sharpening steps they tend to converge to the correct
solution. Later, unnaturally sparse priors were applied to
images and robustness of BD algorithms was improved even
more [13]–[17]. BD methods were extended in [18]–[20] to
cases where the convolution model is partially violated, e.g. in
saturated regions. Learning-based methods [21] indicate that
convolutional neural networks (CNN) can be trained to remove
unknown blurs directly from the blurred image. However,
sufficiently general learning-based methods for arbitrary blurs
and images are still missing.

More complex problems arise in the case of space-variant
BD, when the convolution kernel is a function of position.
Conventional approaches are based on the assumption that
space-variant blur can be efficiently parameterized. For exam-
ple, blur caused by camera motion is limited to six degrees of
freedom of rigid body rotation and translation [17], [22], and

the blurring operator is expressed as a linear combination of
a few basis vectors [23]. The space-variant case is currently
dominated by CNN approaches, e.g. [24]–[27]. Even more
general scenario is the so-called dynamic-scene deblurring,
where the degradation is caused by camera motion as well as
motion of the individual objects in the photographed scene.
This problem was initially addressed by an extension of
classical deblurring methods [28]–[30] but more recently using
end-to-end CNNs prevails [26], [31], [32].

Another studied scenario is the multiframe (sometimes
called multichannel) BD [33]–[35], which assumes multiple
images of the same scene each degraded by an unknown yet
different convolution kernel. Unlike in the single-frame BD
case, multiple observations provide the necessary constraint
to make the image restoration task well posed as was proved
independently in [36] and [37]. The main drawback is that
in many practical scenarios multiple observations of the same
scene are not available and even if they are, the images must
be registered first, which is difficult to achieve especially for
blurred data. The problem of misregistration was partially
alleviated in [38] by introducing robustness to translation.

Methods specifically designed for motion deblurring exist
yet they generally assume that the degradation is modeled
locally by a linear motion (straight line). One category of
such methods exploit the foreground-background blending
and work with the object blurred transparency map (alpha
matte) [39]. Blind deconvolution of the transparency map is
better posed, since the latent sharp map is a binary image.
The same idea applied to deblurring of moving objects was
proposed in [40], but the method is limited to pure rotation
and requires considerable user interaction. Another variation
was proposed in [41], where linear motion blur is estimated
locally using a relation similar to optical flow. The main
drawback of these methods is that an accurate estimation of the
transparency map using alpha matting algorithms such as [42]
is necessary and this is difficult to achieve, especially without
user input. A similar background-blending model but applied
to images with out-of-focus foreground was recently proposed
in [43]. Several methods specifically targeting restoration
of motion-blurred objects were proposed in [28]–[30], but
these methods do not fully model the foreground-background
blending and assume a binary transition between the (blurred)
object and the background, they are therefore applicable only
for small blurs. Some methods for motion deblurring exploit
the fact that autocorrelation increases in the direction of blur.
This was for example applied to deblurring objects moving
over a static background in [29] or for detecting camera motion
from the blurred image in [44]. Methods based on autocorre-
lation require a relatively large neighborhood to estimate blur
parameters, which means that they are not suitable for small
moving objects or if the background-blending is significant
due to large object motion.

III. PROBLEM FORMULATION

The image formation model for 2D deblatting assumes
an object moving in a plane perpendicular to the camera
optical axis and over a static background b. The object in
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the formation model is defined by its projection onto the 2D
image plane with a pair of variables ( f, m), where f is the
object 2D appearance and m is the object opacity channel –
real-valued mask m ∈ 〈0, 1〉. The appearance f is the image
of the object placed over a totally black (zero) background
and it is assumed to be fixed in the given image or video
frame. The opacity m allows us to correctly model pixels on
object boundaries (so called mixed pixels), semi-transparent
objects and even object shadow if it is modeled as a semi-
transparent shape cast by the object itself. For example, if the
object is an opaque sphere then f is a 2D disk and m has
ones inside, zeros outside and intermediate values on the disk
boundary. If the object is semi-transparent then m has values
less than one inside. For the purpose of initial formulation we
will consider grayscale images and translational object motion.
Color images and rotation will be discussed later. The acquired
image or video frame g is then expressed using convolution as

g = (1− h ∗m)b + h ∗ f, (1)

where h is the object motion trace (projection of the object
trajectory on the image plane). In this rotation-free case,
the trace is equivalent to the convolution kernel of the object
blur. We refer to the inverse problem of estimating h, f , and
m knowing only g and b as the deblatting problem. A visual
interpretation of the formation model is given in Fig. 2. Notice
that there is no restriction on the shape of h and therefore the
model allows complex trajectories, such as parabolic curves
due to gravity and non-smooth curves due to bounces.

Let us rewrite the above equation in a more general vector-
matrix notation. The convolution h ∗ f is replaced by a
multiplication of f by a general blur operator (matrix) H
determined by h, which performs the considered blur – in
our case caused by translational motion and 2D rotation.
We will occasionally use the notation h ∗ f = H f to denote
pure motion blur without rotation, in this case H denotes
convolution matrix. The roles of f and h are interchange-
able and the blur operation can be equivalently written as
H f ≡ Fh where the operator F is determined by f and
performs blurring of (a fixed) f according to the motion
parameters h. The parametrization of rotation blur h and its
implementation is described in the next subsection. For brevity,
we also introduce a background-subtraction image d ≡ g − b
and f̄ ≡ [ f T, mT ]T , which is the object appearance and
opacity combined into one column vector. The model (1) then
rewrites as

d = (F − BM)h = H f − BHm = A f̄ , (2)

where M is a blur operator analogous to F but corresponding
to m, B is a diagonal matrix with b on the main diagonal
(pixel-wise multiplication with b), and A ≡ [H,−BH].

Deblatting is an ill-posed problem requiring regularization
and feasibility constraints. We use total variation for the object
appearance, which enforces sparsity on image gradients ∇ f =
[∇T

x , ∇T
y ]T f . The blur h is of the same size as the input g

and is nonzero only along the object motion trace, which also
suggests sparsity promoting regularization. We assume that g
is not saturated and clipped. The variables h and f and m are
non-negative and f is bounded from above by the maximum

Fig. 2. Illustration of the acquisition model of the deblatting problem.
Top: Input to deblatting – image with blurred foreground object and separate
background image. Middle: Output of deblatting – motion blur (displayed as
simple motion PSF without rotation for simplicity), sharp foreground object,
and shape mask. Bottom: Components of the image formation model (1) –
blurred foreground and partially occluded background. All images are in
proper relative scale. Notice that the blur has the same size as the input image
and effectively encodes position of the object in the input. The foreground
object and shape mask are smaller than the input. Source images [45].

image intensity which we assume to be 1. In addition f
and m are coupled, since m is the image opacity and f is
the image intensity of the object if perceived over a zero
background. Above constraints are combined in our proposed
set of admissible values for f and m as

S = {( f, m) : m ∈ 〈0, 1〉, 0 ≤ f ≤ m} (3)

and illustrated in Fig. 3a. Note that the set is convex, which is
important. The deblatting problem formulated as a constrained
minimization then becomes

min
h, f,m

1

2
‖(F − BM)h − d‖22 + αh‖h‖1 + α f ‖∇ f ‖1

s.t. h ≥ 0, ( f, m) ∈ S. (4)

This optimization problem is efficiently solved using the
ADMM algorithm [46] as explained in the next section.

The variables can represent both grayscale and color images.
In the case of color images, f consists of three concate-
nated color channels [ f T

1 , f T
2 , f T

3 ]T and so does b and g,
while m and h are single-channel even in the color case.
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Fig. 3. The set S from eq. (3) of admissible values of pixel intensity f
and opacity m. (a) Single-channel grayscale case and (b) two-channel color
case. In the three-channel (RGB) color case, the set is an oblique polyhedral
pyramid in R

4.

The combined variable f̄ will have the form [ f T
1 , f T

2 ,
f T
3 , mT ]T . All operators in (4) must be modified accordingly

to operate on color images. The admissible set S for the color
case is an oblique polyhedral pyramid in R

4, which can not be
visualized, yet Fig. 3b shows the reduced two-channel case.

A. Extension to 2D Rotation

The acquisition model is extendable to 2D in-plane rotation
without introducing substantial conceptual changes. In this
section we describe how the motion and rotation blur is
parametrized and modeled so that the corresponding blur
operator remains linear.

Pure motion blur is traditionally modeled using convolution,
which is essentially a weighted superposition of finite number
of possible displacements of the sharp image f . In other
words, motion blur can be written as h∗ f =∑

i hi T i f where
T i is a (fixed) translation operator that shifts f to position
with offset i . The weights hi correspond to the intensities of
the convolution kernel (PSF) h and are estimated in the blur
estimation phase, whereas the family of admissible translations
{T i } is fixed and, in the traditional convolutional representa-
tion, determined by the dimensions of the (PSF) including its
natural discretization – the admissible displacements of the
object are constrained to the pixel grid of the image. The
model is therefore linear in hi .

We adopt the same strategy for representing motion-and-
rotation blur. The space of admissible rotations is discretized
into finite number of rotation angles, indexed by j , and we
construct a (fixed) family of corresponding rotation opera-
tors {R j }. The general blur operator is then decomposed as
a weighted combination of rotated and shifted copies of the
sharp image f as

H f =
∑

i j

hi j T i R j f. (5)

Motion and rotation blur of f is thus equivalent to pure
motion blur of pre-rotated f ’s. The weights hi j correspond
to intensities of the generalized blur PSF h and are subject
to estimation whereas the set of rotations angles is fixed and
determined beforehand – in this case the discretization of the
admissible rotations is less natural and must be determined
ad-hoc. The extended model therefore remains linear in hi j

and from mathematical perspective is equivalent, the only dif-
ference are its numerical properties, increased dimensionality,
and in the implementation, because H is no longer a block
circulant matrix and cannot be evaluated as efficiently.

In contrast, extension to 3D rotation is a significant concep-
tual change that would require modeling of f and m in 3D
and introducing their projection onto the image plane, which
is beyond the scope of this article.

IV. PROBLEM SOLUTION

Minimization of (4) is done in a coordinate-descent manner
by alternating between two minimization steps: h-step and
f m-step ( f and m are estimated simultaneously as the com-
bined variable f̄ ). ADMM allows splitting each of these opti-
mization problems into several easier-to-solve subproblems by
introducing substitutions by auxiliary variables and Lagrange
multipliers for the corresponding constraints. In the case of
minimization w.r.t. h (h-step), there is an auxiliary variable
v = h and the corresponding Lagrange multiplier a. For
the minimization w.r.t. f̄ ( f m-step), we have two auxiliary
variables w = ∇ f and z = f̄ with Lagrange multipliers
c and e, respectively. In both steps we then minimize an
augmented cost function:

1) h-step:

min
h,v

1

2
‖(F − BM)h − d‖22 + αh‖v‖1 + βh

2
‖h − v − a‖22

s.t. h ≤ 0. (6)

2) f m-step:

min
f̄ ,w,z

1

2
‖A f̄ − d‖22 + α f ‖w‖1 + β f

2
‖∇ f −w − c‖22

+φ(z)+ β f̄

2
‖ f̄ − z − e‖22. (7)

Minimization in the h-step consists of three update
equations:

h ← [(F − BM)T (F − BM)+ βh I ]−1

[(F − BM)T d + βh(v + a)] (8)

v ← max([h − a] − αh

βh
, 0) (9)

a ← a − h + v (10)

The first update equation (8) is a system of linear equations
that we solve with the conjugate gradient (CG) method.
The remaining two update equations are solved element-wise,
where (9) is the proximal mapping of �1 norm and (10) updates
the Lagrange multipliers.

Minimization in the f m-step introduces φ(·), which is a
function enforcing the constraint ( f, m) ∈ S where S is the
set of admissible values of f̄ in (3). It is defined as

φ(z) =
{

0 z ∈ S,

∞ otherwise.
(11)

Since the constraint is defined pixel-wise, minimization w.r.t.
z amounts to projection of a point onto the set S. We use
a fast version of Dykstra’s algorithm [47] to implement
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the projection, as S is an intersection of simple convex
sets (half-spaces).

Minimization in the f m-step then consists of five update
equations:

f̄ ←
(

AT A +
[
β f̄ I + β f∇T∇ 0

0 β f̄ I

])−1

×
(

AT d + β f

[∇T

0

]
(w + c)+ β f̄ (z + e)

)
(12)

w ← ∇ f − c

|∇ f − c| max(|∇ f − c| − α f

β f
, 0) (13)

z ← projS( f̄ − e) (14)

c ← c − ∇ f +w (15)

e ← e − f̄ + z (16)

The first update equation (12) is a system of linear equation
that we again solve with the CG method. The second and
third update equations are for auxiliary variables and they
are solved element-wise; (13) is the proximal mapping of
�1 norm and (14) is the proximal mapping of φ(·), which
is the projection onto S. The last two equations update the
corresponding Lagrange multipliers.

The algorithm contains several parameters related to regu-
larization and feasibility constraints. We chose their values by
a search using a small set of test images and for all experiments
we use the following values: α f = 10−3, αh = 1, β f = 10−2,
βh = 103, β f̄ = 10−3.

V. UNIQUENESS OF SOLUTION

Blind image deblurring (BD) is a long-studied problem in
image processing. Due to the image-blur coupling in the image
formation model, it is non-convex with a generally non-unique
solution. Deblatting is naturally similar to BD, though with
some interesting differences. In this section we discuss and
state some theoretical properties of the deblatting problem
related to solution uniqueness and we frequently compare
deblatting to the BD problem to highlight both similarities
and differences.

In our analysis we focus on the data-fidelity term of (4)
alone, as it corresponds to the physical properties of the
problem while the regularizers and constraints are added
mainly to improve its numerical properties. We consider the
formation model (1) in the discrete space and every variable
has a bounded domain denoted by dom and support denoted
by supp, e.g. supp f ⊆ dom f . We say that an image f
is compactly supported within its domain if increasing its
domain results in simple zero padding (i.e. the support can
be overestimated). We say that a blur h is irreducible if
factorization is possible only with a delta function δ, i.e.
h = s ∗ h′ only for s ∝ δ.

Note that the domain of variables is either determined by
the size of input data, e.g. in the case of the acquired image
g, or set by a user, e.g. in the case of the object appearance f
as it is not known in advance. For simplicity, we index pixels
in the image domain by a single index, e.g. the j -th pixel of
f is f ( j), and | dom f | denotes the number of pixels in the
domain.

Further, we make the following assumptions.
(a1) g, b, and h have the same bounded rectangular

domain dom g, f and h are compactly supported
with | dom f | � | dom h| and supp (h∗ f ) ⊂ dom g,
and all variables satisfy 0 ≤ g, b, h, f, m ≤ 1,
f ≤ m,

(a2) h preserves energy, i.e.
∑| dom h|

j=1 h( j) = 1,
(a3) h, f , and m are irreducible.

A tuple ( f̂ , m̂, ĥ), also shortly ( ˆ̄f, ĥ), is called a solution
for the given b and g if it satisfies (1). The first assump-
tion (a1) sets realistic domains for all variables. The second
assumption (a2) eliminates trivial equivalent solutions of the
form (α ˆ̄f, (1/α)ĥ). The third assumption (a3) eliminates
inherent ambiguity in the solution as it would be impossible
to determine whether the factor s belongs to h or f̄ .

A. No-Blur Solutions

We start the discussion assuming only grayscale images
and then conclude with color images. First notice that if the
background is zero (black), deblatting reduces to BD

g = h ∗ f (17)

as follows from (1) after substituting b = 0. In the standard
BD problem, f is the unknown sharp image with the domain
similar to the input g and its support is not compact, since
g is typically a cropped observation of some larger scene.
The blur h corresponding to, e.g. camera motion or out-
of-focus blur, is assumed to have compact support of size
smaller than dom f . In the deblatting problem the roles of
f and h are somewhat swapped. Image f is a moving object,
which is compactly supported (a1) and covers only part of
the input supp f ⊂ dom g. The same holds for m. The
blur h encodes the motion as well as position of the object
within the input frame, its domain is of the same size as the
input dom h = dom g, yet also compactly supported according
to (a1), i.e. the object trajectory is not cropped.

The standard BD is prone to spurious solutions, of which the
most notable is the so-called no-blur solution [15], where
the estimated sharp image is the input blurred image and
the estimated blur is a delta function. Note that the no-blur
solution satisfies (17) exactly. In deblatting the situation is
similar, yet due to the compact support of both f and h,
we have two no-blur solutions summarized in the following
proposition.

Proposition 1: The deblatting formation model (1) has two
unique no-blur solutions: ( f̂ , m̂, ĥ) =

1st kind: ( f ∗ h, m ∗ h, δ), (18)

2nd kind: (δ, δ,
( f ∗ h − b(m ∗ h))

(1− b)
). (19)

See Appendix for the proof. Note that these solutions satisfy
the positivity constraints.

Fig. 5 middle rows illustrate both no-blur solutions for
a grayscale input image in Fig. 4. The no-blur solution of
the first kind (18) contains the blurred appearance f ∗ h in
the estimated f̂ . This only occurs for vastly overestimated
dom f̂ that is large enough to accommodate supp ( f ∗ h).
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Fig. 4. Examples of an input image in color (left) and grayscale (right); best
viewed in color.

Setting dom f̂ by the user close above the true supp f pre-
vents this no-blur solution. However, if dom f̂ is overestimated
even slightly, other spurious solutions exist that are not exact
yet they might be potentially dangerous. They are of the form
( f̂ , m̂, ĥ) = (s ∗ f, s ∗ m, s† ∗ h) for some s of sufficiently
small support such that supp (s ∗ f ) ⊂ dom f̂ and s† being
an approximate inverse of s such that supp (s† ∗ h) ⊂ dom ĥ.
If the compactly supported approximation s† is replaced with
the exact inverse s−1, i.e. s−1 ∗ s = δ, then the solution
(s ∗ f, s ∗ m, s−1 ∗ h) will be exact. However, compactly
supported s might not have s−1 and even if it does then it has
infinite support, which will not fit into our bounded rectangular
domain. With the compactly supported approximation s†,
(s ∗ f, s ∗ m, s† ∗ h) is no longer an exact solution to (1)
yet it could still present a local minimum of (4).

The no-blur solution of the second kind (19) is another
potential problem as it cannot be eliminated even by properly
setting dom f̂ . The object appearance f̂ is a single pixel,
surely fitting inside dom f̂ , and the estimated blur ĥ con-
tains the whole blurred input which also fits in dom ĥ as
dom ĥ = dom g.

The regularizers and constraints in (4) help to avoid the
no-blur solution of the second kind (19) and the inexact
solutions of the form (s ∗ f, s ∗m, s† ∗ h). Sparsity-promoting
regularization ‖h‖1 penalizes the less sparse solution ĥ while
at the same time the bound constraints f, m ≤ 1 prevent the
tendency to decrease intensities in ĥ and compensate with
increased intensities in f̂ . If s ≥ 0 then s† is bound to have
negative values or vice verse, which implies that either f̂ or ĥ
will contain negative values and this is prohibited by the bound
constraints f, h ≥ 0.

To illustrate the phenomenon of multiple solutions, we con-
ducted an experiment similar to [12] but modified for deblat-
ting. We consider a simplified f m-step (7), in which we
assume that m is known and fixed, and define a cost function
of h as a marginal minimization of the data term in (4)

E(h)=min
f
‖h ∗ f −b(h ∗m)− d‖22 s.t. (a1) and (a2), (20)

where the constrained minimization w.r.t. f is carried out
by the ADMM algorithm similarly to the original f m-step.
To be able to visualize this cost function, we assume a 1D
toy case with h of length four, h = [h(1), h(2), h(3), h(4)]
and f of length two. Assumption (a2) reduces dimension-
ality of the problem by one since h(4) = 1 −∑3

k=1 h(k)
and so E(h) is really a function of three variables. Final
reduction to a 2D function is done by plotting minh(3) E(h).

Fig. 6a shows an example of E(h) plotted for deblatting
with h = [0.7, 0.2, 0.1, 0], f = [0.5, 0.5] and zero back-
ground b = [0, 0, 0, 0, 0]. The correct solution is marked
by circle at location [h(1), h(2)] = [0.7, 0.2]. Another exact
solution is at [ĥ(1), ĥ(2)] = [0.35, 0.45], which corresponds
to the no-blur solution of the second kind ĥ = f ∗ h =
[0.35, 0.45, 0.15, 0.05]. The no-blur solution of the first kind
is not present as | dom f̂ | = 2, which is the correct length
of f . The inexact solutions, if present, would cluster along the
valley connecting the correct solution and the no-blur solution
of the second kind.

When the acquisition is in color, we claim that the deblatting
problem is better posed than the classical BD. As in the
grayscale case, first notice that for a zero background the
acquisition model (17) reduces to

gi = fi ∗ h, (21)

where gi ’s denote different color channels. This is a mul-
tiframe blind deconvolution (MBD) problem, in which we
observe repeatedly a single h each time blurred by a different
kernel fi . In our case, the observed image is the object
trajectory and the blur kernels correspond to color channels of
the object appearance. In this aspect, deblatting fundamentally
differs from the classical BD. Each channel gi in BD brings
the same number of unknowns as equations since | dom fi | =
| dom gi |. Whereas in deblatting, the number of new unknowns
for every new color channel is less since fi is compactly
supported with | dom fi | < | supp ( fi ∗h)| (a1). The advantage
of MBD is that it is better posed [36] and the no-blur solution
of the second kind is not present.

Proposition 2: The deblatting formation model (1) with
K > 1 color channels and object appearance [ f1, . . . , fK ]
with fi �= f j for every i �= j has only a no-blur solution of the
first kind ([ f̂1, . . . , f̂K ], m̂, ĥ) = ([ f1∗h, . . . , fK ∗h], m∗h, δ).
See Appendix for the proof.

The no-blur solution for the color case is illustrated in Fig. 5
bottom row. We repeated the same 1D toy experiment in color
and calculated E(h) for f having two color channels, f1 =
[0.5, 0.5] and f2 = [0.8, 0.2]; see Fig. 6b. The plot shows a
unique minimum at the correct location without the spurious
no-blur solution of the second kind.

B. Image-Mask Ambiguity

Deblatting differs from classical BD by the presence of the
object shape mask m which is estimated together with the
object appearance f and causes ambiguity in the f m-step.

Recall that the acquisition model (2) of pure motion
blur (without rotation) using the combined variable f̄ =
[ f T , mT ]T is d = A f̄ = [H,−B H ] f̄ , where H is a
convolution matrix corresponding to h (a rotation-free special
case of H). Without regularization, the f m-step (12) has a
unique solution if the matrix A is full column rank since then
AT A is regular. Let us consider only square image domains
to simplify the notation and denote the number of pixels in
h (as well as b, g) and f (as well as m) as L2 = | dom h|
and P2 = | dom f |, respectively. The following propositions
define two notable situations when A is column-rank deficient.
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Fig. 5. No-blur solutions for a input image in Fig. 4: (1. row) correct solution,
(2. row) grayscale no-blur solution of the first kind, (3. row) grayscale no-blur
solution of the second kind, (4. row) color no-blur solution of the first kind.

Fig. 6. Toy experiment with two-pixel image and four-pixel blur, plot of the
cost function E(h) marginalized over h(3), h(4), and image f : (a) grayscale
image f , (b) color (two-channel) image f . Red circle indicates the correct
solution, red cross indicates no-blur solution of the second kind present only
in the grayscale case.

Proposition 3: Assuming a object with a rectangular
appearance f of size P× P moving along a continuous linear
trajectory h of length L, the matrix A = [H,−B H ] is column-
rank deficient if L ≤ P in the grayscale case and L ≤ P/3 in
the three-channel color case.

Proposition 4: The matrix A = [H,−B H ] is column-rank
deficient if the background is uniform.
See Appendix for the proofs.

Fig. 7. Image reconstruction error of direct inversion of f m-step without
regularization, averaged over 100 different images and backgrounds synthet-
ically blurred by linear motion blur; image range is [0, 1]. In grayscale
deblatting (solid gray) the blur length must exceed the object size (60px)
for both the appearance f and shape mask m to be unambiguously inferable.
In three-channel color case (solid red) one-third of the object size suffices.
When regularization (3) is used, the restoration is successful for much shorter
blurs (corresponding dashed lines).

The first proposition states that the necessary condition for
the f m-step to be well conditioned is to have linear blur
extending over the entire object size. In the color case, the con-
dition is weaker with the minimum blur length being over one
third of the object size. For general motion and/or rotation blur
the condition cannot be written in such simple form, because
the matrix rank depends on the motion structure as well as on
its length, e.g. discontinuous “stroboscoping” blur has better
conditionality than continuous motion blur of the same length.
The blur must be sufficiently long or complex and thus provide
enough snapshots of the object against different parts of the
background to have unambiguous estimation of f and m. The
problem is partially alleviated if the bound constraints (3) are
considered in the f m-step.

We conducted a synthetic experiment to verify these con-
clusions. We blurred an image by a motion blur of increasing
length and then performed estimation solely based on the data-
term of (4) by choosing the minimum-norm solution (i.e. using
pseudoinverse in the resulting linear system). The results of
image reconstruction error (averaged over 100 different images
and backgrounds) for varying blur length are in Fig. 7. The size
of f is 60×60 px (P = 60). In the grayscale case (solid gray)
the error decreases slowly as the blur length increases but does
not drop to zero until the the minimum blur length condition
is met and the system matrix becomes full-rank. In the RGB
case (solid red), the error vanishes at roughly 60/3+1 = 21 px
as stated in Proposition 3. We repeated the same experiment
under the bound constraints defined in (3), i.e. we solved
AT A f̄ = AT d, s.t. f̄ ∈ S; the results correspond to the
dashed lines in Fig. 7. Especially in the RGB case (red dashed
line) we see that the estimation is successful for much shorter
blurs (∼5 px), the ambiguity has been reduced by the bound
constraints. The ambiguity in deblatting for small blurs is
caused by the f -m coupling, a phenomenon that does not
exist in standard BD.

The estimation of f and m is also ambiguous when the
condition of Proposition 4 holds, i.e. when the background is
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Fig. 8. Effect of background content in blind deblatting. Top row: natural
image as background and corresponding estimation of motion-blurred image
and mask. Bottom row: the same image and blur on uniform background
(background from the top row averaged) – the results is significantly worse
due to ambiguity between f and m.

uniform. Although this analysis addresses the f m-step alone,
the necessary conditions translate to the fully blind estimation.
Fig. 8 shows a synthetic example of how uniform background
negatively influences the blind case.

We discussed two canonical cases of the system matrix rank
deficiency – due to H and B. Since the two are aggregated
in A, any combination of the two cases can happen in practice,
for example when only part of the the object motion is over
nearly uniform background or when the background contains
repetitive structures in the direction of the motion. Naturally,
if the system matrix is rank-deficient, there is infinite number
of possible solutions and the result will be determined by the
regularizers and initialization. Our intention was to provide
a deeper insight into the less intuitive property of deblatting
that a seemingly easier problem – small blur over simple
background – is in fact ill-posed when the shape of the object
is unknown. The proposed regularization partially alleviates
the problem in practice.

VI. EXPERIMENTS

A. Quantitative Experiments on the Test Dataset

To evaluate the proposed method, we created a dataset
containing images obtained by sliding a picture on a table
while taking a photograph from above. For the acquisition
we used a high-speed video camera with short exposure and
zero gap between consecutive frames (“360◦ shutter”). The
obtained video frames were then summed, without any other
processing, to simulate taking a single photograph of the object
motion with long exposure. This procedure is physically equiv-
alent to taking a long-exposure photograph with the advantage
that we also get the ground-truth unblurred appearance of the
object at all orientations, which we can use in the evaluation
of the deblurring results. Five physically different pictures
(see the second left column in Fig. 10) ranging in size from
150×100px to 240×170px were each photographed 15 times
while undergoing different motion ranging from about 10px to
130px in length; the dataset thus consists of 75 input images

Fig. 9. Results of blind object restoration on the dataset of real images
plotted as average PSNR over 5 images and 3 blur realizations.

in total. The error between the reconstructed picture and the
ground truth is measured in terms of PSNR and is evaluated
invariant to linear intensity transform, shift, and rotation
(all rotations present in the high-speed sequence were con-
sidered in the PSNR calculation).

We quantitatively compared our method with several recent
state-of-the-art methods for blind image deblurring: the
optimization-based method Pan16 [19], and the deep learning
methods Kupyn18 [24], Tao18 [26], and Gao19 [32]. Pan16 is
a robust method for uniform motion deblurring with extra han-
dling of outliers. Kupyn18 (“DeblurGAN”) is for general blind
deblurring and uses the GAN framework to produce high-
quality natural-looking images. Tao18 (“SRN-DeblurNet”) and
Gao19 are based on multiscale processing of the input and both
address the problem of dynamic scene deblurring, i.e. blur due
to complex unrestricted motion of objects as well as camera,
which is very similar to the scenario that we target with the
proposed method, although we consider much faster object
motion.

To achieve maximum performance we adjusted the input
images for each method to suit its particular needs.
Pan16 assumes that the input is uniformly blurred in the
whole area, this assumption is violated by the surrounding
and partially blended background. We therefore included this
method in two different variants. In the first case we used
this method only for blur estimation and cropped the input to
the central part containing mostly only the blurred foreground
(while still providing sufficiently large image for the given
blur length). To estimate the full-size foreground image we
then used the non-blind deblurring part of the method [3]
with the blur and shape mask fixed; this result is listed as
Pan16. In the second case we estimated the alpha matte of
the foreground object using modified method [42] (with max-
imally informative input scribbles provided with the help of
the high-speed sequence) and then extracted only the blurred
foreground from the composite input, which results in image
similar to Fig. 2 bottom-left. We then used Pan16 to deblur
this image; this result is listed as Levin08+Pan16. Due to

Authorized licensed use limited to: UTIA. Downloaded on November 02,2020 at 09:44:56 UTC from IEEE Xplore.  Restrictions apply. 



KOTERA et al.: RESTORATION OF FAST MOVING OBJECTS 8585

Fig. 10. Examples of images from the dataset and results of the evaluated methods with corresponding restoration PSNR below. The leftmost column shows
the input image and the motion blur length, which increases from top to bottom. Results of Pan et al. and the proposed method include estimated blur in top
left. In the case of the proposed method, the color in blur indicates estimated rotation.

extra outlier handling the method has a good chance of being
successful even if the preprocessing of the input is not perfect.

The deep learning methods skip explicit blur estimation and
output the sharp image directly. In this case we also cropped
the input to limit the amount of background while adhering to
the size requirements of each method. The image restoration
error was measured only in the central part of the foreground,
so that the results are not affected by any boundary effects.

The results in terms of restoration PSNR averaged over all
5 different picture cards are in Fig. 9, corresponding results per
each foreground image are in the supplementary. The results
are divided into 5 bins based on the blur length. For easier
comparison the chart also contains PSNR measured directly
on the blurred input (in gray). We can see that for small

blurs, all methods manage to improve the input to a certain
degree, the proposed method being superior. As the blur size
increases, the performance of Pan16 drops rapidly – it fails to
estimate the blur PSF correctly and the restored image then
contains increasing amount of deblurring artifacts, rendering it
worse than the blurred input itself. The combination of matting
and deblurring separately (Levin08+Pan16) performs better
for short and medium-length blurs, but the result strongly
depends on accuracy of the matting. To test the limits of
this approach we used the high-speed sequence as an oracle
to provide the best possible input and regularization for the
matting method. Regardless of the oracle, for longer blurs with
more prominent foreground-background blending the matting
fails a consequently so does the deblurring.
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Fig. 11. Comparison of the model with translational motion only and the model with both translation and rotation. From left to right: input with the amount
of rotation present, ground-truth image, result of the pure-translation model with PSNR and corresponding mask, result of the full model and corresponding
mask. The blur caused by rotation of the object is small compared to the translation blur, yet the performance is significantly weaker when rotation is neglected.

The performance of the deep learning methods deteriorates
less because they do not perform explicit algebraic inversion
and therefore escape the typical pitfall of classical methods,
but they are not trained to perform on such severe blurs and
as the blur length increases they start to return the blurred
input as output. The proposed method is visibly superior and
although its performance also gets progressively worse with
blur length, the result is still much improved over the input.
Fig. 10 contains several examples of results for different input
images from the dataset with varying blur lengths. It best
illustrates the behavior of each method and demonstrates the
effectiveness of the proposed method compared to the other
approaches. In conclusion, the evaluation shows that the task
of fast moving object deblurring is not correctly solved by
existing deblurring approaches and a specialized deblatting
method is necessary.

Our method estimates not only the object translational
motion but also its rotation. Fig. 11 demonstrates that in
practice this is a necessity. Results where rotation is included
in the model (two rightmost columns) are significantly better
than if the motion is approximated by pure translation even if
the total image rotation in the input is relatively small.

B. Qualitative Real-World Examples

We also tested the proposed method in a fully real-world
setting without known ground truth. As inputs we used either
still images from a DSLR camera or frames of 25fps or 30fps

Fig. 12. Motion deblurring results in real-world setting. From left to right:
input image, estimated appearance f and shape mask m.

sequences of a video camera (DLSR or GoPro) without any
preprocessing. The results of the first such experiment can
be seen in Fig. 12. The left column contains long exposure
pictures of cars driving by and the left two columns con-
tain restored images of the cars and corresponding masks,
respectively. The images suffer from deblurring artifacts but
nevertheless bring undeniable value over the inputs, for exam-
ple when attempting to recognize the make and model of
the cars. Similar examples are in Fig. 13 containing images
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Fig. 13. Other real-world deblurring examples – balls with nonlinear
trajectories (pingpong, floorball) or noncircular shapes (badminton, aerobie)
and falling objects (highlighter, box, key; rotated for visualization purposes).

Fig. 14. Temporal super-resolution of two video sequences. Left: Original
sequence (only selected frames displayed). Right: Temporal super-resolution
(selected frames). In the bottom-right corners of the pictures is a closeup on
one of the input frames (red outline) and results of deblurring (blue).

of various objects in flight. Notice the estimated trajecto-
ries or shapes of the objects (in case of badminton shuttle-
cock or aerobie). The objects undergo 3D rotation, which is

not included in our model, yet the reconstruction and motion
estimation are relatively successful in these cases, because
angular velocity is small compared to the camera shutter speed.

Final deblurring results are provided in Fig. 14 in the
form of a temporal super-resolution of a video sequence.
The images on the left are combined selected frames from
a video with a fast moving object (ball). Each frame was
processed by the proposed deblatting method and using the
estimated trajectory and appearance of the ball, the sequence
was resynthesized to simulate acquisition at higher framerate
(with shorter exposure). Closeups on the bottom right show
one of the input blurred frames (red outline) and result of
deblurring (blue outline).

VII. CONCLUSION

The problem of deblatting (deblurring and matting) is an
ill-posed problem that consists of estimating object shape,
appearance, and motion from an image in which the object
is blurred and blended with the background due to its motion.
We showed that the deblatting problem differs from the
standard blind deconvolution in several important aspects and
consequently cannot be solved by existing blind deconvolution
methods. The principal difference from blind deconvolution
lies in the shape estimation and the shape-appearance coupling
in the acquisition model. We derived necessary conditions for
solution uniqueness and defined the theoretical limitations of
deblatting that were demonstrated on synthetic experiments.

We proposed an effective optimization method for solving
the deblatting problem with arbitrary 2D translation and rota-
tion. Performance of the presented method was experimentally
validated on a new dataset, both quantitatively in comparison
with state-of-the-art BD methods and qualitatively on several
scenarios of real-world 3D objects with a limitation that the
motion is in a 2D plane. Extending the proposed method to
arbitrary 3D motion increases its practical usefulness and is
therefore of primary interest in our future work.

APPENDIX

Proofs of propositions.
Proposition 1: No-blur of the first kind – Direct substitution

of ( f̂ , m̂, ĥ) = ( f ∗h, m∗h, δ) into the image formation model
(1) results in (1− ĥ ∗ m̂)b+ ĥ ∗ f̂ = (1−h ∗m)b+h ∗ f = g,
which concludes that the solution is exact.

No-blur of the second kind – Substituting f̂ = δ and m̂ = δ
into the image formation model (1) results in (1− ĥ ∗ m̂)b+
ĥ ∗ f̂ = (1− ĥ)b+ ĥ. Being an exact solution (1− ĥ)b+ ĥ =
(1 − h ∗ m)b + h ∗ f from which follows that ĥ = (h ∗ f −
(h ∗ m)b)/(1− b).

Proposition 2: No-blur of the first kind is proved
similarly as in Proposition 1 by direct substitution of
([ f̂1, . . . , fK ], m̂, ĥ) = ([ f1∗h, . . . , fK ∗h], m ∗h, δ) into (1).

The variable h is a single-channel image and f is a
K-channel image. The no-blur solution of the second kind is
not present if fi �= f j since (h∗ fi −(h∗m)bi ) �= (h∗ f j−(h∗
m)b j ) except a pathological case when (h∗ fi −(h∗m)bi ) = 0
∀i , which corresponds to an object of the same color as the
background.
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Proposition 3: Grayscale case – Matrix A = [H,−B H ],
where H is the convolution matrix of size L2×P2 and L � P
according to (as1). A is of size L2 × 2P2 and has more rows
than columns. If h is a linear motion blur of length L then
the number of nonzero rows in H is (L − 1)P + P2. Matrix
A is column-rank deficient if the number of nonzero rows is
less than the number of columns, i.e. (L − 1)P + P2 < 2P2

from which follows L < P + 1.
Color case (K = 3) –

A =
⎡
⎣H 0 0 −B1 H

0 H 0 −B2 H
0 0 H −B3 H

⎤
⎦

is of size 3L2 × 4P2 and is column-rank deficient if
3((L − 1)P + P2) < 4P2 and thus L < P/3 + 1.

Proposition 4: If the background is uniform with color ξ
then A of size L2 × 2P2 becomes [H,−ξ H ] and has rank at
most P2. Since L > P , A is column-rank deficient.
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