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PREFACE

Delivering a Mathematical Logic course is always a challenge. Students enroll the course

expecting to learn what “logical thinking” is and what the infallible rules of mathematical and

rational thinking are. Instead, they get boring stuff like Zorn’s lemma, torsion-free divisible

Abelian groups, or dense linear ordering. They probably have heard of the infamous incom-

pleteness theorem, and are eager to know how it destroys mathematics and rational thinking in

general. Instead, they get the technicalities of Gödel’s theorems and a page-long list of conditions

under which they apply. The Mathematical Logic course covers a large and diverse segment of

mathematics, and a significant part comes in the form of problem-solving. The weekly assignments

play another important role: a crucial part of learning mathematics is gaining intuition about how

the various concepts operate and interact, which, much like learning to drive a car, cannot be

done without hands-on experience, and trial and error.

Problems in this volume have been collected over more than 30 years of teaching under-

graduate students Mathematical Logic at Eötvös Loránd University, Budapest. The problems

come in great variety: routine applications of a newly introduced technique, checking whether

the conditions of a particular theorem are really necessary, extending or finding the limitations of

various methods, to amusing puzzles and interesting applications of established results. They

range from easy questions and riddles to proving hard theorems when all the necessary ingre-

dients are—hopefully—available.

Several of the problems are part of the “mathematical folklore”: well-known ones often used in

teaching that everyone changes or twists slightly to fit their taste and the problem to illustrate.

They are like good jokes or anecdotes that one keeps telling to new guests at a dinner party,

although no one is sure exactly where they have come from. Others are extensions, details, or

crucial points of the often hard and ingenious proofs of major theorems. Still others are based on

solutions submitted by our students where an unexpected, clever method was used, or where the

proposed solution had an interesting flaw or omission. And, some of the problems originated

from intriguing questions from our students.

Chapters 1–4 contain problems from supporting fields: set-theoretical constructions, inter-

esting applications in (perfect information) games, basic (and not so basic) results in formal

languages, and recursion theory. Mathematical Logic proper is covered in Chapters 5–11 with

problems in propositional and multi-valued logic, compactness and derivation; basic properties

of first-order logic, derivation, compactness and completeness, elementary equivalence, and the

ultraproduct technique. Chapter 10 covers arithmetics and incompleteness, and Chapter 11

touches on two advanced topics: the insufficiency of the Ehrenfeucht–Fraïssé game, and the

zero-one law of random (universal) graphs.

The book concludes with solutions to all of the problems. We strongly encourage the reader to

try to solve the problems before reading the solution included. Someone pointed out that there is

a difference between doing push-ups and watching someone doing them (however fortunate it
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would be if it was otherwise!), which also seems to apply to mental exercise. The problems are

organized such that ideas and techniques from previous ones can often be used to solve the next

problem, so looking at the problems and their solutions leading up to the current one can be a

good way of getting some inspiration.

One of the first homework problems in the Mathematical Logic course is a famous sorosites
created by Lewis Carroll, so let us start our collection with it.

THE PIGS AND BALLOONS PUZZLE

The following facts are known:

(1) All, who neither dance on tight ropes nor eat penny-buns, are old.

(2) Pigs, that are liable to giddiness, are treated with respect.

(3) A wise balloonist takes an umbrella with him.

(4) No one ought to lunch in public who looks ridiculous and eats penny-buns.

(5) Young creatures, who go up in balloons, are liable to giddiness.

(6) Fat creatures, who look ridiculous, may lunch in public, provided that they do not dance on

tight ropes.

(7) No wise creatures dance on tight ropes, if liable to giddiness.

(8) A pig looks ridiculous, carrying an umbrella.

(9) All who do not dance on tight ropes, and who are treated with respect are fat.

Show that no wise young pigs go up in balloons.
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SPECIAL SET SYSTEMS 1

L. Csirmaz and Z. Gyenis, Mathematical Logic, Problem Books
in Mathematics, https://doi.org/10.1007/978-3-030-79010-3_1

1

A set system is a collection of subsets of a set X . Frequently X is called the
ground set or base set of the set system. Set systems are often denoted by
calligraphic letters such as F or A.

1.1 Definition (Families of sets). For sets X ,Y we define the following
notions:

• ℘(X ) is the set of all subsets of X , called the powerset of X .

• [X ]κ is the family of all subsets of X of cardinality κ.

• [X ]<κ is the family of all subsets of X of cardinality less than κ. In
particular, [X ]<ω is the family of all finite subsets of X .

• Y X is the family of all functions f :Y → X , i.e., dom( f ) = Y and
ran( f ) ⊆ X .

Notation. The set of natural numbers, integers, rationals, and real num-
bers are denoted by N, Z, Q, and R, respectively.

Zorn’s lemma is an indispensable tool which will be used through this
book.

1.2Definition. A subset Q of the partially ordered set P is totally ordered,
or chain, if every two elements in Q are comparable.

1.3 Theorem (Zorn’s lemma). Every partially ordered set P , in which
every chain has an upper bound in P , contains a maximal element.

1.1 BASIC CONSTRUCTIONS

1.4 Definition. The set system F is almost disjoint if any two different
members of F intersect in a finite set: for A,B ∈F , |A∩B | <ω.

1. Show that there is an almost disjoint family of cardinality continuum on
any (infinite) countable set.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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1 Special Set Systems

1.5Definition. The set systemF of subsets of X is maximal with respect
to property Φ, if F has property Φ, but for every A ∉F , F ∪ {A} does
not have property Φ.

2. (a) Let F be a countable almost disjoint family on an infinite set X . Can
F be maximal, i.e., no subset of X can be added to F so that it remains
almost disjoint?

(b) Invent a condition which ensures that a countable almost disjoint family
satisfying this condition is not maximal.

(c) Show that on a countable set one can always find an almost disjoint
family of cardinality ℵ1.

1.6 Definition. F is κ-almost disjoint, if for different A,B ∈F , |A∩B | <
κ.

3. Let κ be a regular infinite cardinal. Show that there is a κ-almost disjoint
family F of cardinality κ+.

4. Let κ be an infinite cardinal, and F ⊆℘(κ) be an almost disjoint family.
Show that |F | ≤ κω. Show that there exists an almost disjoint family of this
size.

1.7 Definition. The family F of subsets of X is independent if picking
finitely many different Ai ’s fromF and 0–1 numbers εi , the intersection
of the sets Aεi

i is not empty (here A1
i = Ai and A0

i is X à Ai ).

5. Prove that there is an independent family of subsets of ω of size 2ω.

Hint. Consider Ar = {p : p is a polynomial with rational coefficient and
p(r ) > 0}. Alternatively, for an element A of a set family on ω consider the
set of finite subsets of ω that intersect A.

6. Prove that on an infinite set of cardinality κ there is an independent family
of size 2κ.

Hint. Assume that the members of the family are indexed by subsets of κ.
Construct the elements of a member of the family from finite subsets of κ
as the functions which map all subsets of such a finite subset to {0,1}.

1.8 Definition. F has the finite intersection property (FIP) if the inter-
section of finitely many elements of F is never empty. In particular, the
empty set cannot be an element of F in this case.

7. Let A be an infinite set, X be the collection of finite subsets of A, moreover
for every a ∈ A let Xa = {x ∈ X : a ∈ x}. Show that U = {Xa : a ∈ A} has the
finite intersection property.

2



1.2 Counterexamples

1.2 COUNTEREXAMPLES

8. Let |X | = κ be an infinite cardinal. Does there exist an FIP familyF ⊆℘(X )
with |F | = κ so that every element of X is contained in finitely many elements
of F only?

9. Let X be an infinite set. Construct an infinite family of infinite subsets of
X so that the intersection of any two members of the family has infinitely
many elements, while the intersection of any three elements is empty.

10. For each n ≥ 2 construct a family F of subsets of the infinite set X so that
the intersection of at most n elements from F is always infinite (non-empty),
but the intersection of any n +1 elements is always empty.

11. Give a property Φ and a family F of subsets of some set X having property
Φ such that F cannot be extended to be maximal with respect to Φ.

1.3 SET SYSTEMS OF FUNCTIONS

12. (a) Construct a family F of continuum many functions from ω to ω such
that for any two (different) f , g ∈ F , the set {i ∈ω : f (i ) = g (i )} is finite.

(b) Construct a family as in (a) with the additional property that all functions
in F take all values in ω.

13. Let An be a finite set of cardinality at least 2n . Construct a family F ⊆∏
n<ω An of continuum many elements such that for any two different f , g ∈ F

the set | f ∩ g | is finite.

14. Construct continuum many permutations of ω so that every two different
permutations coincide on at most finitely many places.

15. Let κ be an infinite cardinal. Show that there exists a family F of functions
κ→ κ such that |F | = κ+, and for any f , g ∈ F , |{ξ< κ : f (ξ) = g (ξ)}| < κ.

16. Let κ be an infinite cardinal. If f and g are different functions from κ to
κ, then D( f , g ) is the set where they differ:

D( f , g ) = {ξ< κ : f (ξ) 6= g (ξ)}.

Construct a family F of functions of cardinality 2κ such that the family

{D( f , g ) : f , g ∈ F }

has the finite intersection property.

17. Let κ be an infinite cardinal. Show that there are 2κ many permutations of
κ (i.e., one-to-one mapping of κ into itself) so that the family {D( f , g ) : f , g ∈
F } has the finite intersection property.

3



1 Special Set Systems

18. Let D ⊆ [κ]κ be a κ-almost disjoint system. Show that there is family F of
functions κ→ κ of cardinality |D| such that for any two different functions
f , g ∈ F , |{ξ< κ : f (ξ) = g (ξ)}| < κ.

19. Let κ be an infinite cardinal. Give a set X of cardinality κ and 2κ many
functions X →ω so that no matter how finitely many of the functions are cho-
sen, say f1, . . . , fn ∈F , one can always find an x ∈ X such that f1(x), . . . , fn(x)
are all different.

20. Give a sequence of length ω1 of functions fα : ω→ω such that fβ domi-
nates fα whenever α<β<ω1, that is, for all but finitely many n ∈ω we have
fα(n) < fβ(n).

1.4 FILTERS

Let 〈P,≤〉 be a partially ordered set. In this section we assume that P has a
maximal element but has no minimal element.

1.9 Definition. F ⊆ P is a filter if (a) whenever p ∈ F and q ≥ p then
q ∈F ; and (b) when p and q are in F then there is an r ∈F for which
r ≤ p and r ≤ q .
The subset D ⊆ P is dense if for every p ∈ P one can find a q ∈ D such
that q ≤ p.

21. Is it true that every filter on P can be extended to a maximal filter?

22. Is it true that if q ∈ P is not maximal then there is a filter which avoids q?

23. Construct a partially ordered set P and dense subsets of P such that
every filter on P avoids at least one of the dense subsets.

24 (Rasiowa–Sikorski Theorem). Let {Di : i ∈ω} be dense subsets of a par-
tially ordered set P . Show that there is a filter F which intersects all Di .

1.10 Definition. Let G be a group. A family F of subgroups of G is a
normal filter if the following properties hold:

• F is not empty and the one-element subgroup is not in F ;

• H1, H2 ∈F then H1 ∩H2 ∈F ;

• if H1 ∈F and H1 is a subgroup of H2 then H2 ∈F ;

• if H ∈F and g ∈G arbitrary group element, then g H g−1 ∈F .

25. Show that every normal filter can be extended to be a maximal one.

26. Is it true that if H is a non-trivial proper subgroup of G then there is a
maximal normal filter containing H?

4



1.5 Ultrafilters

27. Let U be an infinite set and G be the symmetric group of U , that is,
elements of G are the permutations of U and the group operation is the
composition. For a finite A ⊂U the subgroup HA is the pointwise stabilizer
of A: HA = {π ∈G : π(a) = a for all a ∈ A}. Show thatF = {H : HA is a subgroup
of H for some finite A} is a normal filter.

1.5 ULTRAFILTERS

1.11 Definition. F ⊆ ℘(X ) is a filter over X if the following properties
hold.

• ;∉F and F 6= ;.

• If A,B ∈F then A∩B ∈F (closed under intersection).

• If A ∈F and A ⊂ B ⊆ X then B ∈F (closed upward).
Each filter has the FIP. The subfamily B ⊆F generates the filter F if
each element of F is a superset of some element in B: F = {A ⊆ X : A ⊇
B for some B ∈B}. We say that F is trivial or principal if it is generated
by a single set, otherwise it is non-trivial.

1.12 Definition. F is an ultrafilter over X if it is a filter and for each
A ⊆ X exactly one of A and X − A is in F .

28. Show that a set system which is maximal with respect to the finite inter-
section property is an ultrafilter.

29. Show that every set system with the finite intersection property can be
extended to a maximal one.

30. Show that X is finite if and only if all ultrafilters on X are trivial. Prove
that no non-trivial ultrafilter can contain a finite set.

31. Let U be an ultrafilter on X , and let X =⋃∗
i∈n Xi be a finite partition of X .

Show that there exists exactly one i ∈ n such that Xi ∈U . What can be said
about non-finite partitions?

32. Suppose ;∉F ⊆℘(X ) satisfies the following assumption: If X =⋃∗
i∈n Xi

is a finite partition, then there is exactly one i ∈ n such that Xi ∈F . Does it
follow that F is an ultrafilter?

33. For an infinite cardinal κ show that there are 22κ
many ultrafilters over κ.

Hint. Use Problem 6.

34. Let U be an ultrafilter on ω and π be a permutation of ω (i.e., one-to-one
function from ω onto ω). For X ⊆ ω, πX is the image of X , and πU is the
family of the images of the elements of U . Show that for some non-trivial π
we have πU =U .

5



1 Special Set Systems

35. Are there two non-trivial ultrafilters U and V on ω such that πU 6=V for
every permutation π of ω?

36. If U1, . . . ,Un are non-trivial ultrafilters on ω, then there is some infinite,
co-infinite A ∈U1 ∩ . . .∩Un .

37. Let F ⊆℘(X ) be a family of subsets of X , and Y ⊆ X . The trace of F on Y
is

{Z ∩Y : Z ∈F }.

Show that the trace of an ultrafilter on Y is either an ultrafilter, or the family
of all subsets of Y .

Let U be an ultrafilter on X , and let V = {Y ⊆ X : the trace of U on Y is an
ultrafilter}. Does V have some special property?

38. Let f : ω→ω be an injection, i.e., f (i ) 6= f ( j ) whenever i 6= j . Let U be
an ultrafilter over ω, and V = { f −1(A) : A ∈U }. Find a necessary and sufficient
condition for V to be an ultrafilter.

1.13 Definition. A subset U of a Boolean algebra B is an ultrafilter if for
all a,b ∈U and c ∈ B we have a ∧ b ∈U ; a ∨ c ∈U , and exactly one of c
or −c is in U .

39. Establish a connection between ultrafilters on B and homomorphisms
f : B → 2.

Notation. B∗ denotes the set of ultrafilters on the Boolean algebra B
and for x ∈ B we let Nx = {U ∈ B∗ : x ∈U }.

40 (Stone’s Representation Theorem). Prove that each Boolean algebra is
isomorphic to a suitable subalgebra of the power set of a set.

Hint. Find a suitable subalgebra of ℘(B∗).

41. Show that {Nx : x ∈ B} generates a zero-dimensional, compact and Haus-
dorff topology on B∗.

42. Prove that U ⊂ B is trivial if and only if it is an isolated point of B∗. Does
it follow that every infinite B∗ contains a non-trivial ultrafilter?

1.14 Definition. Let X be a topological space and F an ultrafilter over
X . p ∈ X is a limit point of F if every neighborhood of p belongs to F .

43. Give an example of a topological space X and a non-trivial ultrafilter F
over X such that (a) F has a limit point; (b) F does not have a limit point.

44. Let X be a topological space and F be an ultrafilter on X . Show that

(a) X is Hausdorff if and only if each convergent ultrafilter has a unique limit
point.

(b) X is compact if and only if every ultrafilter has some limit point.

6



1.5 Ultrafilters

45. Let W be a family of subsets of ω. The set X ⊆ω is in the closure of W if
for all finite F ⊆ω there exists a Y ∈W such that X ∩F = Y ∩F .

(a) What is the closure of an ultrafilter U over ω?

(b) Show that all ultrafilters U on ω are dense in itself, i.e., all elements of U
are in the closure of the other elements of U .

46. Give a topological space T and an open cover O of T which has no
minimal subcover: from any subcover one can leave an open set so that it
remains a cover.

1.15Definition. Let U be a non-principal ultrafilter on ω and (xn)n<ω be
a bounded sequence of real numbers. The ultralimit of the sequence is
x ∈R if for all ε> 0 we have

{
n ∈ω : |x −xn | < ε

} ∈U .

47. Let An (n <ω) be a partition of ω into infinite sets. Construct an ultrafilter
U on ω such that for all n ∈ω, An ∉U and no X ∈U meets each An in a finite
set.

48. Prove that the ultralimit x of every bounded sequence (xn)n<ω of real
numbers exists and is unique. Show that x is a (traditional) limit of a sub-
sequence of (xn)n<ω. Is there always an X ∈ U such that the subsequence
(xi )i∈X converges to x?

49. Let U be a non-trivial ultrafilter on ω and consider the set

A =
{∑

i∈X

1

2i+1
: X ∈U

}
.

Can A be Lebesgue measurable? If yes, what is the measure of A?

1.16 Definition. Let G be an (infinite) Abelian group. For subsets of G
define A+B = {a +b : a ∈ A and b ∈ B}, and A−a = {x −a : x ∈ A}. If U
and V are ultrafilters on G , then let

U +V = {X ⊆G : {a ∈G : X −a ∈U } ∈V}.

50. Which Abelian groups G admit a non-trivial translation-invariant ultra-
filter U , i.e., for all a ∈G , X ∈U iff a +X ∈U?

51. Is it true that U +V is always an ultrafilter?

52. Is it always the case that U +V = V +U? What about (U +V)+W =
U + (V +W)?

53. Is it true that for every U and V one can find a W with (a) U +W = V ;
(b) W +U =V?

7



1 Special Set Systems

54 (Ramsey theorem). All k-element subsets of the natural numbers ω are
colored by one of n different colors. We want to show that there is an infinite
homogeneous set for some color (i.e., an infinite A ⊆ω all k-element subsets
of which share the same color). To this end, let U be a non-trivial ultrafilter
on ω, and let the color of the k −1-element subset {i1, . . . , ik−1} be e, if for
ultrafilter-many ik , the color of the k-element set {i1, . . . , ik−1, ik } is e.

Complete the proof.

55 (Sierpiński, 2κ 9 (3)2
κ). Color edges of the complete graph with ω many

colors (a) on ω1 vertices (b) on continuum many vertices so that no triangle
becomes homogeneous.

56 (Sierpiński, 2ω 9 (ℵ1)2
2). The complete graph G is defined on the set of

real numbers R. The edges of G are colored by two colors as follows. Let ≺
be a well-ordering on R, and color the edge between the points x < y red if
x precedes y in the well-ordering, and color it blue otherwise. Show that a
homogeneous subset of G is at most countable.

1.17 Definition. An ultrafilter U on κ is regular if there exists E ⊂U such
that |E | = κ and for all ξ ∈ κ the set {e ∈ E : ξ ∈ e} is finite.

An ultrafilter U on κ is uniform if for all A ∈U we have |A| = κ.

57. For an infinite cardinal κ, construct a regular ultrafilter on κ.

Hint. Replace κ with [κ]<ω and for X ∈ [κ]<ω consider the sets

eX = {
Y ∈ [κ]<ω : X ⊆ Y

}
.

58. (a) Show that every regular ultrafilter is uniform, as well.

(b) Prove that each non-trivial ultrafilter on ω is regular.

59. (a) Construct a non-trivial, non-uniform ultrafilter on every uncount-
able cardinal.

(b) Construct a non-regular ultrafilter on every uncountable cardinal.

60. Show that there are 22κ
regular ultrafilters over an infinite κ.

Hint. Use problem 5.
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GAMES AND VOTING 2
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9

2.1 GAMES

2.1 Definition. A strategy is a function which tells from all previous
moves what the next move should be. A positional strategy is a strategy
where the suggested move depends on the position of the game only
and not on the way previous moves led to that position.

61. Let F ⊆℘(ω) be a collection of subsets of ω and play the game G(F ) as
follows. Two players, I and II, take turns choosing finitely many previously
unchosen elements of ω. After infinitely many moves, player I picked A ⊆ω

and player II picked B ⊆ω. If A is in F , then player I wins, otherwise, player
II wins.

Which player can have a winning strategy in the following games?

(a) F contains all infinite sets A ⊆ω such that every element of A is odd.

(b) F is the collection of all sets containing at least twenty primes.

(c) F contains all sets that contain all but finitely many of the even numbers.

62. Let U be a fixed non-trivial ultrafilter on ω. Two players, I and II, are
playing the following game. They pick alternately elements of ω in ω many
steps; no number can be picked twice. When the game ends, the set of
numbers picked by I is A, and that of picked by II is B . I wins the game if
A ∈U , and II wins if B ∈U , otherwise the game is a draw.

(a) Show that II cannot have a winning strategy.

(b) Show that I does not have a winning strategy.

63. Show that in the ultrafilter game of Problem 62 neither player has a
strategy which guarantees a draw. In other words, if either player plays by a
strategy, the other can win against it.

Hint. If they play three games simultaneously, II can win at least one of
them.
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2 Games and Voting

64. Let A ⊆ [0,1]. Players I and II play the following game. They pick the
digits of the real number 0.a1a2a3 . . . alternately; odd digits are determined
by I, even digits by II. I wins if the formed number is an element of A, and II
wins if it is not.

(a) Suppose II has no winning strategy (for a suitable A). Then I can play so
that after his steps II still has no winning strategy. Give a set A so that I
playing this strategy loses.

(b) Show that if A is open or closed, then some player has a winning strategy.

(c) Prove that for countable A, Player II has a winning strategy.

(d)∗ Construct a set A so that no player has a winning strategy.

Hint. Enumerate all the possible strategies and define the set A by transfi-
nite recursion.

65. Let B be the complete infinite binary tree. Players I and II agree on a
collection A of (full) branches of B , and place a token at the root of B . During
the game the players move alternately. Player I can move the token higher
along any branch to a new node, or leave it where it is. Player II must move
the token exactly one level higher. When the game finishes, the token travels
along a branch. Player I wins if this branch is in A.

(a) Show that if A is countable then II has a winning strategy.

(b)∗ Show that if II has a winning strategy then A is necessarily countable.

Warning. The strategy might not be positional: the suggested move may
depend on all previous moves, not only on the node where the token is.

(c) If I has a winning strategy then |A| has cardinality continuum.

(d) Assume A has the property that whenever x ∈ A then there is an initial
segment s of x such that every full extension of s belongs to A. Show in
this case that some player has a winning strategy.

66. I and II are playing a generalized 5-in-a-row game (Gomoku). Given are
a set B and a collection F of finite subsets—the “winning sets”—of B . The
players claim elements of B alternately in ω steps. The first to move is I, and
he wins the game if he can claim all elements of some winning set in F .

An n-move strategy for II is a function which tells, for each k ≤ n, the field
II should occupy given the sequence of the first k fields occupied by I in the
first k moves. We know that for all n there is a strategy Sn for II of at least
n-move such that if II plays according to Sn then I does not win before the
n-th move.

Let U be a non-trivial ultrafilter on ω, and let II play as follows. Assume it
is the k-th move, and I occupied the fields b1, . . . ,bk so far in this order. For
each field b ∈ B let Ib be the set of all indices n ∈ω for which the strategy Sn

advises b as the k-th move after playing b1, . . . ,bk . If Ib is in U for some b ∈ B ,
then II should occupy b. If none of them is in U , then II can occupy any field
of her choice.

Show that playing so, II never loses the game.
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2.2 Voting

67. Let Ai be propositional variables for i ∈ω, and Γ be a set of propositional
formulas using these variables. Players I and II set the truth value of the
variables alternately. I wins the game if at the end all elements of Γ evaluate
to true, otherwise the winner is II.

(a) Show that either I or II has a winning strategy.

(b) Construct a game where Γ is satisfiable, but II wins the game.

2.2 VOTING

In a firm the board of directors are voting on a proposal which has several
variants. Each member casts his or her vote on one of the variants. A
voting scheme is a function v :V M →V where V is the set of the variants
and M is the set of board members. The vote for all board members is
an element of V M , and v tells the outcome for all possible distribution of
votes. The scheme v is fair if it has the following properties:

• if every vote goes to the same alternative, then the result is that alter-
native;

• if every vote is changed, then the outcome, as determined by v,
changes as well.

Consider the following familyF of subsets of M : if the outcome (according
to v) of a particular voting is x, then the set of those members who voted
for x is in F .

68. Suppose |V | ≥ 3, and let v be a fair voting scheme.

(a) Show that F is an ultrafilter on M .

(b) Show that if M is finite then every fair voting scheme is “autocratic,” i.e.,
there is a single board member whose vote determines the outcome.

(c) Show that neither (a) nor (b) remains true if |V | = 2.

69. Describe all fair voting schemes when V is at least 3 and finite, but M is
an infinite set.

2.2Definition. Let Gi = (Vi ,Ei ) be graphs for i ∈ I . The product of these
graphs is defined on the vertex set V =∏

i∈I Vi , and two vertices in V
are connected if for each i ∈ I their i -th coordinates are connected in
Gi .

70. Consider the product K I
n =∏

i∈I Kn , where Kn is the complete graph on
n ≥ 3 vertices. Show that the chromatic number of this product is n, and
describe all correct n-colorings of K I

n .
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An alphabet is a finite set Σ of symbols. A word is a finite sequence of
symbols, including the empty sequence which is denoted by λ. The set of
words over Σ is denoted by Σ∗, and it can be considered as the universe of
the free semigroup generated by Σ with λ as the unit element. The length
of w , denoted as |w |, is the number of the symbols in it. The concatenation
of two words is denoted by writing them next to each other. The reverse of
the word w = x1 . . . xn is wR = xn . . . x1.

3.1 Definition (Language). A (formal) language over Σ is a subset of Σ∗.

3.2 Definition (Operations on languages). On languages over the alpha-
bet Σ the usual operators are the following:

• Union: L1 ∪L2 is the set-theoretical union of L1 and L2. Frequently
this operation is written as L1|L2.

• Concatenation: L1L2 = {w1w2 : w1 ∈ L1, w2 ∈ L2}.

• Kleene star: L∗ = {λ}∪L∪L2 ∪L3 ∪ . . ..

3.1 REGULAR LANGUAGES AND AUTOMATA

3.3 Definition (Regular languages). The family of regular languages
over the alphabet Σ is defined recursively as follows:

• ; and {λ} are regular.

• For each a ∈Σ, {a} is regular.

• If A,B are regular, then so are A|B , AB , and A∗.

Generation of regular languages are described by regular expressions.

3.4 Definition (Regular expressions). Given a finite alphabet Σ we de-
fine the set of regular expressions as follows:

• ;, λ, and a for each a ∈Σ are regular expressions.

• If σ and τ are regular expressions, so are (σ|τ), (στ), and (σ)∗.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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3 Formal Languages and Automata

Whenever it is clear we omit the parentheses. For example, a|b∗ is the
language {a,λ,b,bb,bbb, . . .}, while (a|b)∗ is the set of all words over the
alphabet {a,b}.

3.5 Definition (Deterministic Finite Automaton, DFA). A deterministic
finite automaton over the finite alphabet Σ is a tuple A = 〈Q,S,F,δ〉,
where Q is the non-empty finite set of states, S ∈Q is the starting state,
F ⊆ Q is the set of halting states, and δ : Q ×Σ → Q is the transition
function.

Any word w ∈ Σ∗ acts on A as follows. Start from the initial state S,
and apply the transition function to the actual state on the next symbol
(from left to right) of w to get the next state. The word w is accepted
by A if w moves the automaton into a final state (i.e., an element of F ).
The language generated or accepted by A is

L(A) = {w ∈Σ∗ : w is accepted by A}.

71. (a) Show that every finite language L is generated by some DFA.

(b) Show that every finite language is regular.

72. Let L1,L2 be regular. Does L∗
1 ∩L∗

2 = (L1 ∩L2)∗ always hold?

73. Write the following languages over the alphabet Σ= {a,b} using regular
expressions.

(a) The set of strings that have at least one b.

(b) The set of strings that have at most one b.

(c) The set of strings that end in 3 consecutive b’s.

In each case design a DFA which accepts the given language.

74. Let L be the set of words w ∈ {a,b}∗ that contain even number of a’s and
odd number of b’s.

(a) Give a DFA that generates L.

(b)∗ Give a regular expression for L.

3.6 Theorem (Pumping lemma). If the language L is generated by a
DFA, then there exist p ≥ 0 (depending on L only) such that for all
uwv ∈ L with |w | ≥ p, there exists a partition w = x y z such that |x y | ≤
p, |y | > 0 and for all i ≥ 0, ux y i zv ∈ L. Here u and v might be empty.

75. Prove the Pumping lemma 3.6.

76. Prove that no DFA accepts the language

L = {w ∈ {a,b}∗ : |w | = k2 for some k}.

Hint. Use the Pumping lemma 3.6.
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3.1 Regular Languages and Automata

77. Determine all subsets A ⊆ω for which the language {an : n ∈ A} is gener-
ated by some DFA.

78. (a) Prove that L = {anbn : n ∈ω} is not accepted by any DFA.

(b) Determine all functions f :ω→ω such that the language L f = {anb f (n) :
n ∈ω} is accepted by a DFA.

3.7 Definition (Non-deterministic Finite Automaton, NFA). A non-
deterministic finite automaton over the finite alphabet Σ is a tuple
N = 〈Q,S,F,δ〉 similar to DFA, with the exception that the transition
function δ : Q ×Σ→℘(Q) gives a non-empty set of possible next states.
The automaton accepts a word if it has such a run where it arrives at an
accepting state.

79. Prove that a language L is accepted by some DFA if and only if L is
accepted by some NFA.

80. We are given two DFA’s A and B accepting the languages L A and LB over
the alphabets ΣA and ΣB . Create an automaton which accepts

(a) the union L A ∪LB ,

(b) the intersection L A ∩LB ,

(c) the concatenation L ALB ,

(d) the complement Σ∗
A àL A , and

(e) the Kleene star L∗
A .

3.8 Theorem (Kleene). Regular languages are precisely the languages
accepted by DFA’s.

81. Show that every regular language can be accepted by a DFA.

82.∗ Show that every language accepted by a DFA is regular.

Hint. For each pair q1, q2 ∈Q let Lq1,q2 be the language accepted by the
automaton with initial state q1 and accepting state q2. Use induction on
the number of states to show that all these languages are regular.

83. Give an example for a non-regular language that satisfies the conclusions
of Pumping lemma 3.6.

Hint. L1 = {cai b j : i , j ∈ ω} is regular while L2 = {canbn : n ∈ ω} is not,
see Problem 78(a). Adjust L2 so that L∩L1 = L2, while L can be pumped.

84. Let L be regular. Show that {wR : w ∈ L} is regular.

3.9 Definition. Let A= 〈Q,S,F,δ〉 be a DFA. The equivalence relation
∼ on Q is a congruence if the followings hold:

• If a ∼ b and a is a halting state, then so is b.
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3 Formal Languages and Automata

• If a ∼ b and a a′α and b b′α are transitions, then a′ ∼ b′.
Having a congruence one can define the quotient automaton A/∼ in
the usual way.

85. Show that for a congruence ∼ the quotient A/∼ and A accept the same
language.

3.10 Definition. An automaton A is connected if every state in A can be
reached from the initial state by some word.

86. Suppose the DFA A and B accept the same language. For two states
q1 and q2 in A define q1 ∼ q2 if there are two words w1 and w2 so that w1

sends the initial state of A to q1, and w2 sends it to q2, while in B both words
send the initial state to the same state. Prove that for connected A and B the
equivalence relation ∼ is always a congruence.

87. LetAbe a DFA with the smallest possible number of states which accepts
the language L. Show that A is determined uniquely.

88. Give an algorithm which, from an automaton A, generates another
automaton B so that B accepts the same language and has the smallest
possible number of states.

89. Let L be a language and define s(n) = |L∩Σn |. Show that if L is regular,
then there is a natural number d and constants c1, . . ., cd such that

s(n +d) = c1s(n +d −1)+·· ·+cd−1s(n +1)+ cd s(n).

90. Find a regular language L such that the |L∩Σn | sequence is the Fibonacci
numbers 1,1,2,3,5,8, . . .

91. Let Σ be a finite alphabet and a ∉Σ. For a language L over the alphabet
Σ∪ {a} write

La = {
w ∈Σ∗ : w1aw aw2 ∈ L for some w1, w2 ∈ (Σ∪ {a})∗

}
.

Prove that La is regular provided L is such.

3.2 WHEN THE CONTEXT DOES NOT MATTER

3.11 Definition (Context-free language). Let V be a finite set of nonter-
minal characters, Σ be a finite set of terminal characters, and S ∈ V
be the start symbol. The empty word λ is considered as a terminal.
Context-free languages are generated from the start symbol S by finitely
many production rules of the form A →α, where A is a single nontermi-
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3.2 When the Context Does not Matter

nal symbol, and α is a non-empty word of terminal and/or nonterminal
symbols.

Example. With Σ= {a,b} the rules S → aSa, S → bSb, S →λ generate the
word aabbaa as follows:

S → aSa → aaSaa → aabSbaa → aabbaa

.

92. Prove that the following languages are context-free:

(a) L = {w : w ∈ {(, )}∗, w has matching parentheses}.

(b) L = {w w R : w ∈ {a,b}∗}.

(c) L = {w : w ∈ {a,b}∗, the number of a’s and the number of b’s in w are
different}.

93. Which are (i) regular, (ii) context-free among the languages below:

(a) {anbn : n ≥ 0},

(b) {anbnc j : n ≥ 0, j ≥ 0},

(c) {(ab)n : n ≥ 2},

(d) {(ab)n(bc) j : n ≥ 2, j ≥ 0}, and

(e) {bn amb2n : n ≥ 0, m ≥ 0}.

94. Prove that all regular languages are context-free.

95. Prove that context-free languages are closed under union, concatenation,
and Kleene star.

96. Show that every context-free language has a generating rule set in which
the right-hand side of each rule A →α

• does not contain the start symbol S;

• does not contain λ with the only possible exception S →λ.

Example. The rule set S → aSa, S → bSb, S → λ generates the same lan-
guage as the set S →λ, S → T , T → aTa, T → bT b, T → aa, T → bb.

3.12 Theorem (Pumping lemma). For every context-free language L
there is an integer p ≥ 1 such that every word s ∈ L of length at least p
can be written in the form s = uvw x y such that |vx| ≥ 1, |vw x| ≤ p, and
uvn w xn y ∈ L for all n ≥ 0.

97. Prove Theorem 3.12.

98. Show that L = {anbncn : n ≥ 0} is not context-free.

99. Prove that the class of context-free languages is

(a) not closed under intersection,

(b) not closed under complementation, and

(c) is the class closed under taking intersection with regular languages?
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3 Formal Languages and Automata

3.13Definition. Let F be a family of languages over the alphabet |Σ| ≥ 2.
We say that U ⊆Σ∗ is universal for F if for each L ∈F there is a prefix
w = wL ∈Σ∗ such that x ∈ L iff w x ∈U .

100. (a) Is there a regular language that is universal for regular languages
for the fixed alphabet Σ?

(b) What about context-free languages?

(c) Show that for every countable collection F of languages over Σ there is a
universal language.

(d) Can a countable set F of languages always be extended to F+ such that
it contains a language universal for F+?

18
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4.1 Definition (Operators on functions). Let Ω be the set of all functions
f : ωn →ω. An operator on Ω assigns an element of Ω to certain tuples
from Ω. The following operators will be considered:

• The composition operator Comp is defined on the tuple of functions
(g ,h1, . . . ,h`) if dom(g ) =ω`, and dom(hi ) is the same ωm for each
i . In this case

Comp(g ,h1, . . . ,h`) :~x 7→ g (h1(~x), . . . ,h`(~x)).

• The µ operator can be applied to the single function g ∈Ω if it is
defined on ω`+1 with `≥ 1 and for every~x ∈ω` there is a u ∈ω such
that g (~x,u) = 0. In this case µ(g ) ∈Ω returns the smallest such a u:

µ(g ) :~x 7→ min{u ∈ω : g (~x,u) = 0}.

• The primitive recursion operator PrRec can be applied to the pair
(g ,h) if g is defined on ω` and h is defined on ω`+1 with `≥ 1. In
this casePrRec(g ,h) is the uniquely defined function f on ω` which
satisfies, for all~x ∈ω`−1 and n ≥ 0,

f (~x,0) = g (~x,0),

and

f (~x,n +1) = h(~x,n, f (~x,n)).

4.1 PRIMITIVE RECURSIVE FUNCTIONS

4.2 Definition. The set of primitive recursive functions is the smallest
subset of Ω that contains the initial functions below, and is closed for
the Comp and PrRec operators:

• constant zero function 0(n) = 0,

• successor function S(n) = n +1,

• projections U k
i (~x) = xi , where~x = 〈x1, . . . , xk〉.
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4 Recursion Theory

101. Show that the following functions are primitive recursive:

(a) constant functions,

(b) predecessor: δ(x) = max{0, x −1},
sign: sgn(x) = min{x,1},
limited subtraction: x .− y = max{0, x − y},

(c) addition, multiplication, exponentiation,

(d) factorial n!.

102. Show that the following functions are primitive recursive:

K<(x, y) =
{

0 if x < y,
1 otherwise.

E(x, y) =
{

1 if x = y,
0 otherwise.

103. (a) If f (~x, y) is primitive recursive, then so are σ f (~x, y) = ∑
i≤y f (~x, i )

(bounded sum) and π f (~x, y) =∏
i≤y f (~x, i ) (bounded product).

(b) Bounded minimization with primitive recursive bound: if h(~x, y) and
g (~x) are primitive recursive, then so is

f (~x) = min
{

y < g (~x) : h(~x, y) = 0
}
,

which is the least y such that h(~x, y) = 0 if there is such a y < g (~x), and
g (~x) otherwise.

4.3 Definition. The subset (relation) A ⊆ωn is primitive recursive if its
characteristic function is primitive recursive.

104. (a) Primitive recursive relations are closed under Boolean operations
(and, or, complement).

(b) The comparison relations (=, 6=, ≤, etc.) are primitive recursive.

(c) If A ⊆ωn+1 is primitive recursive, then so are the relations when applying
bounded quantifiers:

{〈~x,n〉 : (∃i<n)〈~x, i 〉 ∈ A},
and

{〈~x,n〉 : (∀i<n)〈~x, i 〉 ∈ A}.

105 (Definition by cases). Suppose A1, . . . , Ak are primitive recursive relations
such that for all~x ∈ωn exactly one of them holds. If h1, . . . ,hk are primitive
recursive functions, then so is

f (~x) =


h1(~x) if~x ∈ A1

h2(~x) if~x ∈ A2
...

...
hk (~x) if~x ∈ Ak

106. Show that the integer division [x/y] is primitive recursive.
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4.1 Primitive Recursive Functions

107. (a) Let p(n) be the n-th prime (p(0) = 2, p(1) = 3, etc.). Show that p(n)
is primitive recursive.

(b) Show that the exponent of the n-th prime in the prime factorization of x
is a primitive recursive function of x and n.

108. For a function g :ω→ω define

g (0)(x) = x, g (1)(x) = g (x), and g (i+1)(x) = g (g (i )(x)).

(a) Show that if g is primitive recursive then so is g (x)(x).

(b) Let g0(x) = 2 and gk+1(x) = (gk (x))x . Show that gx (x) is primitive recur-
sive.

109. For a given function g let us define the functions Ai for i ≥ 0 as follows:

(i) A0(x) = g (x) and

(ii) Ai+1(x) = Ai (Ai (. . . Ai (x) . . . )), where we iterate Ai exactly i +1 times.

Write A(x) = Ax (x).

(a) Prove that A(x) is primitive recursive provided g (x) is such.

(b) Let g (x) = x +1. Give an estimate for A(10).

(c) Let g (x) = (x +1)x+1. Give an estimate for A(5).

4.4 Definition (Ackermann function, R. Péter version).

A(0,m) = m +1

A(n +1,0) = A(n,1)

A(n +1,m +1) = A(n, A(n +1,m)).

110. For each primitive recursive f (n1, . . . ,nk ) there is an N such that

f (n1, . . . ,nk ) < A(N ,n1 +·· ·+nk ).

111. Show that A(m,m) is not primitive recursive.

4.5 Definition. Fix n ∈ ω and let F ⊆ { f : f :ωn → ω}. The function
U : ωn+1 →ω is universal for the family F if for every f ∈F there is an
i ∈ω such that U (i ,~x) = f (~x). Such an i is the U -index, or just the index
of f .

112. Prove that there is no primitive recursive U :ωn+1 →ω which is universal
for the set of primitive recursive n-variable functions.

113. Show that there is a function from R2 to R which is universal for the
R→ R continuous functions. Show that this universal function cannot be
continuous.
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4 Recursion Theory

4.2 RECURSIVE FUNCTIONS

4.6 Definition. The set of recursive functions is the smallest subset of Ω
(Definition 4.1) that contains the initial functions below, and is closed
for the Comp and the µ operators:

• addition, multiplication, and the K< function (see Problem 102) and

• the projection functions U k
i for 1 ≤ i ≤ k.

114. Show that the following functions are recursive:

(a) constant zero and constant one functions;

(b) sign and limited subtraction.

4.7 Definition. The subset (relation) A ⊆ωn is recursive if its character-
istic function is recursive.

115. Assume A ⊆ ωn+1 is recursive, and for each ~x ∈ ωn there is an i ∈ ω

with 〈~x, i 〉 ∈ A. Show that the function assigning the minimal such i to~x is
recursive. This function is written as µ{ i : 〈~x, i 〉 ∈ A }.

116. (a) Recursive relations are closed under Boolean operations.

(b) The comparison relations (=, 6=, ≤, etc.) are recursive.

(c) Recursive relations are closed for bounded quantifiers.

117. The following functions are recursive:

(a) integer division [x/y ] (zero if y is zero),

(b) integer part of the square root of x: [
p

x ],

(c) rem(x, y) = min{ z ∈ω : y is a divisor of (x − z) }.

118. Show that after changing finitely many values of a recursive function f ,
it remains recursive.

119. Prove that every function f :ω → ω is a pointwise limit of recursive
functions.

120. Show that there is a non-recursive function f :ω→ 2.

121. Let f :ω→ω with ran( f ) =ω be recursive and let f −1(y) be the least x
such that f (x) = y . Prove that f −1 is recursive.

122. Let f0, f1, . . . be unary recursive functions. Give an example for such a
sequence where g (i ) = fi (i ) is not recursive.

123 (Definition by cases, see Problem 105). Suppose A1, . . . , Ak are recursive
relations such that for all~x ∈ωn exactly one of them holds. If h1, . . . ,hk are
recursive functions, then so is

f (~x) =


h1(~x) if~x ∈ A1

h2(~x) if~x ∈ A2
...

...
hk (~x) if~x ∈ Ak
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4.2 Recursive Functions

124. Let K (u) = u .− [
p

u ]2, and L(u) = ([
p

u ] .− K (u)) .− 1. Show that for each
pair (x, y) ∈ ω2 there is an u with K (u) = x and L(u) = y , and the function
assigning the minimal such u to the pair (x, y) is recursive.

4.8 Definition (Gödel’s β function). β(m,b, i ) = rem(m,b(i +1)+1).

125 (Gödel). Show that for any sequence of natural numbers r0, . . . , rn−1

there exists m and b such that β(m,b, i ) = ri for all 0 ≤ i < n.

4.9 Definition (Sequence coding). The unary function Len(u) and the
binary function Elem(u, i ), also written as (u)i , codes every sequence,
if for every n ≥ 0 and sequence 〈r0, . . . ,rn−1〉 ∈ωn there is a u ∈ω such
that Len(u) = n and Elem(u, i ) = ri for i < n. The code of the sequence is
the minimal u ∈ω with this property.

126. (a) Show that there are coding functions.

(b) Show that there are recursive coding functions with the additional prop-
erty that Elem(u, i ) < u when i < Len(u).

(c) If Len and Elem are recursive, then the set of sequence codes is recursive.

(d) If Len and Elem are recursive, then so is the “append” function u _z,
which returns the code of the sequence where z is appended to the
sequence coded by u.

127. Show that there are recursive coding functions Len∗ and Elem∗ with
Elem∗

(u, i ) > u for some code u ∈ω and i < Len∗(u).

128. Show that the coding functions Len(u), Elem(u, i ), and u _z based on
Gödel’s β function are primitive recursive.

Remark. Problems 129–130 indicate an alternative method to code sets of
integers. The method can be turned into sequence coding using the same
trick which is used to define functions in set theory: an ordered pair (a,b)
is the set

{
{a}, {a,b}

}
and the sequence 〈r0, . . . ,rn−1〉 is the set containing

the ordered pairs (i ,ri ).

129. Show that the following functions are recursive:

(a) fa(x) = 1 if x is a power of 3, and fa(x) = 0 otherwise.

(b) fb(x) is the smallest number greater than x such that its base 3 expansion
is of the form 10 · · ·00.

(c) fc (x, y) = z, where the base 3 expansion of z is the concatenation of that
of x and y .

(d) fd (x) = 1 if the base 3 expansion of x starts with a block of 2’s followed by
a zero digit.
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4 Recursion Theory

130. The number x ∈ ω “contains” y ∈ ω if the base 3 representations of x
and y , as digit sequences, are u and v, respectively; u starts with a “separator”
sequence s and contains the sequence svs, while v does not contain s. The
separator sequence s is a non-empty sequence of 2’s followed by a zero.

(a) Show that “x contains y” is a recursive relation.

(b) For every y1, . . . , yn there is an x which “contains” all yi and nothing
more.

(c) Given~y ∈ωn the minimal x which “contains” all yi is a recursive function
of ~y .

131. Let p(n) be the n-th prime. Define the code of the sequence 〈r0, . . . ,rn−1〉
be u = pn ·pr0

0 · · ·prn−1
n−1 . Show that the corresponding Len(u), Elem(u, i ), and

u _z functions are primitive recursive.

Notation. From this point on Len(u) and Elem(u, i ) = (u)i are fixed
recursive coding functions as in Definition 4.9 with the additional prop-
erty that Elem(u, i ) < u for i < Len(u). The corresponding “append”
function u _z is also recursive by Problem 126.
In subsequent problems no other property of these functions should
be used: these statements are valid for arbitrary choice of the coding
functions.

132. Show that the code of the empty sequence is 0.

133. Show that the following functions and relations are recursive.

(a) If Len(u) > 0 then fa(u) is the code of the sequence of length Len(u)−
1 where the last element is dropped from the sequence coded by u;
otherwise fa(u) is the code of the empty sequence.

(b) Rb(u,v) ⊆ω2 is true if the sequence coded by u is an initial segment of
the sequence coded by v;

(c) if u codes the sequence 〈r0, . . . ,rn−1〉 then fc (u) is the code of a sequence
of length Len(u) whose i -th element is the code of the initial segment
〈r0, . . . ,ri−1〉.

134. Show that 2k is recursive.

Hint. Show that the set of codes of the sequences 〈1,2, . . . ,2n−1〉 is recur-
sive.

135. Show that the set of recursive functions is closed for the primitive re-
cursive operator PrRec: if g and h are recursive and PrRec can be applied to
them, then PrRec(g ,h) is recursive. In particular, every primitive recursive
function is recursive.

136. Suppose that the recursive f takes all of its values infinitely often. Let
g (i ) = n if n is the (i +1)-st place where f (n) = i (e.g., g (0) is the first n so
that f (n) = 0). Prove that g is recursive.
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4.2 Recursive Functions

137. Suppose f is recursive with limsup f = ∞. Construct an increasing
recursive g such that f (i ) = g (i ) infinitely often.

138. Let f be a recursive function. If u ∈ω encodes the sequence 〈r0, . . . ,rn−1〉,
then let g (u) = f (r0) · f (r1) · · · f (rn−1). Show that g is recursive.

Primitive recursion defines the value of a function from the value it takes
at the previous place. Course-of-values recursion, or simply recursion,
allows all previous values to be used. It is done technically by passing the
(code of the) sequence of the previous values to the defining function.

4.10 Definition. The recursive operator Rec applied to the function
G(~x,u) returns the uniquely defined function f (~x,n) which satisfies,
for all n ≥ 0,

f (~x,n) =G(~x,un),

where un is the code of the sequence 〈 f (~x,0), . . . , f (~x,n −1)〉.

139. Show that recursive functions are closed for the Rec operator.

140. Take primitive recursive coding functions where the append function is
primitive recursive as well (see Problem 131). Show that primitive recursive
functions are closed for the Rec operator.

Remark. See Problem 148 for the condition that the append function is
primitive recursive.

141. Show that there is a function H :ω→ω which grows faster than every
recursive function f in the sense that

lim
n→∞

f (n)

H(n)
= 0.

142. Show that there is a recursive function f (n,k) such that every sequence
of length ≤ n with elements ≤ k has a code ≤ f (n,k).

143. Let f (k, r ) denote the least natural number n such that each coloring
of the edges of the complete graph on n vertices with r colors contains a
monochromatic complete subgraph of size k. Prove that f is recursive.

144. Show that the function C (x, y) which returns the code of the concatena-
tion of the sequences coded by its arguments is recursive.

Warning. The natural idea to give the primitive recursion-like definition
C (x,0) = x, C (x, y _z) =C (x, y)_z, and then quote the recursive operator
Rec, does not work.

145. Show that the function which reverses the order of the coded sequence
is recursive.

146.∗ Show that the Ackermann function (Definition 4.4) is recursive.
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4 Recursion Theory

Remark. An immediate consequence of this problem is that A(m,m) is a
recursive function which is not primitive recursive (Problem 111). Another
way to prove that there is a recursive but not primitive recursive function
is indicated in Problem 179.

4.11 Definition. The graph of the function f is the set

{〈~x, f (~x)〉 :~x ∈ dom( f ) }.

147. (a) Show that if the graph of f is a recursive relation, then f is recursive.

(b) Show that there is a function f whose graph is primitive recursive, but f
is not primitive recursive.

148. There are primitive recursive coding functions Len∗ and Elem∗ such
that the corresponding append function is not primitive recursive, while for
each n ≥ 1 the function which at (x0, . . . , xn−1) takes the code of the sequence
〈x0, . . . , xn−1〉 is primitive recursive.

4.12 Definition. The subset A ⊆ωn is recursively enumerable, or simply
enumerable, if it is either empty, or there are unary recursive functions
f1, . . . , fn such that A = {〈 f1(i ), . . . , fn(i )〉 : i ∈ω }.

149. The non-empty A ⊆ ωn is enumerable if and only if there is a unary
recursive function f such that every f (i ) is a code of a sequence of length n,
and A = {〈( f (i ))0, . . . , ( f (i ))n−1〉 : i ∈ω }.

Notation. By abuse of notation we write u ∈ A for u ∈ ω and A ⊆ ωn

to mean that u is a code of length n and 〈(u)0, . . . , (u)n−1〉 ∈ A. While
this is ambiguous in the n = 1 case, the meaning should be clear from
the context. Using this notation Problem 149 claims that a non-empty
enumerable set is the range of a unary recursive function.

150. If A and B are enumerable, then so is A×B . In particular, ωn is enumer-
able.

151. The range of every recursive function (of several variables) is enumer-
able.

152. Let g be recursive and A = {~x : g (~x) = 0}. Show that A is enumerable.

153. (a) Every recursive set A ⊆ωn is enumerable.

(b) If A is recursive and infinite, then it is enumerable by an injective recur-
sive function.

(c) Any infinite enumerable set can be enumerated by an injective recursive
function.

154. The union and the intersection of two enumerable sets are enumerable.
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4.3 Partial Recursive Functions

155. Let A ⊆ ω be enumerable, and f be a recursive function. Show that
B = {~x : f (~x) ∈ A} is also enumerable.

156. If the graph of f is enumerable, then f is recursive.

157. A ⊆ωn is recursive if and only if both A and its complement are enu-
merable.

158. Let A,B ⊂ω be disjoint, recursively enumerable but not recursive sets.
Prove that A∪B is not recursive.

159. Every infinite recursively enumerable set has an infinite recursive sub-
set.

160. Show that there is an infinite set which has no infinite recursive subset.

4.3 PARTIAL RECURSIVE FUNCTIONS

4.13 Definition (Operators on partial functions). Let Ω∗ be the set of
all partial functions mapping integers to integers, that is, all functions
f with dom( f ) ⊆ ωn and ran( f ) ⊆ ω. Functions f , g ∈ Ω∗ are equal
if they have the same number of arguments, the same domain, and
f (~x) = g (~x) for all ~x ∈ dom( f ). Partial functions with empty domain
but different arity are considered to be different.

Operators Comp and µ are extended to functions in Ω∗ as follows.

• Comp is defined on the tuple (g ,h1, . . . ,h`) if dom(g ) ⊆ ω` and
dom(hi ) ⊆ ωm for all i ; ~x ∈ ωm is in the domain of the compos-
ite function if~x ∈ dom(hi ) for all i and 〈h1(~x), . . . ,h`(~x)〉 ∈ dom(g ),
and the value is g (h1(~x), . . . ,h`(~x)).

• the µ operator can be applied to every g ∈Ω∗ with arity `+1 ≥ 2.
µ(g ) has arity ` and ~x ∈ dom(µ(g )) if there is an i ∈ ω such that
〈~x, j 〉 ∈ dom(g ) for all j ≤ i and g (~x, i ) = 0. The value of µ(g ) at~x is
the minimal such as i .

4.14 Definition. The set of partial recursive functions is the smallest
subset of Ω∗ that contains the initial functions below, and is closed for
Comp and µ operators:

• addition, multiplication, and the K< function;

• the projection functions U k
i for 1 ≤ i ≤ k.

161. Show that every recursive function is partial recursive.

Notation. (a) For a function f ∈Ω∗ we write f (~x) =↓ to indicate that
~x ∈ dom( f ), and f (~x) =↑ to indicate that~x ∉ dom( f ).

(b) f ∈Ω∗ is total if f ∈Ω, i.e., dom( f ) =ωn for some n.
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162. Let f :ωn →ω be a recursive function and A ⊆ωn be a recursive relation.
Show that

h(~x) =
{

f (~x) if~x ∈ A,
↑ otherwise

is partial recursive.

163. Show that every function with finite domain is partial recursive.

164. Let f be recursive and g be partial recursive. Define h so that h is
defined where g is, and at those places it takes the same value as f does.
Show that h is partial recursive.

165. Prove that for all partial recursive f there is a partial recursive g which
takes the same values as f but takes all of these values infinitely often.

166. Recall (Definition 4.11) that the graph of f ∈Ω∗ is the relation {〈~x, f (~x)〉 :
~x ∈ dom( f )}. Suppose that the graph of f ∈Ω∗ is recursively enumerable.
Show that f is partial recursive.

167.∗ Show that the graph of every partial recursive function is recursively
enumerable.

168. Let A ⊆ω be recursive, and f1 and f2 be unary partial recursive func-
tions. Write

g1(x) =χA(x) · f1(x)+χ¬A(x) · f2(x),
and

g2(x) =
{

f1(x) if x ∈ A,
f2(x) otherwise.

Give examples for f1 and f2 when g1 and g2 are different functions. Verify
that both g1 and g2 are partial recursive.

169. Prove that the following are equivalent for any set A ⊆ω:

(a) A is recursively enumerable,

(b) A is the domain of a partial recursive function,

(c) A is the range of a partial recursive function, and

(d) the function

f (x) =
{

0 if x ∈ A,
↑ otherwise

is partial recursive.

170. Prove that all total partial recursive functions are, in fact, recursive.

Remark. The result of the operators Comp and µ can be total even if some
of the arguments are not total functions. This problem claims that a total
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partial recursive function can be generated by the Comp and µ operators
in a way that all intermediate functions are total.

4.4 CODING

Coding, or arithmetization, is a powerful technique which assigns natural
numbers to mathematical objects in a way that preserves most of the
structural properties. The code of the object o, denoted here by α(o),
is typically the code (in the meaning of Definition 4.9) of a sequence of
natural numbers reflecting how o is built up from other objects.

The technique relies on coding sequences of natural numbers. The
additional property of the recursive coding functions Len and Elem that
elements of a sequence are smaller than its code implies that objects
which take part in the definition of another object will have smaller codes.
Consequently “structural induction” on the objects translates to an appli-
cation of course-of-values recursion (Definition 4.10). While not essential,
it significantly simplifies the treatment.

No other intrinsic property of the coding functions will be (or should
be) used. In particular, choosing primitive recursive coding functions, all
functions and relations claimed here to be recursive are actually primitive
recursive, see the remark after Theorem 4.16.

Notation. To ease the burden of complicated notations, 〈x0, . . . , xn−1〉
will denote both the sequence itself (as an element of ωn) and the code
of this sequence (as an element of ω). The exact meaning should be
clear from the context.

4.4.1 REGULAR EXPRESSIONS

A regular expression over the finite alphabet Σ defines a regular language
(Definition 3.4). Elements of the alphabet Σ are identified with the natural
numbers from 0 to |Σ|−1, and words over Σ are (codes of) the sequences
formed from them, giving a natural coding of Σ∗. The code α(σ) of the
regular expression σ is defined by induction along its definition as follows:

α(λ) = 〈0〉 empty word,

α(a) = 〈1,α(a)〉 singletons for a ∈Σ,

α(σ|τ) = 〈2,α(σ),α(τ)〉 union,

α(στ) = 〈3,α(σ),α(τ)〉 concatenation,

α(σ∗) = 〈4,α(σ)〉 Kleene star.

171. (a) Show that different regular expressions have different codes.

(b) Show that the set of regular expression codes is recursive.
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172. We say that u ∈ ω encodes the finite language L ⊂ Σ∗ if elements of
u encode just the elements of L. Show that there is a recursive function
f (n,u,v) such that if u encodes L1, v encodes L2, then f (n,u,v) encodes all
words of length at most n in (a) L1|L2 (union), (b) L1L2 (concatenation).

173. Show that there is a recursive function f (n,u) such that if u encodes the
finite language L, then f (n,u) encodes all words of length at most n in L∗.

174. Let Σ<n be the set of all words in Σ∗ of length smaller than n. Show that
there is a recursive function f (u,n) such that if σ is a regular expression, then
f (α(σ),n) encodes σ∩Σ<n .

175. Show that there is a recursive function f (x, y) such that for every reg-
ular expression σ, the word w is in the generated language if and only if
f (α(σ),α(w)) = 1.

4.4.2 PRIMITIVE RECURSIVE FUNCTIONS

The code of a primitive recursive function (Definition 4.2) is a description
of how it is built up from the initial functions using the Comp and PrRec
operators. The code reflects the definition and not the function: if f is
primitive recursive, then so is f +0, which, as a function, is the same, but
has a different code. For the sake of convenience, the first element of
the code is the arity, the second element is an indication of the applied
operator.

α(0) = 〈1,0,0〉,
α(S) = 〈1,0,1〉,

 initial functions,

α(U k
i ) = 〈k,0,2, i 〉,

α( f ) = 〈m,1,α(g ),α(h1), . . . ,α(h`)〉 for f =Comp(g ,h1, . . . ,h`),

α( f ) = 〈`,2,α(g ),α(h)〉 for f =PrRec(g ,h).

176. Show that the set of function codes is recursive.

4.15 Definition. The sequence u = 〈d0, . . . ,dn−1〉 is a justified compu-
tation, if (a) each di codes a triplet 〈ci , xi , yi 〉, where ci = α( fi ) is a
function code, xi is the code of the sequence specifying the arguments
of fi , and yi is value of fi at the given arguments; (b) if fi is an initial
function then yi is computed correctly; (c) if fi is an application of
Comp or PrRec, then all necessary computations justifying that the
correct value of the function is yi are coded earlier in the sequence.

177. Show that the set of justified computations is recursive.

178. Show that there are recursive functions Wn(i ,~x) which are universal
(see Definition 4.5) for the n-variable primitive recursive functions.
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179. Show that W1(x, x)+ 1 is a recursive function which is not primitive
recursive.

180. Define the unary primitive recursive functions fi (x) for i = 0,1, . . . as
follows. f0(n) = 2n ; fi+1(0) = 1, and fi+1(n +1) = fi ( fi+1(n)). Show that the
function i 7→α( fi ) which assigns the code of fi to i is recursive.

4.4.3 PARTIAL RECURSIVE FUNCTIONS

Partial recursive functions are coded analogously to that of primitive
recursive functions. As codes for the two function types will never be
mixed, there is no need to make their codes to be different.

α(+) = 〈2,0,0〉,
α(·) = 〈2,0,1〉,

α(K<) = 〈2,0,2〉,

 initial functions,

α(U k
i ) = 〈k,0,3, i 〉,

α( f ) = 〈m,1,α(g ),α(h1), . . . ,α(h`)〉 for f =Comp(g ,h1, . . . ,h`),

α( f ) = 〈`,2,α(g )〉 for f =µ(g ).

181. Show that the set of the codes of partial recursive functions is recursive.

182. There is a recursive function f such that for every partial recursive
function g the partial recursive function with code f (α(g )) has the same
domain as g , and takes zero everywhere.

183. There is a unary recursive function f such that f (i ) is the code of the
unary recursive function which always returns i .

184. There is a recursive function f (c, i ) such that if g is a two-variable
partial recursive function, then f (α(g ), i ) is the code of a one-variable partial
recursive function gi such that gi (x) = g (x, i ) for all x ∈ω.

185. Extend the definition of justified computation (Definition 4.15) with the
µ operator, and show that justified computations form a recursive relation.

186. Show that the graph of a partial recursive function is recursively enu-
merable (see Problem 167).

4.16 Theorem (Kleene’s normal form theorem). There are recursive
functions G(t ) and Hn(e,~x,u) such that for each n-variable partial re-
cursive function g there is an e such that g (~x) =G(µ{u : Hn(e,~x,u) = 0}).

187. Prove Theorem 4.16.

Remark. The coding functions Len, Elem and u _z are primitive recur-
sive, see Problem 128. Along the proof only course-of-values recursion
(Definition 4.10) is used, which gives primitive recursive function from a
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4 Recursion Theory

primitive recursive one. Consequently the stronger statement that G and
Hn can be chosen to be primitive recursive is also true.

188. Using Theorem 4.16 show that the graph of a partial recursive function
is enumerable (see Problem 167).

189. Construct a partial recursive function H(x, y) with the property that
for each partial recursive g (x, y) there is a recursive g̃ (x) such that g (x, y) =
H(g̃ (x), y).

Hint. Let e be the code of g . The function x 7→ 〈e, x〉 is recursive.

190.∗ Suppose H(x, y) is as in Problem 189. Show that for each unary partial
recursive function h there is an m ∈ω such that H(h(m), y) = H(m, y) (see
also Problem 220).

4.5 UNIVERSAL FUNCTION

191. Prove that there is no total recursive function U (i ,~x) that is universal for
the set of total recursive n-ary functions (see Definition 4.5).

4.17 Theorem (Kleene). For each n ∈ω there is a partial recursive func-
tion Un :ω1+n →ω such that

• Un is universal for the n-variable partial recursive functions;

• the functions Un form a coherent family: there are recursive func-
tions Sm

n :ω1+m →ω for m,n > 0 such that

Um+n(i , x1, . . . , xm , y1, . . . , yn) =Un(Sm
n (i , x1, . . . , xm), y1, . . . , yn).

The second item is known as the s-m-n theorem.

192. Prove Theorem 4.17

Notation. If g (~x) =Un(i ,~x), then i is the index of g , or U -index if the
universal function is not clear from the context. Following the common
practice, ϕi (x) abbreviates U1(i , x), ϕi (x, y) abbreviates U2(i , x, y), etc.

For the rest of the section Un and Sm
n are arbitrary but fixed functions

satisfying Kleene’s theorem. Problems below ask to show properties which
are shared by every such family of coherent universal functions.

193. Show that for some recursive function r (i ), if i is the index of g (x, y),
then r (i ) is the index of g (y, x).

194. Show that there is a recursive function r such that whenever the unary
partial recursive g has index i , then r (i ) is the index of a partial recursive
g ′ for which we have dom(g ) = dom(g ′) and the only value g ′ takes is 0 (see
Problem 182).
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195. Show that there is a recursive r (i , j ) such that ϕr (i , j )(x) =ϕi (x)+ϕ j (x).

196. Prove that there is a recursive function c(i , j ) with the property

ϕc(i , j )(x) =ϕi (ϕ j (x)).

197. Let A ⊆ω be recursive and f1, f2 be partially recursive functions. Show
that there is a recursive r (x) such that

ϕr (i )(x) =
{

f1(x) if i ∈ A,
f2(x) otherwise.

198. For each partial recursive g (x, y) one can find a recursive g̃ (x) such that
g (x, y) =ϕg̃ (x)(y) (see Problem 189).

199. Prove that for all partial recursive f (x) there is a total recursive g (x)
such that ϕ f (i )(x) =ϕg (i )(x).

200. Show that there is a recursive function F ( j ) such that if the partial
recursive f (x) has index j , then F ( j ) is an index of a (total) recursive g (x)
such that ϕ f (i )(x) =ϕg (i )(x).

201. Show that there is a recursive function f so that ϕ f (i )(x) is the constant
i function.

202. Show that there is a recursive function H(i , x, y,u) such that ϕi (x) = y
if and only if H(i , x, y,u) = 0 for some u ∈ω.

203. (a) Prove that there is a recursive function h such that for all i ∈ ω,
ran(ϕi ) = dom(ϕh(i )).

(b) Prove that there is a recursive function h such that dom(ϕi ) = ran(ϕh(i )),
and ϕh(i ) is total whenever dom(ϕi ) is not empty.

204. (a) Show that there is a partial recursive function which is not the
restriction of any recursive function to its domain.

(b) Show that there is such a partial recursive function with a {0,1} range.

(c) Let f be partial recursive with infinite domain and suppose there is a
recursive function g such that g (n) is the n-th element of dom( f ). Show
that f is a restriction of a recursive function.

205. Show that there is an infinite, recursively enumerable set A ⊆ ω for
which the function f defined by the primitive recursion

f (0) = min{i : i ∈ A}

f (n +1) = min{i : i > f (n) ∧ i ∈ A}

is not recursive.

206. Give an example for a recursively enumerable set which is not recursive.
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207. Show that there is a partial recursive function which takes (a) some-
where (b) infinitely often a larger value than any recursive function.

208.∗ Suppose the partial recursive f has infinite domain. Prove that there is
a total recursive g which takes a larger value than f infinitely many times.

Notation. The function f dominates g if, with finitely many exceptions,
f (x) > g (x) for all x ∈ dom( f )∩dom(g ).

209. Show that there is a total function f :ω→ω which dominates all recur-
sive functions. Can this f be recursive?

210. Show that no partial recursive function with infinite domain dominates
all recursive functions.

211. Show that there is a partial recursive function which is not dominated
by any recursive function.

212. Let A be recursively enumerable and suppose for all i ∈ A the function
ϕi (x) is total recursive. Show that there is a total recursive g which dominates
all ϕi for i ∈ A.

213. Given a counterexample to the following claim: “Suppose R ⊆ω2 is a
recursive relation such that for every x there is at least one, but finitely many
y with (x, y) ∈ R. The function g (x) = max{y : (x, y) ∈ R} is recursive.”

Remark. If one takes minimum instead of maximum, then g is clearly
recursive.

4.6 DECIDABILITY

4.18 Definition. A set A ⊆ωn is decidable if it is a recursive relation, and
undecidable otherwise. The words recursive and decidable are used as
synonyms.

The notion of decidability extends to other mathematical disciplines using
coding: a question about certain mathematical objects is decidable if the
set of the codes for the positive instances is recursive. In other words, just
looking at the code, one can tell whether the answer to the question is yes
or no. While this definition depends on the coding, in practice, it is quite
robust and gives equivalent notions of decidability for a large variety of
“natural” coding.

214. The problem of whether a word matches a regular expression is decid-
able.

215. Show that the set K = {i ∈ω : ϕi (i ) =↓} is undecidable.
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Remark. The problem for which K is the solution set is known as the
diagonal halting problem, and can be phrased as “for which i does the
computation of the partial function with code i at input i halt?”

216. Show that K is recursively enumerable.

217. Show that if A is recursively enumerable, then there is a recursive func-
tion f such that i ∈ A iff f (i ) ∈ K .

218. Show that {i ∈ω : ϕi is total} is not recursively enumerable (hence not
decidable).

219. Show the condition whether the µ operator is applicable for a two-
variable function is undecidable. More precisely, the set {i ∈ω : ϕi (x,u) is
total, and for every x there is a u such that ϕi (x,u) = 0} is not recursive.

Remark. This result explains why there is no coding for recursive func-
tions: there is no (recursive) way to tell whether the µ operator is applica-
ble.

4.19 Theorem (Fixed point theorem). For each recursive function g (x)
there exists m ∈ω such that ϕm ≡ϕg (m).

220. (a) Prove Theorem 4.19.

Hint. If i is the index of h, then h(i ) =ϕi (i ). Set m = h(i ) for some h.

(b) What happens if g is partial recursive?

221. Show that there is an m ∈ω such that ϕm(x) ≡ m (interpreted as “ϕm

returns its own code”).

222. Give an i ∈ω such that ϕi (x) = i +x.

223. There is a recursive function m(i ) which returns a fixed point for ϕi .

224. (a) Let f and g be two-variable recursive functions. Show that there
are integers i and j such that ϕi =ϕ f (i , j ) and ϕ j =ϕg (i , j ).

(b) Show that for unary recursive functions f and g , in general, it is impossi-
ble to find an i such that ϕ f (i ) =ϕg (i ).

(c) What happens if, in addition, every integer is taken by f and g ?

4.20 Definition. The fixed point set of the recursive function f is
Fix( f ) = {n ∈ω : ϕn =ϕ f (n)}. It is never empty by Theorem 4.19.

225. Prove that Fix( f ) is infinite.

226. There is no recursive A such that both A and its complement are fixed
point sets.
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227. Let A ⊂ω be recursive and let f be the recursive function such that

ϕ f (i )(x) =
{

ϕi (x) if i ∈ A

↑ otherwise.

Is it always true that Fix( f ) = A?

228. Show that the Ackermann function (Definition 4.4) is recursive (cf.
Problem 146).

Hint. The idea is to find the Ackermann function in the form ϕn(x, y) for
a suitable index n. Write the defining equations as

g (n, x, y) =


y +1 if x = 0,
ϕn(x,1) if x > 0 and y = 0,
ϕn(x .− 1,ϕn(x, y .− 1)) if x > 0 and y > 0,

and apply Theorem 4.19.

229. Consider the ternary function B(x, y, z) defined by the recursion

B(x, y,0) = x + y,

B(x,0, z +1) =


0 if z = 0,
1 if z = 1,
x if z > 1,

B(x, y +1, z +1) = B(x,B(x, y, z +1), z).

Show that B(x, y,1) = x · y and B(x, y,2) = x y . Prove that B is recursive.

Remark. B(x, y, z) is the original version of Ackermann’s function.

4.21Theorem (Rice’s theorem). The subset A ⊆ω is an index property, if
ϕi ≡ϕ j implies (i ∈ A ⇔ j ∈ A). If an index property is decidable, then
it is either empty, or it is the whole ω.

230. Prove Rice’s theorem 4.21.

231. Which one of the following sets is decidable? Which one is recursively
enumerable?

(a) A = {i ∈ω : ϕi (0) =↓},

(b) B = {i ∈ω : dom(ϕi ) =;},

(c) C = {i ∈ω : ϕi (x) = x2},

(d) D = {i ∈ω : 0 ∉ dom(ϕi )},

(e) E = {i ∈ω : 0 ∈ ran(ϕi )},

(f) F = {i ∈ω : ϕi (x) = x}.

232. Show that every partial recursive function has infinitely many indices.
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233. Show that there is a universal partial recursive function W (i , x) so that
some unary partial function has a single W -index.

234. Find two recursive functions f and g such that limn→∞
f (n)
g (n) =α exists,

but the function d(n) that gives the n-th digit of the binary expansion of the
fractional part of α is not recursive.

235. Are there recursive functions f , g and a real number α such that | f (n)
g (n) −

α| < 1
n while the function d(n) that gives the n-th decimal digit of α is not

recursive?

4.7 RECURSIVE ORDERS

4.22 Definition. An ordinal α is called recursive if there is a recursive
set A ⊂ ω and a recursive linear ordering ≺ on A such that 〈A,≺〉 is
isomorphic to 〈α,<〉.

236. Prove that the infinite ordinal α is recursive if and only if there is a
recursive orderingC on ω such that 〈ω,C〉 is isomorphic to 〈α,<〉.

237. (a) Show that ω+1 and ω+ω are recursive ordinals.

(b) Show that ω2 is a recursive ordinal.

(c) Prove that ωω is a recursive ordinal.

238. Prove the following statements.

(a) If α is a recursive ordinal and β<α, then β is a recursive ordinal.

(b) If α and β are recursive ordinals, then so is α ·β.

(c) If α is a recursive ordinal, then α+1 is a recursive ordinal as well.

(d) There is a minimal, countable, non-recursive, limit ordinal.

Remark. This ordinal is called the Church–Kleene ordinal, denoted by
ωC K

1 .

239. Prove or disprove the following statements:

(a) The supremum of a recursive sequence of recursive ordinals is a recursive
ordinal. More precisely, if I ⊂ ω is a recursive set and αi is a recursive
ordinal for each i ∈ I , then supi∈I αi is a recursive ordinal.

(b) Suppose f , g :ω→ω are recursive functions such that ϕ f (i ) is the char-
acteristic function of Ai ⊂ ω, and ϕg (i ) is the characteristic function
of a well-ordering <i on Ai . Assume 〈Ai ,<i 〉 has order-type αi . Then
supi∈ωαi is a recursive ordinal.

240. Prove that ωC K
1 is at least as large as ωωω

..
.

.
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L. Csirmaz and Z. Gyenis, Mathematical Logic, Problem Books
in Mathematics, https://doi.org/10.1007/978-3-030-79010-3_5

39

5.1 FORMULAS

5.1 Definition (Syntax). Propositional formulas are elements of the free
algebra generated by the set of propositional variables V and constants
>, ⊥ in the Boolean-type 〈∨,∧,¬〉.

The following abbreviations will be used:

ϕ→ψ instead of ¬ϕ∨ψ,

ϕ↔ψ instead of (ϕ→ψ) ∧ (ψ→ϕ).

5.2 Definition (Evaluation). Given the set V of propositional variables,
an evaluation is a function f :V → {>,⊥}, which tells the truth value of
each variable. The evaluation, in fact, maps the generators of the free
algebra of formulas into the two-element Boolean algebra B = {>,⊥},
thus f automatically extends to a homomorphism from all formulas to
B.

5.3 Definition (Satisfiability). A formula ϕ is satisfiable if for some eval-
uation f , f (ϕ) =>. A set F of propositional formulas is satisfiable if for
some evaluation f , all elements of F have value >. F is contradictory if
it is not satisfiable.

5.4 Definition (Tautology). A formula ϕ is a tautology if for each evalu-
ation f we have f (ϕ) =>. ϕ is refutable if it is not a tautology.

241. We have 11 tokens and 10 boxes. The value of the propositional variable
Ai , j is > if the i -th token is in the j -th box and ⊥ otherwise. Write formulas
expressing the following claims:

(a) the first token is in at most one box;

(b) the second token is in at least three boxes;

(c) the first five tokens are in the first three boxes;

(d) pigeonhole principle: it is impossible that all tokens are in one or more
boxes, but each box contains at most one token.
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5 Propositional Calculus

242. Let G be a finite graph with V as the set of vertices. For v ∈ V and
e = 1,2,3,4 the propositional variable Av,e means that the vertex v is colored
by color e. Write formulas which express the facts that each vertex has exactly
one color and vertices connected by an edge have different colors.

243. Let G be a finite directed graph. For vertices v and w the propositional
variable Av,w indicates whether there is a directed edge from v to w or not.
Construct a formula which expresses that there exists a vertex from which
every other vertex can be reached in at most two steps.

244. Let |G| = 100, |B | = 100. The value of the propositional variable Ag b is
> if the girl g ∈G knows the boy b ∈ B and ⊥ otherwise. Construct a single
formula which expresses

(a) every girl knows exactly one boy and the other way around;

(b) all subsets of girls know at least as many boys as many girls are in that
subset.

5.5 Definition. The function f is Boolean if dom( f ) = {0,1}n for some
n ≥ 1, and ran( f ) ⊆ {0,1}.

245. Show that Boolean functions can be expressed using the traditional
“and,” “or,” and “not” operators only.

246. Show that for some n-ary Boolean function the shortest such expression
in Problem 245 has length ≥ 2n/10.

247. Ternary functions are defined on {0,1,2}n and take values in {0,1,2}.
Show that every ternary function can be expressed from the following func-
tions using composition only: x ∧ y = min(x, y), x ∨ y = max(x, y), yx =
x +1 (mod 3), and ¬x = 2−x.

248. Show that all Boolean functions can be obtained from the following
functions by taking compositions only:

(a) f1(x, y) = x y (mod 2), f2(x) = 1−x.

(b) f1(x, y) = x y +x (mod 2), f2(x) = 1−x.

(c) Show that the following two functions do not generate all Boolean func-
tions: f1(x, y) = x y (mod 2), f2(x, y) = x + y (mod 2).

249. (a) Does there exist a single Boolean function from which all other
Boolean functions can be obtained by composition? How many such
binary functions exist?

Warning. No constants can be used in the composition.

(b) What is the case for the collection of real functions Rn →R?
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5.6 Definition. A k-valued logical function is a function defined on
{0,1, . . . ,k −1}n which has values in {0,1, . . . ,k −1}.

250. Let k ≥ 2. The function set F consists of +, · (modulo k), characteristic
functions of single elements of {0, . . . ,k −1}, and constant functions:

F = {+, ·, χa , a : 0 ≤ a < k
}
.

Show that F generates all k-valued logical functions.

251. Show that there exists a single k-valued logical function which generates
all other such functions (including the constant ones) by taking compositions
only.

Hint. Merge the functions in Problem 250 into a single function with four
variables.

252.∗ Prove that all k-valued functions can be obtained by compositions
from the binary function F (x, y) = max{x, y}+1 (mod k).

253. A is a free algebra over the set of generators G ⊆ A, if every embedding
of G to an algebra B of the same type can be extended to a homomorphism
from A to B. Let A1 and A2 be two free algebras over the same generator set
G . Show that they are isomorphic.

5.7 Definition. A congruence on an algebra A is a partition of A for
which there exists a homomorphism ϕ : A → B collapsing elements of
the same class. A congruence is smaller than another one if the former
is a refinement of the latter.

254. Show that there are smallest and largest congruences. Show that any
two congruences have a smallest upper bound and greatest lower bound.

255. L is the five element non-modular lattice as pictured. Draw the congru-
ence lattice of L.

L =

256. Let ϑ be an equivalence relation on the set X different from ∆= {〈x, x〉 :
x ∈ x} and ∇= X ×X . Is it always possible to define an algebra on X whose
congruences are exactly ϑ, ∆, and ∇?

5.8 Theorem (Compactness—weak form). Let Σ be a set of proposi-
tional formulas. If every finite subset of Σ is satisfiable, then Σ is also
satisfiable.

257. Prove Theorem 5.8.
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Hint. Consider the problem as a design for a voting system (Chapter 2.2).
Every finite subset of Σ has a vote on what the value of the propositional
variable v ∈ V (or a formula ϕ) should be. Try to find a voting system
which is compatible with the evaluation of formulas.

258 (Compactness of k-valued logic). Let V be a set of k-valued logical vari-
ables taking values in {0, . . . ,k − 1}. The elements of Σ are ϕα(vα1 , . . . ,vαn )
where ϕα is a k-valued logical function. Σ is satisfiable if there is an evalua-
tion of the variables V such that each function in Σ has value 0.

Show that if every finite subset of Σ is satisfiable, then Σ is also satisfiable.

259. Let Σ be a collection of (multivariate) polynomials over a finite field.
Show that if every finite subset of Σ has a solution (there are values for the
variables which make every polynomial in the set vanish), then the whole set
has a solution.

260. Give a counterexample to the previous problem when the polynomials
are over (a) real numbers; (b) integers; (c) complex numbers.

5.9 Definition. ϕ is a semantical consequence of Σ, written as ΣÍϕ, if
every evaluation that satisfies Σ also satisfies ϕ.

5.10 Theorem (Compactness—strong form). If Σ Í ϕ, then Σ′ Í ϕ for
some finite subset Σ′ ⊆Σ.

261. Prove Theorem 5.10.

Hint. Use the fact that ΣÍϕ if and only if Σ∪ {¬ϕ} is not satisfiable.

262. Let V be a set of propositional variables, F be the set of formulas using
variables from V only, and let X consist of all evaluations of V . A topology
is defined on X by stipulating U ⊆ X to be open if, for some appropriate set
Γ⊆ F of formulas, U consists of those evaluations which make some element
of Γ true.

(a) Show that this is a topological space indeed. Show that this space has
a basis consisting of sets which are simultaneously closed and open
(clopen sets).

(b) Show that the compactness theorem is equivalent to the fact that this
space is compact.

(c) What separation properties among T0, T1, T2, and T3 this space has?

(d) Does this space have the M1 or M2 property? Is it separable? Is it metriz-
able?

(e) Prove that X is homeomorphic to V 2, the product of discrete topology.

263 (Interpolation theorem). Suppose ϕ→ψ is a tautology. Show that there
exists a formula ϑ, which might contain only those variables which occur
both in ϕ and ψ for which both ϕ→ϑ and ϑ→ψ are tautologies.

42



5.1 Formulas

264 (Lindenbaum algebra). Let V be a set of propositional variables, and
F be the set of all formulas using variables from V only. Define ϕ1 ≡ ϕ2 if
f (ϕ1) = f (ϕ2) for all homomorphisms (i.e., evaluations) f . Let [ϕ] denote
the equivalence class of ϕ. Define [ϕ1] ≤ [ϕ2] if f (ϕ1) ≤ f (ϕ2) always, where,
as you might expect, ⊥ < >. Show that ≤ is a partial ordering, and the
equivalence classes with this ordering form a distributive lattice.

Remark. Actually, this lattice is a Boolean algebra. It has a minimal and
maximal element, and the complement of the class [ϕ] is [¬ϕ].

265 (Erdős–deBruijn theorem). Suppose that all finite subgraphs of G can be
colored by n <ω colors. Show that then the whole graph can also be colored
by n colors.

266 (Erdős–deBruijn theorem—alternative proof). Suppose that all finite
subgraphs of the graph G can be colored by k colors. Using Zorn’s lemma
show that G can be extended to a maximal such graph H by adding new edges
(i.e a graph to which no more edges can be added without causing some
finite subgraph to require more than k colors). Show that non-adjacency in
H is an equivalence relation. Prove that H (and hence G) can be colored by
k colors.

267. Consider the following graphs. Pick n different points arbitrarily in the
d-dimensional Euclidean space and connect two points if their distance is
exactly one. Suppose all of these graphs can be properly colored by k colors.
Show that in this case all points of the space can also be colored by k colors
so that points at distance 1 are colored differently.

268. Show that the points of the plane can be colored by 9 colors so that any
two points at distance 1 are colored differently.

Show that you need at least four colors to do that.

269. Let k <ω be fixed. Suppose that edges of each finite induced subgraph
of G can be colored by two colors such that it has no homogeneous subgraph
of size k. Show that G can also be colored in such a way.

270. Let G and B be two (possibly infinite) sets, the set of girls and boys,
respectively. Suppose that every subset A of G together knows at least as
many boys from B as the cardinality of A, and the same is true for B . Give an
example where, in spite of this, G and B cannot be matched.

271. Assume, in addition to the conditions of Problem 270, that every girl
knows finitely many boys from B only, and vice versa. Show that in this case
there exists a matching between G and B .

Hint. Use the compactness theorem. You’ll need a special combinatorial
lemma.
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5.11 Definition. A tournament is a directed graph where between any
two vertices there is exactly one edge. A vertex v in a tournament is a
king if every other vertex can be reached from v by a (directed) path of
length at most two.

272. (a) Show that in every finite tournament there is a king.

(b) Give an infinite tournament without a king.

273. (a) Show that for every large enough n there is a tournament on n
vertices where everyone is a king.

(b) Does there exist an infinite tournament where everyone is a king?

274. Suppose that in an infinite tournament every vertex has finite “in-
degree” (i.e., only finitely many edges are directed toward this vertex). Show
that there is a king in it.

Hint. Use the compactness theorem.

275. Prove or disprove that a finite tournament has a source (vertex of in-
degree zero) if and only if it has a sink (vertex of out-degree zero). What is
the case for infinite tournaments?

5.2 DERIVATION

5.2.1 RESOLUTION METHOD

Given a set Σ of propositional formulas, the resolution method determines
whether Σ is refutable or not. This yields strong completeness since ΣÍϕ

if and only if Σ∪ {¬ϕ} is refutable.

5.12 Definition. A conjunctive normal form is a formula of the form

(±v0,0 ∨ ·· · ∨±v0,n−1) ∧ ·· · ∧ (±vv,0 ∨ ·· · ∨±vk,n−1)

where vi , j is a propositional variable and ±v is either v or ¬v (see Prob-
lem 245).

276. Prove that every formula can be transformed into conjunctive normal
form using the following steps until they cannot be applied:

Step 1. If ϕ has a subformula of the form ¬(ψ∨ϑ), then replace it by (¬ψ) ∧
(¬ϑ). If ϕ has a subformula of the form ¬(ψ ∧ ϑ), then replace it by
(¬ψ) ∨ (¬ϑ).

Step 2. Replace any subformula of ϕ of the form ¬(¬ψ) by ψ.

Step 3. If ϕ has a subformula of the form ψ∨ (ϑ0 ∧ϑ1) or (ϑ0 ∧ϑ1) ∨ψ, then
replace it by (ψ∨ϑ0) ∧ (ψ∨ϑ1).

Show that if starting from ϕ we get ϕ∗, then Íϕ↔ϕ∗.
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5.2 Derivation

5.13 Definition. A literal is either a propositional variable or its nega-
tion; a clause is a finite set of literals; and ä denotes the empty clause.
The clause set C is satisfiable, if there is an evaluation such that every
clause in C contains at least one true literal. C is refutable if it is not
satisfiable.

If ä∈ C then C is refutable (as no true literal can be in ä). If C =;, then C
is satisfiable.

5.14 Definition (Resolvent). Let c0,c1 be clauses, ` be a literal so that
` ∈ c0 and ¬` ∈ c1. The resolvent of c0 and c1 with respect to ` is

R(c0,c1,`) = (c0 à {`})∪ (c1 à {¬`})

277. Let c be a one step resolvent of C. Then C is satisfiable if and only if
C∪ {c} is satisfiable.

5.15Definition (Resolution method). Let C be a set of clauses and c be a
clause. c is derivable from C by the resolution method, denoted as C `R

c, if there is a sequence of clauses c0, c1, . . ., cn−1 ending with cn−1 = c
so that each ci is a one step resolvent from the set C∪ {c0, . . . ,ci−1}.

5.16 Theorem (Completeness of Resolution). C is refutable if and only
if C `R ä.

278. What is the set of clauses arising from this formula:

¬(A ∨¬((B ∧¬C ) ∨ (¬B ∧C ))) ∨¬(¬A ∨¬((B ∧C ) ∨ (¬B ∧¬C )))

279. Deduce the following tautology using the resolution method:

¬ (¬A ∨ B) ∨ (¬(¬C ∨ A) ∨ (¬C ∨ B))

280. Using the resolution method prove that the following formula is a
tautology:

((A → (B →C )) ∧ (A → (B → D))) → ((A → B) → (A → (C ∧ D)))

281 (Deduction lemma). Let ` be a literal, and {`} be a one-element clause.
Suppose that for the clause c differing from {`} we have C, {`} `R c. Then
either C `R c or C `R c ∪ {¬`}.

282. Let C be a maximal set of clauses from which the empty clause cannot
be derived using resolution. Show that for each propositional variable v
exactly one of {v} ∈ C or {¬v} ∈ C hold.

283. Prove Theorem 5.16.
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5 Propositional Calculus

284. For a set of clauses C and a clause c not containing both a literal and its
negation the following two statements are equivalent:

(i) C `R c ′ for some clause c ′ ⊆ c and

(ii) If an evaluation satisfies every element of C, then it also satisfies c.

285. Solve Lewis Carroll’s sorosites given in the preface.

286. Assume clauses can be multisets rather than sets, meaning that in
a clause the same literal may occur repeatedly. The resolvent R(c0,c1,`)
discards one instance of ` and one instance of ¬` from c0 ∪ c1. Give an
example of a refutable C for which C 0R ä. Where does the proof of the
deduction lemma in Problem 281 fail for multisets?

5.2.2 GENTZEN’S NATURAL DEDUCTION

5.17 Definition (Sequent). A pair Γ`∆ is a sequent if Γ and ∆ are finite
sets of propositional formulas. Curly brackets and the union sign are
omitted, thus Γ,ϕ`ϕ,∆,ψ is the sequent Γ∪ {ϕ} `∆∪ {ϕ,ψ}.

5.18 Definition (Natural deduction). A Gentzen-style derivation is a tree
of sequents that is formed using axioms at the leaves and inference
rules at nodes.
Axioms: Γ,ϕ`ϕ,∆ (the two sides have a common formula).
Inference rules:

(¬ ` )
Γ`ϕ,∆

Γ,¬ϕ`∆
( ` ¬)

ϕ,Γ`∆

Γ`¬ϕ,∆

(∨ ` )
Γ,ϕ`∆ Γ,ψ`∆

Γ,ϕ∨ψ`∆
( ` ∨)

Γ`ϕ,ψ,∆

Γ`ϕ∨ψ,∆

(∧ ` )
Γ,ϕ,ψ`∆

Γ,ϕ∧ψ`∆
( ` ∧)

Γ`ϕ,∆ Γ`ψ,∆

Γ`ϕ∧ψ,∆

287. Construct a Gentzen-style proof for the following tautologies:

(a) A → (A ∨ B).

(b) A → (B → (A ∧ B)).

(c) (A → B) → ((A → (B →C )) → (A →C )).

288. Show that the sequent ;`ϕ is derivable if and only if ϕ is a tautology.

5.2.3 HILBERT-TYPE DERIVATION

A Hilbert-type derivation is specified by a given set of formulas, called
axioms, and a collection of inference rules. An inference rule is a (partial)
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function that assigns a formula (the conclusion) to a finite set of other
formulas (called premises).

5.19 Definition (Hilbert-type derivation). A Hilbert-type derivation of
ϕ from Σ is a finite sequence of formulas ϕ1, . . . , ϕn ending in ϕn =ϕ

such that each formula in the sequence is either

• an element of Σ, or

• an axiom, or

• the conclusion of an inference rule where all premises of the rule
are in the sequence before the formula.

We write Σ`ϕ to indicate that there is a Hilbert-type proof of ϕ from Σ.

Remark. For a fixed set of axioms and inference rules the Hilbert-type
derivation has the following properties:

(i) monotonicity: Σ0 ⊂Σ, Σ0 `ϕ implies Σ`ϕ.

(ii) compactness: if Σ`ϕ, then for some finite Σ′ ⊂Σ we have Σ′ `ϕ.

(iii) transitivity: if Σ0 `ϕ and Σ1 `Σ0, then Σ1 `ϕ.

The main issue is to find a set of axioms and inference rules which leads
to a sound (if Σ`ϕ then ΣÍϕ) and complete (if ΣÍϕ then Σ`ϕ) proof
system. These sets depend on the available propositional variables and
are typically specified by schemes: to get an axiom or an inference rule
from the scheme the Greek letters (metavariables) in the scheme are
to be replaced by propositional formulas (generated by the given set of
propositional variables) so that the same formula is replaced for each
occurrence of the same letter.

Only one type of inference rule will be used, the modus ponens, abbre-
viated as MP.

5.20 Definition (Modus Ponens).

MP:
ϕ ϕ→ψ

ψ

Here the two premises are ϕ and ϕ→ψ, they are above the line, and
the conclusion, ψ is below.

289. Suppose all axioms are tautologies. Show that ` is sound.

290. Suppose all tautologies are axioms. Show that ` is complete.

Hint. Use the Compactness Theorem 5.10.

The following problems indicate how to find a sound and complete proof
system with finitely many axiom schemes. The schemes will be unveiled
one by one. These axioms form neither a nice, nor an independent set,
however they suffice for our purposes.
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291 (Syntactic deduction lemma). Σ,ψ`ϕ if and only if Σ`ψ→ϕ.

Hint. (⇒) Use induction on the length of the derivation of which ϕ is the
last member. Introduce the following axiom schemes:

Ax1 ϕ→ (ψ→ϕ)

Ax2 ϕ→ϕ

Ax3 (ψ→ (ϑ→ϕ)) → ((ψ→ϑ) → (ψ→ϕ)).

The next problem formalizes the “proof by contradiction” technique: as-
sume that the statement to be proved is false and derive a contradiction.

292. Σ,¬ϕ`⊥ if and only if Σ`ϕ.

Hint. Use the axiom schemes

Ax4 (¬ϕ→⊥) →ϕ

Ax5 ϕ→ (¬ϕ→⊥).

Notation. The setΣ of propositional formulas is syntactically consistent,
if Σ0⊥.

Let Σ be consistent. By the compactness of ` (and by Zorn’s lemma) it can
be extended to a maximal consistent subset set of propositional formulas.
In the next problems assume Σ is maximal consistent, that is, ϕ ∉Σ just in
case Σ,ϕ`⊥. Maximality also implies that ϕ ∈Σ whenever Σ`ϕ.

293. If Σ is maximal consistent, then for every ϕ exactly one of ϕ and ¬ϕ is
in Σ.

294. Let Σ be maximal consistent. Define the valuation fΣ :V → {>,⊥} by

fΣ(v) =
{ > if v ∈Σ,
⊥ if ¬v ∈Σ.

This definition is justified by Problem 293. Show that for every formula

fΣ(ϕ) =
{ > if ϕ ∈Σ,
⊥ if ¬ϕ ∈Σ.

Hint. Use induction on the complexity of ϕ. For negation use Problem
293. For ∨ and other connectives new axioms are needed, such as

Ax6 ϕ→ (ϕ∨ψ)

Ax7 ψ→ (ϕ∨ψ)

Ax8 ¬ϕ→ (¬ψ→¬(ϕ∨ψ)).

295 (Weak completeness). For any set Σ of propositional formulas Σ is satis-
fiable if and only if Σ0⊥.
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5.2 Derivation

5.21 Theorem (Strong completeness of propositional logic).

ΣÍϕ iff Σ`ϕ

296. Prove Theorem 5.21.

Remark. The exact set of axioms depends on the set of propositional
variables, but more importantly, on the logical operators which can be
used in the formulas. According to Definition 5.1ϕ→ψ is only a shorthand
for ¬ϕ∨ψ, thus all axioms and inference rules should be “expanded” to a
formula without this connective. For example, the →-free form of axiom
schemes Ax4 and Ax5 are

Ax′4 ¬(¬¬ϕ∨⊥) ∨¬ϕ

Ax′5 ¬ϕ∨ (¬¬ϕ∨⊥).

The method outlined in the above problems works for other functionally
complete sets of logical operators, see Problem 298.

Remark. The Hilbert-style derivation does not allow manipulating sub-
formulas, in particular, one cannot replace a subformula with another
“provably equivalent” subformula and expect to get a valid derivation (but
see Problem 299). For example, deleting the double negation in Ax′4 gives
a scheme which is too weak to prove the statement in Problem 292.

297. Provide the derivations claimed below using schemes Ax1 – Ax8:

(a) ϕ→ψ, ψ→ϑ`ϕ→ϑ,

(b) ϕ, ¬ϕ`ψ,

(c) ϕ→ (ψ→ϑ) `ψ→ (ϕ→ϑ),

(d) ` ¬¬ϕ→ϕ,

Hint. In (b) use that ϕ→ψ is a shorthand for (¬ϕ) ∨ (ψ).

298. Let us restrict propositional logic in the following sense: besides propo-
sitional variables the only connectives are → and ¬. What axiom schemes
should we make use of to be able to deduce each tautology with MP as the
only rule of inference?

Remark. In Principia Mathematica Bertrand Russel and Alfred Whitehead
proved that for propositional formulas using → and ∨ only the following
four axiom schemes together with MP are sufficient to derive all tautolo-
gies:

RW1 ϕ∨ϕ→ϕ

RW2 ϕ→ϕ∨ψ

RW3 ϕ∨ψ→ψ∨ϕ

RW4 (ϕ→ψ) → (ϑ∨ϕ→ϑ∨ψ).

Another frequently used complete set of axiom schemes for the case when
the logical connectives are ¬ and → only (covered in Problem 298) is the
following:

49



5 Propositional Calculus

• α→ (β→α)

• (α→ (β→ γ)) → ((α→β) → (α→ γ))

• (¬α→¬β) → ((¬α→β) →α).

299. Suppose ϕ is a subformula of Φ and replace each occurrence of ϕ by ψ.
Denote the obtained formula by Ψ. Prove that `ϕ↔ψ implies `Φ↔Ψ.

300. Let us suppose that a propositional variable may take three different
values: {0,∗,1}. The effect of operations ¬ and ∨ are given by two tables, such
as ¬0 = 1, ¬∗ = ∗, ¬1 = 0. A formula is all-1 if its value is always 1 for all
possible values of the propositional variables.

(a) What condition the ∨ table should satisfy so that from all-1 formulas
only all-1 formulas can be derived using MP? What happens if ¬∗= 1?

(b) What are the possible values of the four axioms above if 1 ∨ x = x ∨ 1 = 1,
0 ∨ x = x ∨ 0 = x, ∗ ∨ ∗ = ∗, and the definition of ¬ is the first or the
second one?

(c) Find tables for ¬ and ∨ so that among the four axioms only ϕ→ϕ∨ψ is
not an all-1 formula.

301. Show that none of the four axioms of RW1, RW2, RW3, RW4 can be
derived from the others, i.e., the system is independent.

Hint. Use three truth values {0,1,∗} and define tables for ∨ and ¬ so that
from all-1 formulas only all-1 formulas can be derived, and exactly three
of the axioms are all-1.

5.3 CODING

With countably many propositional variables there is a natural coding
(see Section 4.4) of propositional formulas. Suppose the logical operators
are ¬, ∨, and ⊥ only. The code of the propositional formula ϕ, denoted as
α(ϕ), can be defined along the complexity of the formulas as follows:

α(vi ) = 〈0, i 〉 for each propositional variable vi ∈V ,
α(⊥) = 〈1〉,
α(¬ϕ) = 〈2,α(ϕ)〉,
α(ϕ∨ψ) = 〈3,α(ϕ),α(ψ)〉.

As (u)i < u the code of any subformula of ϕ is smaller than the code of ϕ.
For a set Σ of propositional formulas we identify Σ and {α(ϕ) : ϕ ∈Σ}, so
we can say that Σ is recursive, or recursively enumerable.

302. Show that the following sets are recursive:

(a) (the codes of) all propositional formulas;

(b) formulas generated by an axiom scheme;

(c) the set of triplets 〈α(ϕ), α(ϕ→ψ), α(ψ)〉.
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303. Let g be a recursive function, and define the evaluation f by f (vi ) =>
iff g (i ) 6= 0. Show that there is a recursive function G such that G(α(ϕ)) 6= 0 iff
f (ϕ) =>.

304. Show that the set of tautologies is recursive. In other words, “tautology”
is a decidable property.

305. Let Σ be a recursive formula set. The binary relation “x is a derivation of
y from Σ” holds for two natural numbers x and y if elements of the sequence
(coded by) x just code a valid Hilbert-type derivation from Σ of the formula
(coded by) y . Show that this relation is recursive (decidable).

306. (a) Let Σ be recursive. Show that the set of its consequences {ϕ : Σ`ϕ}
is recursively enumerable.

(b) Show that the same conclusion holds when Σ is recursively enumerable
only.

307. Give an example for a recursive Σ such that the set of its consequences
is not recursive (i.e., it is undecidable).
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6.1 BASICS

6.1 Definition (Similarity type). The similarity type, or signature, or
alphabet is a collection of constant, relation, and function symbols
with their fixed arities. Similarity types are usually denoted by τ.

The cardinality of τ, denoted as |τ|, is the cardinality of its symbols. τ1 ⊆ τ2

means that τ1 can be got from τ2 by deleting some of the symbols. τ1 and
τ2 are compatible, if there is a type extending both, the minimal such type
is denoted by τ1 ∪τ2. The smallest type is the empty type which contains
no symbols at all.

The countable set of individual variables, or just variables, is denoted
by X . Variables are typically denoted by x, y , z, possibly with indices.

6.2 Definition (Terms). The set E (τ) of τ-type terms (expressions) is the
free algebra generated from the variable and constant symbols using
the functions symbol in τ.

308. Show that ω≤ |E(τ)| ≤ |τ| ·ω.

6.3 Definition (First-order formula). An atomic formula of type τ is a
sequence of symbols either of the form t1=t2 with t1, t2 ∈ E(τ) (equal-
ity); or r (t1, . . . , tn) for some n-place relation symbol r ∈ τ and terms
t1, . . . , tn ∈ E(τ) (relation).
The set of τ-type first-order formulas F (τ) is the smallest set satisfying
the following conditions:

• every atomic formula is in F (τ),

• if ϕ,ψ ∈ F (τ) then so are (ϕ) ∨ (ψ), ¬(ϕ), and ∃x(ϕ), where x ∈ X is
a variable symbol.

Notation. As the equality symbol = may occur in formulas, equality of
formulas ϕ and ψ (as symbol sequences) will be denoted by ϕ≡ψ.
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6 First-Order Logic

In the formulas logical operators and constructs not mentioned in Defi-
nition 6.3 will also be used. Similar to the Propositional Logic discussed
in Chapter 5, they can be considered as either abbreviations, or, with
some additional work, the treatment can be extended to handle them. In
particular,

∀xϕ is an abbreviation for ¬∃x¬ϕ.

309. Show that |F (τ)| = |τ| ·ω.

The set of free variables of a formula is defined as follows. For an atomic
formula ϕ, V (ϕ) is the set of all variables occurring in ϕ. Otherwise
V (¬ϕ) = V (ϕ), V (ϕ ∨ ψ) = V (ϕ)∪V (ψ), and V (∃xϕ) = V (ϕ)à {x}. An
occurrence of the variable x in ϕ is bound or free depending on whether
it is discarded or not in the above procedure. The formula ϕ is closed
if V (ϕ) = ;, that is, has no free variables, and its (universal) closure is
ϕ̄≡∀x1 · · ·∀xnϕ where V (ϕ) = {x1, . . . , xn}. The closure of a formula is not
necessarily unique.

Notation. We write ϕ(x, y, . . .), or just ϕ(~x) to indicate that the free vari-
ables of ϕ are among the ones in the brackets.

6.4 Definition (Structure). For a given similarity type τ, a τ-type struc-
ture A consists of a non-empty set A (universe, or underlying set) to-
gether with the interpretation of the symbols in τ. For each constant
symbol c ∈ τ, its interpretation, denoted by cA, is an element of A; for
an n-place relation symbol r ∈ τ, rA is a subset of An ; finally for an
n-place function symbol f ∈ τ, f A : An → A.

An evaluation of the variable symbols over the structure A is a function
e : X → A. For an evaluation e, variable symbol x ∈ X and element a ∈ A,
e(x/a) is the evaluation that takes the same values as e except for at x ∈ X ,
where it takes the value a ∈ A.

For a term t ∈ E(τ) and evaluation e : X → A the value of t computed
in A using e(x) as value of the variable symbol x is denoted by tA[e] ∈ A.

6.5 Definition (Semantics). For a τ-type structure A, evaluation e over
A and formula ϕ ∈ F (τ) we define AÍϕ[e] to be read as “ϕ is true in A

under the evaluation e” by induction on the complexity of ϕ as follows:

• AÍ (t0 = t1)[e] if tA0 [e] = tA1 [e],

• AÍ r (t1, . . . , tn)[e] if 〈tA1 [e], . . . , tAn [e]〉 ∈ rA,

• AÍ (ϕ∨ψ)[e] if either AÍϕ[e] or AÍψ[e],

• AÍ (¬ϕ)[e] if A 6Íϕ[e],

• AÍ (∃xϕ)[e] if for some a ∈ A we have AÍϕ[e(x/a)].
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If AÍϕ[e] for all evaluations e, then we write AÍϕ, and say that A is a
model for ϕ, or ϕ is satisfied, or valid in A. For Σ⊆ F (τ), AÍΣ means
AÍϕ for every ϕ ∈Σ.

310. Let e0 and e1 be evaluations over A so that whenever x ∈ V (ϕ), then
e0(x) = e1(x). Show that AÍϕ[e0] iff AÍϕ[e1].

Notation. For a formula ϕ(x1, . . . , xn) and elements a1, . . . , an ∈ A we
write AÍϕ[a1, . . . , an], or just AÍϕ[~a] to mean that AÍϕ[e] for all (or
for any by Problem 310) evaluation e with e(xi ) = ai .

311. Let ϕ̄ be the universal closure of ϕ. Prove that AÍϕ iff AÍ ϕ̄.

6.6 Definition (Substitution). For a formula ϕ ∈ F (τ), variable x and
term t ∈ E(τ), ϕ[x/t ] is the formula obtained from ϕ by replacing each
free occurrence of x with t . Admissible substitutions are defined by
recursion on the complexity of ϕ as follows:

• if ϕ is atomic, then ϕ[x/t ] is admissible,

• (ϕ∨ψ)[x/t ] is admissible if both ϕ[x/t ] and ψ[x/t ] are admissible,

• (¬ϕ)[x/t ] is admissible if ϕ[x/t ] is such,

• (∃xϕ)[x/t ] is admissible (note that the substitution gives ∃xϕ),

• (∃yϕ)[x/t ] is admissible if x and y are different, ϕ[x/t ] is admissible,
and either x is not free in ϕ or y does not occur in t .

312. Give example for ϕ ∈ F (τ) and t ∈ E(τ) such that Íϕ while 6Íϕ[x/t ].

6.7 Theorem (Substitution lemma). If ϕ[x/t ] is an admissible, then

AÍ (ϕ[x/t ])[e] if and only if AÍϕ[e(x/tA[e])].

313. Let ϕ be a formula, t be a term and e be an evaluation over A. Give
examples for all possible truth values of AÍϕ(x/t )[e] and AÍϕ[e(x/tA[e])]
when the substitution is (a) admissible (b) not admissible.

6.8 Definition. The formula ϕ ∈ F (τ) is semantical consequence of Γ⊂
F (τ), in symbols ΓÍϕ, if whenever AÍ Γ, then AÍϕ.
ΓÍ∆ means that ΓÍϕ for each ϕ ∈∆; and Í∆ means ;Í∆, that is,
all formulas in ∆ are true in every τ-type structure.

314. Give Γ and ϕ such that Γ 6Íϕ and Γ 6Í ¬ϕ. Give A such that A 6Íϕ and
A 6Í ¬ϕ.

6.9 Theorem (Deduction lemma). Suppose ψ ∈ F (τ) is closed. Then

Γ∪ {ψ} Íϕ if and only if ΓÍψ→ϕ
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315. Give examples Γ, ϕ and ψ for all the possible values of ΓÍϕ→ψ and
Γ∪ {ϕ} Íψ.

316. Semantic consequence can be defined in a slightly different way. Write
Γ ∗Íϕ if for every structure A and evaluation e over A, whenever AÍϑ[e] for
all ϑ ∈ Γ, then AÍϕ[e]. Are ΓÍϕ and Γ ∗Íϕ equivalent?

6.10 Definition. Γ is consistent if there is a structure A with AÍ Γ, that
is, Γ has a model. Otherwise, Γ is inconsistent or contradictory. As for
all structures A we have A 6Í ⊥, Γ is inconsistent iff ΓÍ⊥.

317. Let Γ be maximal consistent, and ϕ and ψ be closed formulas. Show
that

(a) ΓÍϕ if and only if ϕ ∈ Γ.

(b) ϕ∨ψ ∈ Γ if and only if ϕ ∈ Γ or ψ ∈ Γ.

(c) ϕ ∉ Γ if and only if ¬ϕ ∈ Γ.

6.11Definition. The theory of a τ-structure A is the formula set Th(A) =
{ϕ ∈ F (τ) :AÍϕ}.

318. Show that Γ is maximal consistent if and only if it is the theory of some
structure.

319. Find a maximal consistent Γ and formula ϕ such that neither ϕ ∈ Γ, nor
¬ϕ ∈ Γ.

320. (a) An oracle can decide for every type and every set Γ of formulas
whether Γ has a model or not, provided that no formula in Γ contains a
function symbol (even if there is one in the type). How can the oracle be used
to decide the consistency of an arbitrary formula set?

(b) The oracle further restricted its usage, and now no formula in Γ can con-
tain the equality sign. Can the oracle still be used to decide the consistency
of arbitrary formula sets?

321. Let A and B be two structures with the same similarity type. Find a
closed formula ϕ such that AÍϕ and BÍϕ, but 6Íϕ.

6.12 Definition (Substructure). B is a substructure of A, written as B⊆
A, if B ⊆ A and cB = cA for each constant symbol c ∈ τ, rB = rA�B n for
each n-place relation symbol r ∈ τ, and f B = f A�B n for each n-place
function symbol f ∈ τ.
For X ⊆ A the substructure generated by X is the smallest B⊆A with
X ⊆ B .

322. Construct a structure A with universe R (the real numbers) so that

(a) A has exactly one proper substructure with universe Z (the integers),
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(b) A has two proper substructures with universe the even and odd integers,
respectively.

323. Prove that for every non-empty X ⊆ A the substructure B generated by
X in A exists and |B| ≤ max(|X |, |τ|,ω).

324. (a) Show that the condition in Problem 323 that X is not empty is
necessary: there are structures with no smallest substructure.

(b) Construct a structure A with substructures B1 and B2 such that B1∪B2

is not a substructure of A.

325. Suppose B⊆A, ϕ(~x) is quantifier-free, and ~a ∈ B . Prove that

BÍϕ[~a] ⇐⇒ AÍϕ[~a].

326. Let F be a collection of non-empty subsets of A such that (a) the
intersection of any subcollection of F , if not empty, belongs to F , (b) the
union of any increasing sequence of elements of F is in F , and (c) A ∈F .

Is it true that there is a structure A with universe A such that the collection
of the underlying sets of its substructures is exactly F ?

Remark. The underlying sets of the substructures of A clearly satisfy con-
ditions (a), (b), (c) above.

6.13 Definition. The structures A and B are isomorphic if they have
the same type, and there is a bijection f : A → B which preserves the
interpretation of every symbol in τ. An isomorphism from A to A is
called automorphism.

327. The structure A is rigid if its only automorphism is the identity. Give a
finite signature and construct (a) countably infinite (b) continuum size rigid
structure.

6.2 EXPRESSING PROPERTIES

6.14 Definition. A graph is a structure A with a single binary relation E ,
that is, its similarity type is τ= 〈E〉. Elements of the universe A are the
nodes, and two nodes u,v ∈ A are connected by an edge just in case the
pair 〈u,v〉 is in EA, the interpretation of the relation symbol E .

328. What are the axioms of graph theory? That is, find a formula set Γ such
that every graph satisfies Γ, and if an 〈E〉-type structure satisfies Γ, then it is
a graph.

329. Let 〈A,E〉 be a graph. Write formulas which express the fact that

(a) the graph is 3-regular (every vertex has degree 3),
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6 First-Order Logic

(b) it is a star,

(c) contains no triangles.

(d) What property corresponds to the formula

¬∃x1∃x2∃x3∃x4
(
E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x4) ∧ E(x4, x1)

)
.

330. Construct formulas or sets of formulas Γ such that for a graph AÍ Γ iff

(a) A contains no cycles,

(b) the diameter of A is 15,

(c) A is a bipartite graph.

331. Construct a consistent graph formula ϕ such that if AÍϕ for a graph A

then A is infinite.

6.15 Definition. A (multiplicative) group is a structure of type 〈e, ·,−1〉
denoting the unit, product, and inverse, respectively, where the multi-
plication is associative, e is both left and right unit, and −1 is both left
and right inverse.

332. What are the formulas expressing the group properties?

333. Construct formula sets which express that the group is

(a) infinite,

(b) torsion-free (has no finite order elements),

(c) torsion-free divisible Abelian group.

(d) elementary p-group (the rank of every element is p).

334. Let A be the symmetric group of the integers Z, and π ∈ A be the right
shift, namely, the following permutation of Z: π( j ) = j +1. Add this π as a
constant symbol to the group signature. Construct a formula ϕ(x) which is
satisfied exactly by the shifts in A.

6.16 Definition. An ordered set is a structure with a binary relation ≤
satisfying

• x ≤ x (reflexivity) ,

• x ≤ y and y ≤ z then x ≤ z (transitivity) ,

• x ≤ y ∧ y ≤ x → x = y (antisymmetry) ,

• x ≤ y ∨ y ≤ x (total) .
For a partial order the last property is not required.

Sometimes the name total order or linear order is used to emphasize
that ≤ is not a partial order. In an ordered set y ≥ x means x ≤ y , and
x < y means x ≤ y and x 6= y . Using this notation properties other than
transitivity can be merged into stipulating that exactly one of x < y , x = y ,
and y < x holds (trichotomy).
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335. Write the axioms of total order using the strict inequality sign <.

336. Construct formulas using the partial order ≤ which express that

(a) any two elements have a least upper bound,

(b) any two elements have a greatest lower bound,

(c) there exist a minimal and a maximal element.

337. Let ≤ be a total ordering. Construct a formula which says that on one
side of every element one can find other elements arbitrarily close, while
there is a closest one on the other side. Does there exist an ordering with this
property? Can this side be the same for all points in the ordering?

338. For each n ∈ ω construct a closed formula ϕn ∈ F (<) such that ϕn is
true in a linear order A if and only if the ground set A has at least n elements,
and ϕn uses only two variable symbols x and y .

6.17 Definition. The similarity type of the fields is 〈0,1,+.−, ·,/〉, where,
as usual, the − sign can be used both as a unary and as a binary function
symbol. Zero has no inverse, so, strictly speaking, the division is not a
binary function. However, we can pretend that it is one by stipulating
that when dividing by zero, the result is zero.

339. Construct formulas or formula sets in the language of fields which
express the following properties of a field:

(a) Every polynomial with integer coefficients has a root.

(b) The characteristics of the field is 2.

(c) The field is of characteristic zero.

(d) −1 is not a sum of finitely many squares.

(e) The field is algebraically closed.

(f) Each polynomial of odd degree has a root.

340. Let τ be a similarity type, and ≈ be a new binary relation symbol.

(a) Create a formula set ∆ which expresses that ≈ is an equivalence relation
which is compatible with all relation and function symbols of τ.

(b) To get ϕ≈ from ϕ ∈ F (τ) replace the equality symbol everywhere by the
new binary relation symbol ≈. Show that ΓÍϕ if and only if Γ≈∪∆Íϕ≈.

Notation. When the intended interpretation of the symbols in the sim-
ilarity type is clear from the context, a structure will be specified by
listing the base set followed by the symbols of the type. Example:
A= 〈ω,0,1,+,≤〉.

341. Let A= 〈ω,<〉, that is the universe is ω and the similarity type τ contains
only the binary relation symbol < with the natural interpretation. Construct
a formula ϕ(x, y) such that AÍϕ[a,b] iff a ≥ b +1024, and apart from x and
y the formula ϕ contains a single additional variable symbol.
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6 First-Order Logic

342. Let A = 〈ω,∈〉 where i ∈A j holds if the (i + 1)-st digit in the binary
representation of j (counting from right) is 1. (For example, 0 ∈A j iff j is
odd.) Which of the following formulas are true in A?

(a) ∃x∀y (y ∉ x)

(b) ∀x∀y ∃z∀u
(
u ∈ z ↔ (u ∈ x ∨ u ∈ y)

)
(c) ∀x ∃y ∀u

(
u ∈ y ↔∀v (v ∈ u → v ∈ x)

)
(d) ∃x

(∃v (v ∈ x) ∧∀y (y ∉ x ∨ ∃v (v ∈ x ∧ v 6= y ∧∀z (z ∈ y → z ∈ v )))
)
.

343. Let A = 〈ω,∈〉 as in Problem 342. In set theory the axiom scheme of
comprehension stipulates that for any formula ϕ(x, y) the axiom

∀x ∃y (∀u ∈ x)
(∃vϕ(u,v) → (∃v ∈ y )ϕ(u,v)

)
holds. Show that this scheme holds in A.

344. Construct formulas which define the following sets inA= 〈ω,0,1,+, ·,≤〉:
(a) primes (warning: 0 and 1 are not primes),

(b) powers of two,

(c) prime powers,

(d) numbers which can be written as the sum of at most nine perfect cubes.

345. Let A = 〈ω,0,1,+, ·,≤〉. Construct a formula which is true in A if and
only if the twin prime conjecture holds.

346. Let A= 〈ω,+, | 〉 where | is the divisibility relation. Find formulas ϕ1, ϕ2,
ϕ3 such that the following holds:

(a) AÍϕ1[a] iff a = 0,

(b) AÍϕ2[a] iff a = 1,

(c) AÍϕ3[a,b] iff a = b2.

347. Let A= 〈Z,S, ·〉, where Z is the set of integers, SA is the successor func-
tion and ·A is the usual multiplication of integers. Find a formula ϕ(x, y, z)
such that AÍϕ[a,b,c] iff a +b = c.

348. Let A= 〈Z,1,+, |〉, where | is the divisibility relation. Construct formulas
such that

(a) AÍϕ1[ j ] iff | j | > 1,

(b) AÍϕ2[ j ] iff | j | is a prime,

(c) AÍϕ3[ j ,u] iff |u| is a power of the prime | j |,
(d) AÍϕ4[ j ,u] iff |x| is a prime and |u| = j 2.

349. Let A= 〈Z,+, |〉 where | is divisibility. Show that there is no formula ϕ(x)
such that A Íϕ[a] iff a = 1.

350. Let A= 〈Z,1,+, |〉 where | is divisibility. Construct formulas such that

(a) AÍϕ1[i , j ] iff j =±i 2,

(b) AÍϕ2[i , j ] iff j = i 2,

(c) AÍϕ3[i ] iff i ≥ 0.
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Hint. Use that lcm(i , i +1) =±i (i +1) and lcm(i −1, i ) =±(i −1)i .

351. R is the set of reals. Let F = { f : f is a function from R to R}. Let A =
〈R∪F,R,F,+, ·,−,≤,0,1, H〉, where the interpretation of the unary relation
symbol R is R, that of F is F, the restriction to R of the functions +, ·, − and
≤ are the usual ones. The interpretation of 0 and 1 are the real numbers
zero and one. Finally, the value of H( f , x) is f (x) if f ∈ F and x ∈ R, and 0
otherwise.

Construct a formula ϕ(x) that holds in A exactly for continuous functions.

6.3 MODELS AND CARDINALITIES

352. The similarity type τ consists of the constant symbols {cξ : ξ < λ} for
an infinite cardinal λ. Let Γ= {cξ 6= cη : ξ< η<λ}. For what λ does Γ have a
unique (up to isomorphism) model of cardinality λ?

353. (a) Let τ be the empty similarity type. What is the number of non-
isomorphic countable τ-structures?

Let τ contain (b) exactly one (c) exactly n ∈ω unary relation symbols. What
is the number of non-isomorphic countable τ-structures?

354. Let τ be a finite similarity type and κ be an infinite cardinal. Prove
that there are at most 2κ pairwise non-isomorphic τ-structures of cardi-
nality κ. Find some τ such that there exist more than continuum many
non-isomorphic countable τ-structures.

355. Give a finite type τ such that for each infinite κ there are exactly 2κ

pairwise non-isomorphic τ-type structures of cardinality κ.

356. (a) The type τ contains a single unary function symbol f . How many
pairwise non-isomorphic countable τ-structures exist?

(b)∗ How many such structures are of cardinality κ>ω?

357. Give a similarity type τ and a set Γ⊆ F (τ) of formulas such that Γ has a
unique model of cardinality κ (up to isomorphism) for each infinite κ, but it
has at least three 3-element models.

358. Give a set Γ of formulas such that for a finite n ∈ω, Γ has an n-element
model iff n is a prime.

359. Give Γ that has a unique countable model but has at least two non-
isomorphic models of cardinality ω1.

360. In the language of graphs give a set Γ of formulas expressing that each
vertex has degree 3 and there are no cycles. What is the number of non-
isomorphic models of Γ of cardinality (a) ω (b) ω1?

361. In the similarity type of a binary relation symbol E let Γ be the theory
expressing that E is an equivalence relation having infinitely many infinite
equivalence classes. Write this set Γ. What is the number of non-isomorphic
models of Γ of cardinality (a) ℵ0 (b) ℵ1 (c) ℵ2 (d) ℵω?
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6 First-Order Logic

362.∗ The similarity type τ consists of k ∈ω unary relation symbols. Let ϕ be
a formula of length n. Prove that if ϕ has a model, then it has a model of size
at most n ·2k .

363. The similarity type τ consists of 2 unary relation symbols R and P . Prove
that if Γ has a unique model of cardinality ω1, then it has a unique countable
model. Does the converse hold?

6.4 ORDERED SETS

6.18 Definition (Dense ordering). An ordering is dense if between any
two different elements there is a third one. Frequently we require that
an ordering should not have endpoints. This means that there are
neither smallest, nor largest elements.

6.19 Definition (Discrete ordering). The ordering is discrete if whenever
an element is not the last one, then there is a smallest among those
which are larger than it; and if it is not the smallest, then there is a
largest element among those which are smaller than it.

6.20 Definition (Well ordering). In a well-ordering every non-empty
subset (including the whole set) has a minimal element.

364. Prove that there are exactly 2κ non-isomorphic linear orders on an
infinite set of cardinality κ.

365. How many countable dense orderings are?

366. Show that one can color the rational numbers with countably many
colors so that between any two rationals all colors occur. Show that any two
such colorings are isomorphic.

367. Show that every countable ordered set can be embedded into the ratio-
nals in an order-preserving way.

368. Construct, with proof, continuum many pairwise non-isomorphic dis-
crete ordering without endpoints on a countable set.

369. Construct at least two, but you might try 2κ many pairwise non-isomor-
phic dense orderings without endpoints of cardinality κ, for any κ>ω.

370. Construct a dense linear order (A,<) without endpoints so that there is
an a ∈ A such that any order-preserving permutation of A keeps a fixed.

6.21 Definition. Let A= 〈A,≤〉 be a linear ordering without endpoints.
If a ∈ A is the intersection of the open intervals (aα,bα) with aα <
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a < bα, then the weight of a ∈ A is the minimal cardinality of such a
collection of intervals.

371. Construct an ordering where there is an internal point which has no
weight.

372. Show that the weight of a point is either 1 or an infinite cardinal.

373. Determine the weight of
p

2 in the usual ordering of the reals.

374. Find an ordering where all elements have weight ω1.

375. For every infinite cardinal κ, give an ordering on κ such that all elements
have countable weight.

6.22 Definition. Let (P,≤) be a partially ordered set. A (generalized)
sequence is a mapping from an ordinal to P ; the α-th member of the
sequence s is denoted by sα. The sequence is increasing if sα ≤ sβ
whenever α<β.

376. Construct a partially ordered set where every increasing sequence has
an upper bound, but there is an (increasing) sequence which does not have
a least upper bound.

377. Construct a partially ordered set in which every countable increasing
sequence s0, s1, . . . has an upper bound, but there is no maximal element in
the set (i.e., the conclusion of Zorn’s lemma does not hold).

378. Suppose that every increasing sequence (of arbitrary length) in P has
an upper bound. Does it follow that every totally ordered subset of P has an
upper bound as well?

379. Every partial ordering can be extended to a total ordering.

6.5 CODING

6.23 Definition (Tautology). A formula ϕ ∈ F (τ) is a tautology if there is
a tautological propositional formula ψ so that ϕ is the result when the
propositional variables in ψ are replaced systematically by appropriate
first-order formulas.

380. If ϕ ∈ F (τ) is a tautology, then Íϕ.

Similar to coding propositional formulas in Section 5.3, there is a natural
coding of first-order formulas when the similarity type τ is finite. Such
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6 First-Order Logic

coding can be defined along the complexity of terms and formulas. Let us
start with the symbols of the similarity type τ:

α(c) = 〈0, i 〉 c ∈ τ is the i -th constant symbol in τ,
α(r ) = 〈1, i ,ni 〉 r is the i -th relation symbol in τ with arity ni ,
α( f ) = 〈2, i ,ni 〉 f is the i -th function symbol in τ with arity ni .

As τ is finite, only finitely many codes can start with 0, 1, or 2. The code of
τ-type terms can be defined as

α(xi ) = 〈3, i 〉 where xi is the i -the variable symbol, and
α( f (t1, . . . , tn)) = 〈4,α( f ),α(t1), . . . ,α(tn)〉.

The code of atomic and composite formulas can be defined similarly to
the propositional case.

381. Let τ be a fixed finite similarity type. Show that the following sets,
functions, and relations are recursive:

(a) the set of (the code of) τ-type terms, that of τ-type formulas,

(b) the relation which decides if x is free in ϕ,

(c) the code of closed formulas,

(d) the function which returns the universal closure of ϕ,

(e) the 3-place function which returns the result of the substitution ϕ[x/t ]
as 〈α(ϕ),α(x),α(t )〉 7→α(ϕ[x/t ]),

(f) the relation which decides whether the substitution ϕ[x/t ] is admissible.

382. Suppose τ contains countably many function symbols which are coded
as triplets 〈2, i ,ni 〉. Show that the set of τ-type terms is not necessarily
decidable.

383. Suppose τ contains the constant symbols 0 and 1 and the binary func-
tion symbol +. Define the terms π0 = 0, π1 = 0+1, and πn+1 =πn +1. Show
that the function n 7→α(πn) is recursive.

384. Show that the property “ϕ is a tautology” is decidable.

385. Suppose A is a finite structure. Show that its theory is decidable.
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7.1 FIRST-ORDER DERIVATIONS

7.1.1 HILBERT-TYPE DERIVATION

Definition 5.19 of Hilbert-type derivation applies to first-order logic. Ax-
ioms and derivation rules are schemes where the metavariables are to be
replaced by τ-type first-order formulas, occasionally satisfying additional
requirements. Both the axioms and the derivation rules depend on the
similarity type τ, which is arbitrary but fixed in this section.

The main goal is to find axioms and inference rules which lead to a
sound and complete proof system. Two types of inference rules will be
used: the modus ponens

MP
ϕ, ϕ→ψ

ψ

and generalization

G
ϕ

∀xϕ
.

Axiom schemes will be unveiled along the course of establishing various
properties of the proof system; we start with schemes Ax1–Ax8 from propo-
sitional logic. Further axiom schemes will not be the minimal ones which
allow to prove the required property. The reason is explained in Problem
399.

386. Let ϕ ∈F (τ) be a tautology as in Definition 6.23. Show that ` τ.

Remark. By this result tautologies can be used in a derivation as if they
were axioms: the necessary derivation can always be supplied.

387. Suppose Íϑ for all axioms ϑ. Show that Γ`ϕ implies ΓÍϕ.

7.1 Theorem (Syntactical deduction lemma). Suppose ψ ∈ F (τ) is a
closed formula. Show that Σ,ψ`ϕ if and only if Σ`ψ→ϕ.

Remark. This lemma is about derivability, while the similar statement in
Theorem 6.9 is about semantical consequence.
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7 Fundamental Theorems

388. Prove Theorem 7.1.

Hint. Try the same method which was used in propositional logic (Prob-
lem 291). The only case not treated there is the inference rule G. For that
case use the axiom scheme

Ax9 (∀x(ψ→ϕ)) → (ψ→∀xϕ) assuming x is not free in ψ.

389. Let ϕ̄ be the universal closure of ϕ. Show that Γ`ϕ iff Γ` ϕ̄.

Hint. Use one of the schemes below:

Ax10 ϕ[x/t ] → (∃xϕ) assuming ϕ[x/t ] is an admissible substitution,

Ax11 (∀xϕ) →ϕ[x/t ] assuming ϕ[x/t ] is an admissible substitution.

390. If ∀xϕ is an abbreviation for ¬∃x¬ϕ, then Ax10 ` Ax11.

Notation. The set Σ ⊂ F (τ) is syntactically consistent, or s-consistent
for short, if Σ0⊥.

391. Suppose Σ⊂ F (τ) is maximal s-consistent. Then

(a) for every ϕ ∈ F (τ), Σ`ϕ iff ϕ ∈Σ,

(b) for a closed ϕ ∈ F (τ) exactly one of ϕ or ¬ϕ is in Σ,

(c) for closed formulas ϕ,ψ ∈ F (τ), ϕ∨ψ ∈Σ iff either ϕ ∈Σ or ψ ∈Σ.

392. Let Γα for α< κ be an increasing chain of s-consistent theories. Show
that

⋃
{Γα : α< κ} is syntactically consistent.

393. Prove that every syntactically consistent theory can be extended to a
maximal one.

7.2 Definition. Σ ⊂ F (τ) is a Henkin theory if Σ ` ∃xϕ(x) for a closed
formula ∃xϕ(x), then there is a constant symbol c ∈ τ such that Σ `
ϕ[x/c].

394. Let Σ⊂ F (τ) be a Henkin theory.

(a) Show that there is a constant symbol in τ.

(b) For a function symbol f and constant symbols ci there is a constant
symbol c such that Σ` f (c1, . . . ,cn) = c.

Hint. Use Ex1 and Ex2 from the following set of equality axioms:

Ex1 x = x, x = y → y = x, (x = y ∧ y = z) → x = z.

Ex2
∧

i xi = yi → f (~x) = f (~y) for each n-place function symbol f ∈ τ.

Ex3
∧

i xi = yi → r (~x) ↔ r (~y) for each n-place relation symbol r ∈ τ.

395. Is there a Henkin theory which has a model, but has no model de-
fined on the set of the constant symbols in τ where each constant symbol is
interpreted as itself?
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396. Suppose that for every closed formula ∃xϕ(x) if BÍ∃xϕ(x), then there
is a constant symbol c such that BÍϕ[x/c]. Let

A = {cB : c ∈ τ is a constant symbol}

(a) Prove that A is the universe of a substructure A.

(b) Prove that for every formula ψ ∈ F (τ), BÍψ iff AÍψ.

397. Suppose the similarity type τ does not contain function symbols. Let
Γ be a maximal syntactically consistent Henkin theory. The universe of A is
the set of constant symbols of τ, and for a relation symbol r ∈ τ we let

〈c1, . . . ,cn〉 ∈ rA iff Γ` r (c1, . . . ,cn).

Prove that if ϕ does not contain the equality symbol, then AÍϕ iff Γ`ϕ.

398. Let Σ⊂ F (τ) be a maximal syntactically consistent Henkin theory. For
constant symbols c0,c1 ∈ τ define c0 ∼ c1 if Σ ` c0 = c1. Show that ∼ is an
equivalence relation.

399. The formula set Σ ⊆ F (τ) is τ-consistent if using τ-type axioms and
inference rules only, ⊥ cannot be derived from Σ. Let τ⊆ τ′ (symbols in τ are
also symbols in τ′).

(a) Show that if Σ is τ′-consistent, then it is also τ-consistent.

(b) Assuming that τ′àτ has constant symbols only, show that the converse
is also true.

400. Let c ∈ τ be a constant symbol such that neither ϕ nor any formula in
Σ⊂ F (τ) contains c. Suppose Σ`ϕ[x/c]. Show that in this case Σ`∀xϕ.

401. Let Σ⊂ F (τ) be a maximal syntactically consistent Henkin theory. Prove
that Σ has a model.

Hint. Elements of the ground set are equivalence classes of the constant
symbols from τ.

402. Suppose Σ⊂ F (τ) is syntactically consistent. Show that Σ can be em-
bedded into a maximal s-consistent Henkin theory Σ′ ⊂ F (τ′) in a larger type
τ′ such that τ′àτ has constant symbols only.

Hint. Follow the method of Problem 393. You will need the scheme

Ax12 (∀x¬ϕ) →¬∃xϕ.

7.3 Theorem (Gödel’s first completeness theorem). If Σ0⊥, then Σ has
a model.

403. Prove Theorem 7.3.
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7.4Theorem (Gödel’s second completeness theorem). The Hilbert-type
derivation is strongly complete and sound, that is,

ΣÍϕ iff Σ`ϕ.

404. Prove Theorem 7.4.

405. During the proof of the completeness theorem we made use of the fact
that there are an infinite number of variables. Where exactly did we use it?

406. Suppose neither Γ nor ϕ contain the equality symbol and Γ`ϕ. Prove
that in this case ϕ can be derived from Γ without using the equality axioms
Ex1–Ex3.

407. Let τ⊂ τ′ be similarity types and Γ⊂ F (τ′), ϕ ∈ F (τ). Assume Γ`ϕ. Is
it true that there is a derivation of ϕ from Γ that consists of τ-formulas and
axioms only? What happens if Γ⊂ F (τ)?

7.1.2 RESOLUTION METHOD

The resolution method is a syntactical tool which—based on the written
form of the formulas only—gives a condition whether a given set of for-
mulas has a model or not. As ΣÍϕ if and only if Σ∪ {¬ϕ̄} does not have a
model, it is strongly complete.

7.5 Definition (Prenex normal form). A formula ϕ is in prenex form, if
it starts with a block of ∀ and ∃ quantifiers to be applied to a quantifier-
free formula.

408. Every formula can be converted to an equivalent formula in prenex
form.

7.6 Definition (Skolem function). Let A be a τ-type structure, and
ψ(x1, . . . , xn) ∈ F (τ) be a formula of the form ψ(~x) ≡∃yϕ(y,~x). (If ψ has
no free variables, then choose~x to be a single variable differing from
y .) The Skolem function belonging to the formula ψ is an n-variable
function fψ defined on An such that for all ~a ∈ An ,

AÍ (∃yϕ)[~a] implies AÍϕ[ fψ(~a),~a].

409. Let Σ⊂ F (τ). For each formula ψ(~x) ∈Σ of the form ∃yϕ(y,~x) add the
function symbol fψ to τ, and replace ψ by ϕ[y/ fψ(~x)]. Let the extended type
be τ∗, and the new formula set be Σ∗. Show that Σ has a model if and only if
Σ∗ has a model.

410. The oracle from Problem 320 can be asked whether or not a set of
quantifier-free formulas has a model. Show that the oracle can be used to
decide the consistency of arbitrary formula sets.
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7.7 Definition (Herbrand structure). Let τ be a similarity type with at
least one constant symbol, and let K (τ) be the free term algebra gener-
ated by the constant symbols of τ (that is, K (τ) is the set of variable-free
terms). The τ-structure M is a Herbrand structure if

• the universe of M is M = K (τ),

• for a constant symbol c ∈ τ we have cM = c,

• for an n-place function symbol f ∈ τ and terms t1, . . . , tn ∈ M we
have

f M(t1, . . . , fn) = f (t1, . . . , tn).

A Herbrand structure which is a model of a theory Γ is called the Her-
brand model of Γ.

411. (a) In the definition of Herbrand structure τ was required to contain at
least one constant symbol. Why?

(b) What is the cardinality of a Herbrand structure?

(c) Show that for each τ-term t and evaluation e over M, the value of tM[e]
is the term t [x1/e(x1), . . . , xn/e(xn)].

(d) Give a formula set Γ which has no Herbrand model.

412. The similarity type τ contains at least one constant symbol. The formula
set Γ ⊂ F (τ) is such that no formula in Γ contains quantifiers or equality
symbols. Prove that if Γ has a model, then it has a Herbrand model. Show
that both conditions on Γ are necessary.

413. Show that if Γ⊆ F (τ) has a model, then it has a model of cardinality at
most max(ω, |τ|). (For a more general statement see Problem 493.)

Hint. Replace the equality symbol by a binary relation symbol as in Prob-
lem 340, then consider the Herbrand model.

7.8 Definition. A (first-order) literal ` is either r (t1, . . . , tn) or its nega-
tion, where r ∈ τ is an n-variable relation symbol, and t1, . . . , tn are
τ-terms. A clause is a finite set of literals. The τ-structure A is a model
for the clause set C if for every evaluation e and every clause c ∈ C at
least one literal of c evaluates to true. C is satisfiable if it has a model,
and refutable otherwise.

414. Show that if the clause set C has a model, then it has a Herbrand model.

415. Given a formula set Σ⊆ F (τ), describe how to convert it to a clause set C
such that Σ has a model iff C has a model. Check that if Σ is finite, then C can
also be finite.

7.9 Definition. A substitution σ maps variable symbols to τ-type terms.
Applying σ to a literal ` means that all variable symbols in ` are replaced
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7 Fundamental Theorems

simultaneously by the terms supplied by σ. When applied to a clause,
σ should be applied to all literals in the clause.

416. For each relation symbol r ∈ τ and variable-free terms t1, . . . , tn consider
r (t1, . . . , tn) as a propositional variable. For a set C of first-order clauses let
Co = {σ(c) : c ∈ C and σ assigns variable-free terms to the variables}. Show
that the propositional clause set Co is satisfiable if and only if C is satisfiable.

By Problem 416 and Theorem 5.16, C has no model iff Co `R ä. Rather than
using the fully substituted forms of the clauses from C in the resolution
steps, the substitutions can be left partly unspecified (so called lazy sub-
stitution), and perform the resolution step on these partially substituted
clauses. This method, however, handles clauses as multisets necessarily
(after full substitution different literals may become identical), in which
case the resolution method is not guaranteed to work, see Problem 286.
Thus, next to the generalized resolution step, a reduction called factoring
is necessary: it checks whether two different literals in a clause can be
(partially) substituted to become identical, and if so, the substitution is
applied to the whole clause, and the literals are merged.

7.2 COMPACTNESS AND OTHER PROPERTIES

7.2.1 COMPACTNESS

7.10 Theorem (Compactness). ΣÍϕ if and only if there is a finite Γ⊂Σ

such that ΓÍϕ.

417. Prove Theorem 7.10.

418. Show that if every finite subset of Σ has a model, then Σ has a model,
too. (See also Theorem 9.4.)

419. Suppose Σ⊂ F (τ) has arbitrary large finite models. Show that Σ has an
infinite model.

420. If Σ has an infinite model, then it has arbitrary large models.

421. In all models A of Γ the relation ≤A is a linear ordering. Show that if
Γ has an infinite model, then it has a model in which there is a decreasing
sequence of length ω1.

422. The partial order E is well founded if each non-empty subset contains
an E-minimal element. Suppose τ contains the relation symbol E , and in
each model A of Σ⊂ F (τ), the partial order EA is well founded. Show that
there is a k ∈ω (depending only on Σ) such that in every model A of Σ, every
increasing sequence a1 EA a2 EA · · · has length at most k.
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423. Let τ have two binary symbols: E for the edges of a graph (see Definition
6.14), and C (x, y) with the intended meaning that x and y are in the same
connected component. Let Σ ⊂ F (τ) so that models of Σ are graphs, and
in every model A and nodes u,v ∈ A, 〈u,v〉 ∈CA iff u and v are in the same
connected component. Show that there is a k ∈ω depending only on Σ such
that every model of Σ has diameter less than k.

Notation. The composition of the binary relations R and S is

R ◦S = {(x, z) : there is a y such that (x, y) ∈ R and (y, z) ∈ S }.

R0 is the identity relation, and Rn+1 = R ◦Rn for n ≥ 0.

424. The similarity type of Γ contains the binary relation symbol R . Suppose
for each n ≥ 1 there is a model An Í Γ in which R0 ∪R1 ∪ ·· · ∪Rn is not
transitive. Show that there is an A Í Γ and elements ai ∈ A such that A Í
ai R ai+1 but for i +1 < j we have A 6Í ai R a j .

425. Let τ be a similarity type that contains the binary relation symbol R and
let Γ⊂ F (τ) be a theory. Prove that the following statements are equivalent:

(i) There is an n such that R0∪R1∪·· ·∪Rn is transitive in each model of Γ.

(ii) There is a ϕ(x, y) such that {(a,b) :AÍϕ[a,b]} is the transitive closure
of R in each model A of Γ.

426. Let Γ⊂ F (τ) be a theory and suppose that {ϕn(x) : n <ω} are formulas
such that ΓÍ∀x(ϕn(x) →ϕn+1(x)) for all n ∈ω. Assume that every element
of every model of Γ satisfies some ϕn . Prove that ΓÍ∀xϕn(x) holds for some
n ∈ω.

427.∗ The set ∆ ⊆ F (τ) of closed formulas has the property that if δ1,δ2 ∈
∆, then so is δ1 ∨ δ2 ∈ ∆. Let Γ ⊆ F (τ) and suppose that for every pair of
structures

if AÍ Γ and (AÍ δ implies BÍ δ for every δ ∈∆ ), then BÍ Γ. (?)

Show that there is a ∆′ ⊆∆ such that ΓÍ∆′ and ∆′ Í Γ.

Hint. Let ∆′ = {δ ∈∆ : ΓÍ δ}.

7.2.2 DEFINABILITY

428. Give theories Γi ⊂ F (τ) for i ∈ ω such that the union of any three of
them is consistent, while the union of any four is not.

The next two theorems connect theories on two compatible types τ1 and
τ2. They have profound applications and, along with the compactness
theorem, they are considered to be the most fundamental properties of
the first-order logic.
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7.11 Theorem (Robinson’s consistency theorem). Let Γ1 ⊂ F (τ1) and
Γ2 ⊂ F (τ2). If there is no closed ϕ ∈ F (τ1∩τ2) such that both Γ1 Íϕ and
Γ2 Í¬ϕ, then Γ1 ∪Γ2 is consistent.

7.12 Theorem (Craig’s interpolation theorem). Let ϕ ∈ F (τ1) and ψ ∈
F (τ2) and suppose ϕÍψ. Then there is ϑ ∈ F (τ1 ∩τ2) such that

ϕÍϑ and ϑÍψ.

429. Prove Robinson’s consistency theorem using Craig’s interpolation and
vice versa.

430. Let τ= τ1 ∩τ2. Prove Craig’s theorem for the special case when τ2 àτ

contains constant symbols only.

431. Let τi be compatible types and Γi ⊂ F (τi ) be consistent theories. Sup-
pose each pair (Γi ,Γ j ) satisfies the assumptions of Robinson’s consistency
theorem. Does it follow that

⋃
i Γi is consistent?

432. For 1 ≤ i ≤ n let τi be compatible types, Γi ⊂ F (τi ) be consistent theo-
ries. Suppose that for every pair of disjoint subsets I and J of {1, . . . ,n} there
is no closed formula ϕ of type (

⋃
i∈I τi )∩ (

⋃
j∈J τ j ) such that

⋃
i∈I Γi Íϕ and⋃

j∈J Γ j Í¬ϕ. Show that
⋃

i Γi is consistent.

7.13 Definition. Let τ be a similarity type and P be a relation symbol
not in τ. We say that Σ(P ) ⊂ F (τ∪ {P }) defines P implicitly if each
τ-structure can have at most one extension to a τ∪ {P } structure to
become a model of Σ(P ). If for some ϑ(~x) ∈ F (τ) we have Σ(P ) Íϑ(~x) ↔
P (~x), then we say that Σ(P ) defines P explicitly.

In other words, Σ(P ) defines P implicitly if A,BÍΣ(P ) and A�τ=B�τ im-
plies PA = PB. Yet in other words, ifAÍΣ(P )∪Σ(P ′), thenAÍ∀~x(P (~x) ↔
P ′(~x)). Naturally, this is the situation when P is defined explicitly.

7.14 Theorem (Beth). The theory Σ(P ) ⊂ F (τ∪ {P }) defines P implicitly
if and only if it defines P explicitly.

433. Prove Theorem 7.14 using Craig’s interpolation theorem.

Hint. Add new constant symbols~c to the type, and use that Σ(P )∪Σ(P ′) Í
P (~c) ↔ P ′(~c).

434. Suppose Σ(P ) ⊂ F (τ∪ {P }) defines P explicitly and let AÍ Σ(P ). Show
that every automorphism f of A�τ preserves PA as well.

Remark (L. Svenonius). Under the additional assumption that Σ(P ) is
maximal consistent the converse statement is also true: if every automor-
phism of A�τ preserves PA, then P is defined explicitly.
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7.15 Definition. Let A be a structure. The subset X ∈ An is definable
in A if there is a formula ϕ(~x) such that X = {~a ∈ An : A Í ϕ[~a] }. The
subset X is definable using parameters, if there are parameters ~p ∈ A
such that X = {~a ∈ An :AÍϕ[~x,~p] } for some formula ϕ(~x,~y).
A function f is definable if its graph (Definition 4.11) is definable.

435. Suppose X is definable in A from the parameters ~p. Show that if an
automorphism fixes ~p pointwise, then it fixes X setwise.

436. Prove that the field of real numbers is not definable in the field of
complex numbers.

437. Show that the addition cannot be defined from multiplication in the
structure A= 〈ω, ·〉, that is, the set of triplets 〈a,b, a +b〉 ∈ω3 is not definable
in A.

438. Prove that no formula ϕ(x) ∈ F (≤,+) defines the one-element set {1} in
the structure 〈Q,≤,+〉.
439. Let A= 〈ω,0,S〉 where the interpretation of S is the successor function.
Prove that the set of even numbers cannot be defined in A.

440. Let A = 〈ω,0,≤,S〉 where S is the successor function. Show that the
addition cannot be defined in A.

Remark. It is also true that multiplication cannot be defined in the struc-
ture 〈ω,0,≤,S,+〉, see Problem 795. Surprisingly, the exponentiation (in
fact, every recursive function) can be defined in 〈ω,0,≤,S,+, ·〉, see Prob-
lem 833.

441. Give an example for a countable discrete ordering with initial point 0
and successor function S in which one can define, in multiple ways, a 2-place
function f (the “addition”) that satisfies

f (0, x) = f (x,0) = x,

f (Sx, y) = f (x,Sy) = S f (x, y),

x ≤ y ↔ ∃z f (x, z) = y.

Hint. Use Beth’s definability theorem.

7.2.3 SEMANTICAL INTERPRETATION

442. Show that the constants 0A, 1A and the ordering ≤A can be defined in
the structure A= 〈ω,+〉.

7.16 Definition. The τ′-type structure B is a semantical substructure
of the τ-structure A if the ground set B is a definable subset of A, and
the interpretation of every τ′-symbol in B is A-definable. The phrase
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B can be semantically defined in A, or simply B can be defined in A,
means that B is isomorphic to a semantical substructure of A.

Semantical interpretation is the basic tool to establish undecidability of a
theory, see Section 10.2.

443. Show that if C can be defined in B, and B can be defined in A, then C

can be defined in A.

444. N= 〈ω,+, ·〉 can be defined semantically in the ring 〈Z,+, ·〉.
445. LetA= 〈ω,e〉where eA(x, y) = x y . Show thatN= 〈ω,+, ·〉 can be defined
semantically in A.

446. Consider the structure A= 〈ω,+,sq〉 where the unary relation sqA is the
set of perfect squares. Show that N= 〈ω,+, ·〉 can be semantically defined in
A.

447. A set is hereditarily finite if it is either empty, or have finitely many
elements each of which is hereditarily finite. Let H be the set of hereditarily
finite sets, and let A be the structure 〈H ,∈〉.
(a) Show that N= 〈ω,+, ·〉 can be defined semantically in A.

(b) Let f (i ) = 2i . Show that A can be defined semantically in 〈ω,+, ·, f 〉.
448. Let ρ be a binary relation symbol and f be a binary function sym-
bol. Show that every 〈 f 〉-structure can be semantically defined in some
〈ρ〉-structure.

449. Show that any structure with a single binary relation can be semantically
defined in some graph.

450. Show that there is graph in which the structure N = 〈ω,+, ·〉 of the
natural numbers can be defined semantically.

451. Show that every graph can be semantically defined in some lattice with
minimal and maximal elements.

452. Let A = 〈Z,1,+, |〉 where | is the divisibility relation. Show that N =
〈ω,+, ·〉 can be semantically defined in A.

453 (A. Tarksi). Let G be the symmetric group of Z with an additional con-
stant symbol π denoting the right shift j → j +1. Show that N= 〈ω,+, ·〉 is
semantically definable in G .

Hint. Among the shifts in G addition is the composition, and the divisibil-
ity relation is definable.

7.17 Theorem (J. Robinson). N = 〈ω,+, ·〉 is semantically definable in
the field of rational numbers 〈Q,0,1,+, ·〉.
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7.2.4 OMITTING TYPES

Notation. For a set of formulas we write T (~x) to indicate that the free
variables of formulas ϕ ∈ T are among~c = 〈x1, . . . , xn〉.

7.18 Definition (Types). Let Σ ⊂ F (τ) be a consistent theory. A set
T (x1 . . . , xn) ⊂ F (τ) is an n-type, or simply a type of Σ, if for each finite
subset {ψ1, . . . ,ψk } ⊆ T , Σ∪ {∃~x(ψ1(~x) ∧ ·· · ∧ψk (~x)) } is consistent.

The type T (~x) is isolated if there is a ϕ(~x) ∈ F (τ) such that Σ∪ {∃~xϕ(~x)}
is consistent, and for all ψ(~x) ∈ T , ΣÍϕ(~x) →ψ(~x).

The type T (~x) is realized in A Í Σ if for some ~a ∈ An , A Íψ[~a] for all
ψ ∈ T . If T (~x) is not realized in A, then A omits T (~x).

454. Suppose τ contains countably many constant symbols ci . Show that
T (x) = {x 6= ci } is a Σ-type when Σ has an infinite model. What models of Σ
omit the type T (x)?

455. Let τ contain the relation symbol ≤ for ordering, and ψn(x, y) be the
formula which expresses that there are at least n different elements between
x and y . Which ordered structures omit the 2-type T (x, y) = {ψn(x, y) : n ∈
ω}?

456. Give a theory Σ and a 1-type T (x) such that for each k ≥ 0 there is a
model Ak ÍΣ in which T (x) is realized by exactly k elements in Ak .

7.19 Theorem (Omitting types theorem). Let τ be a countable signa-
ture, Σ⊂ F (τ) be consistent, and Ti (~x) (i ∈ω) be countably many non-
isolated types for Σ. Then there is a countable model AÍΣ which omits
every Ti (~x).

457. Show that there is an uncountable type τ, a consistent theory Σ⊂ F (τ),
and a non-isolated type T (x) such that no model of Σ can omit T (x).

458. Let τ = 〈0,≤,ci : i ∈ ω〉 and Σ be the set of all τ-formulas true in the
model A= 〈ω,0,≤,ci 〉 where the interpretation of ci is i ∈ω. The type T (x)
is {ci ≤ x : i ∈ ω}. It is clearly finitely satisfiable, and it is not isolated: if
Σ∪ {∃xϕ(x)} is consistent, then AÍ∃xϕ(x), and then Σ cannot prove that x
is bigger than every ci . By Theorem 7.19 there is a model BÍΣ which omits
T (x). But this is impossible, as every model of Σ contains the interpretations
of the constants ci at the beginning, and there is nothing in between them.

Where is the error?

In the rest of this section the similarity type τ contains the constant symbol
0 and the unary function symbol S. The terms πi for i ∈ ω are defined
by π0 = 0, π1 = S(0), and in general πn+1 = S(πn). Theories are required
to guarantee that the terms πi have different interpretations. It can be
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achieved, among others, by requiring that the following formulas are in
every formula set considered:

∀x(0 6= S(x)), and ∀x∀y(S(x) = S(y) → x = y ).

7.20 Definition. The theory Γ ⊂ F (τ) is ω-consistent if there is no for-
mula ϕ(x) ∈ F (τ) such that ΓÍ∃x¬ϕ(x), while ΓÍϕ(πi ) for every i ∈ω.
Γ is ω-complete if for every formula ϕ(x) ∈ F (τ),

ΓÍϕ(π0), ΓÍϕ(π1), ΓÍϕ(π2), . . .

implies ΓÍ∀xϕ(x).
A is an ω-model if the ground set is ω, the interpretation of 0 is zero,
and SA is the successor function. πA

i = i for all i ∈ω in any ω-model.

459. Let Γ be a consistent theory. Prove that

(a) If Γ is ω-complete, then Γ has an ω-model.

(b) If Γ has an ω-model, then Γ is ω-consistent.

7.21 Definition. The ω-rule infers the conclusion from infinitely many
premises. ϕ is a formula ϕ with x as a free variable:

ϕ(π0), ϕ(π1), ϕ(π2), ϕ(π3), . . .

∀xϕ(x).

460. Add the ω-rule as a rule of inference. Prove that a theory Γ is syntacti-
cally consistent (with the additional ω-rule) if and only if it has an ω-model.

461. We have seen that every syntactically consistent theory can be extended
to a maximal one (Problem 393). Add the ω-rule as a rule of inference. Prove
or disprove that every syntactically ω-consistent theory can be extended to a
maximal one.

462. Add the ω-rule as a rule of inference. Show that the compactness
property of the derivation does not hold anymore.
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8.1 BASICS

8.1 Definition (Elementary equivalence). The τ-type structures A and
B are elementarily equivalent, written as A ≡B if A and B have the
same theory Th(A) = Th(B), that is, for each ϕ ∈ F (τ), AÍϕ iff BÍϕ.

463. Prove that isomorphic structures are elementarily equivalent.

464. Find two elementarily equivalent structures which are not isomorphic.

465.∗ If two structures are elementarily equivalent and one of them is finite,
then they are isomorphic.

466. Prove or disprove: if A�σ and B�σ are isomorphic for all finite subtypes
σ⊆ τ, then A and B are also isomorphic.

467. Show that among more than continuum many linear orderings there
are at least two which are elementarily equivalent. Construct continuum
many linear orderings such that no two of them are elementarily equivalent.

468. Give two not elementarily equivalent structures such that each is iso-
morphic to a substructure of the other.

469. Find an increasing chain of elementarily equivalent structures such
that the union of this chain is not elementarily equivalent to any element of
the chain.

470. Prove or disprove: two graphs are elementarily equivalent if and only if
they have the same set of spanned finite subgraphs.

471. Do there exist elementarily equivalent graphs with different but finite
chromatic numbers? See also Problem 499.

472. Let B be a substructure of A and e be an evaluation over B. Prove that

BÍϕ[e] ⇔ AÍϕ[e]

holds for quantifier-free formulas.
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473. Give structures B⊆A and a formula ϕ such that for all evaluations e
over B we get BÍ∃x ϕ[e] but A 6Í ∃x ϕ[e]. Can ϕ be quantifier-free?

8.2 Definition (Elementary substructure). B is an elementary substruc-
ture of A, written as B ≺ A, if B is a substructure of A and for each
evaluation e over the smaller structure B we have

BÍϕ[e] if and only if AÍϕ[e].

474. Prove that B is an elementary substructure of A if and only if for all
formulas ϕ(~x) with n free variables,

{~b ∈ B n :AÍϕ[~b]} = B n ∩ {~a ∈ An :AÍϕ[~a]}.

475. Show that 〈Z,≤〉 has no proper elementary submodels.

476. Let G be the infinite path (infinite in both directions). Find all elemen-
tary subgraphs of G .

477. Give two isomorphic structures A and B so that A is a substructure of
B, but A is not an elementary substructure of B.

Notation. ϕ is a ∃n-formula (∀n-formula) if ϕ has a sequence of n al-
ternating blocks of quantifiers before a quantifier-free formula starting
with a block of the quantifier ∃ (the quantifier ∀).
A ∀1-formula is universal, and a ∃1-formula is existential.

478. Find B⊆A such that B is not an elementary substructure of A, while
for all evaluations e over B and (a) for all ∃1 formulas; (b) for all ∀1 formulas
we have AÍϕ[e] if and only if BÍϕ[e].

479. Prove or disprove: if both A≺C and B≺C, moreover B is a substruc-
ture of A, then (a) A and B are elementarily equivalent, (b) B≺A.

480. Is every normal subgroup of a group an elementary subgroup? What
about infinite groups?

481. Let G be an infinite Abelian group and H be an infinite subgroup. Is it
true that H is an elementary subgroup of G?

8.3 Theorem (Tarski–Vaught test). Suppose B⊆A. B is an elementary
substructure of A if and only if for all~b ∈ B and ϕ(x,~v) ∈ F (τ) we have

if AÍ (∃xϕ)[~b], then there is a c ∈ B such that AÍϕ[c,~b].

482. Prove Theorem 8.3.

Hint. Use induction on the complexity of ϕ.
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483. Let A be a structure, and B be a subset of A. Suppose that for all~b ∈ B
and a ∈ A there is an automorphism of A which leaves all bi in place and
moves a into B . Show that in this case B is the ground set of a substructure
B, and B is an elementary submodel of A.

484. Let a ≤ b < c ≤ d be real numbers; (b,c) is the open interval of the reals
with endpoints b and c. Show that A= 〈(b,c),≤〉 is an elementary submodel
of B= 〈(a,d),≤〉.

485. Prove that 〈Q,≤〉 is an elementary submodel of 〈R,≤〉.

486. Let A be a countable dense order without endpoints, a ∈ A and B =
A− {a}. Show that B≺A.

487. The graph G is the broom if it has a node which is the endpoint of an
infinite path—the handle—and countably many edges are joined to it – the
brush. Describe all elementary substructures of G .

488. The graph G consists of a vertex v to which continuum many disjoint
paths of length two are joined. Describe all elementary subgraphs of G .

489. Give structures Ai for i <ω such that A j ≺Ai whenever i < j , and

(a)
⋂

Ai =;.

(b)
⋂

Ai 6= ;, but
⋂
Ai is not elementarily equivalent to any Ai .

490. Let A be a structure and B be a non-empty subset of A. Suppose B is
closed for all Skolem functions, see Definition 7.6. Show that B is a ground
set of a substructure B, and B≺A.

8.4 Definition. The theory Γ⊂ F (τ) has built-in Skolem functions if for
every formula ψ(~x) of the form ∃yϕ(y,~x) there is a τ-term tψ(~x) such
that ΓÍ∃yϕ(y,~x) →ϕ(tψ(~x),~x).

491. Suppose Γ has built-in Skolem functions and A Í Γ. Show that every
substructure of A is an elementary substructure.

8.5 Theorem (Downward Löwenheim–Skolem). Let A be a τ-structure
and X ⊆ A. There is an elementary substructure B≺A such that X ⊆ B
and |B | ≤ max(|X |, |τ|,ω).

492. Prove Theorem 8.5.

493. (a) Show that if Γ has an infinite model, then it has a model of cardinal-
ity κ for every κ≥ max(|τ|,ω).

(b) Suppose A is infinite. Show that for each infinite κ≥ |τ| there is a struc-
ture B of cardinality κ which is elementarily equivalent to A.
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Remark. A countable structure has an elementarily equivalent structure
of cardinality 2ω, independently of |τ| (Problem 495). On the other hand
there is a countable structure such that an elementarily equivalent struc-
ture is either isomorphic to it, or has cardinality at least 2ω (Problem
583).

494. Let K be an arbitrary set of natural numbers. Give a theory Γ which has
a model of size i ∈ω iff i ∈ K .

495. Suppose Γ has a model of cardinality κ≥ω. Show that Γ has a model of
size λ for every λ≥ 2κ independently of the cardinality of the type.

8.6 Definition (Complete theory). The theory Γ ⊂ F (τ) is complete if
either ΓÍϕ or ΓÍ¬ϕ for each closed formula ϕ ∈ F (τ).

496. Show that a consistent Γ is complete ⇔ (i) ⇔ (ii), where

(i) there is a structure A such that Th(A) = {ϕ : ΓÍϕ},

(ii) any two models of Γ are elementarily equivalent.

Notation. The theory Γ⊂ F (τ) is κ-categorical if, up to isomorphism, Γ
has a unique model of cardinality κ.

8.7 Theorem (Łoś–Vaught). If Γ ⊂ F (τ) has no finite models and Γ is
κ-categorical for some infinite κ≥ |τ|, then it is complete.

497. Prove Theorem 8.7.

498. (a) Give a counterexample for Theorem 8.7 without the assumption
that Γ has no finite models.

(b) Find a set of formulas Γ which has exactly one model, up to isomorphism,
for each infinite cardinal κ, but not all of its models are elementarily
equivalent.

499. Do there exist elementarily equivalent graphs with different infinite
chromatic numbers?

500. Let Γ be the theory of cycle-free graphs where each vertex has degree 2.
Prove that Γ is complete.

501. Let τ= 〈0,S〉 where S is a unary function symbol. Show that the follow-
ing theory is complete:

S(x) = S(y) → x = y, 0 6= S(x), x 6= 0 →∃y(x = S(y),

x 6= S(x), x 6= SS(x), x 6= SSS(x), etc.

502. Show that the theory of dense linear order without endpoints is ℵ0-
categorical, thus complete.
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503. Prove that the theory of torsion-free divisible Abelian groups is κ-
categorical for all κ>ℵ0. Is it ℵ0-categorical?

504. The theory of algebraically closed fields of characteristic 0 is κ-categori-
cal for all κ>ℵ0.

505. Let Γ= Th(〈R,≤, Z 〉), where R is the set of real numbers, and the inter-
pretation of the unary relation symbol Z is the set of the integers. Show that
Γ is not ℵ0-categorical.

Notation. An embedding of A into B is an isomorphism between A

and a substructure of B. It is an elementary embedding if the image of
A is an elementary substructure of B.

506. Find elementarily equivalent structures A and B such that there is no
embedding from either one to the other.

8.8 Definition (Diagram). Choose new constant symbols ca for each
element a in the ground set of the structure A. The diagram of A is

∆A = {ϕ[x1/ca1 , . . . , xn/can ] : ϕ(~x) ∈ F (τ) and AÍϕ[a1, . . . , an]}.

The atomic diagram of A, denoted by ∆0
A

, contains the variable-free
formulas of ∆A.

507. Let A be a τ-type structure. Prove that

(a) if BÍ∆0
A

, then A can be embedded into B�τ as a substructure.

(b) if BÍ∆A, then A can be elementarily embedded into B�τ.

508. Show that every infinite structure has a proper elementary extension.

509. Let Σ⊂ F (τ) and suppose that every finitely generated substructure of
A can be extended to a model of Σ. Show that A can be extended to a model
of Σ.

510. Let A and B be elementarily equivalent.

(a) Prove that ∆A∪∆B is consistent.

(b) Show that there is a structure C into which both A and B can be embed-
ded elementarily.

511. Suppose Ai are elementarily equivalent structures for i ∈ I . Prove that
there exists C into which all the Ai ’s can be elementarily embedded.

512. Let τ1 and τ2 be compatible types. Show that the following statement is
equivalent to Robinson’s consistency theorem 7.11:

Let Ai be a τi -type structure. A1 and A2 can be elementarily embedded
into a τ1 ∪τ2-type structure B iff the τ-type reducts of A1 and A2 are
elementarily equivalent.

513. Prove or disprove the following claim (compare to Problem 511):
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8 Elementary Equivalence

Let τi be compatible types for i ∈ I , and Ai be a τi -structure. For each
i , j ∈ I the structures Ai and A j can be embedded into a structure of type
τi ∪τ j . Then there is a structure of type

⋃
i τi into which every Ai embeds

elementarily.

514. Let Γ⊂ F (τ), and let ∆ be the set of universal consequences of Γ, that
is, ∆= {ϕ ∈∀1(τ) : ΓÍϕ}. Show that every model of ∆ can be embedded into
some model of Γ.

515.∗ Suppose that there is no quantifier-free formula δ(~x) such that Γ Í
ϕ(~x) ↔ δ(~x). Show that Γ has models A and A′ such that B is a common
substructure of both models, and there is some~b ∈ B such that AÍϕ[~b] and
A′ Í¬ϕ[~b].

Hint. Let A Í ϕ[~b], B be the substructure generated by ~b, and A′ be a
model of ∆0

B
∪ {¬ϕ[~b]}.

8.9 Definition (Collection principle). Suppose b is a binary relation
symbol in τ. The collection principle is the set of all formulas

(∀x b a) (∃y)ϕ → (∃b) (∀x b a) (∃y b b)ϕ,

where b is not free in the formula ϕ.

516. Give examples for structures that satisfy the collection principle.

8.10 Definition (End extension). The structure B is an end extension of
its substructure A, or A is an initial segment of B with respect tob, if
abB b for all a ∈ A and b ∈ B à A.

517.∗ Let A be a countable structure, and bA be a linear order without a
maximal element which satisfies the collection principle. Prove that A has a
proper elementary end extension.

Hint. Use the omitting types theorem for the theory ∆A∪ {ca b c : a ∈ A}
and the types Ta = {x b ca ∧ x 6= cb : bbA a} for all a ∈ A.

8.2 EHRENFEUCHT–FRAÏSSÉ GAME

8.11 Definition. A partial isomorphism is a partial map j :A→B be-
tween τ-structures which preserves the truth of unnested atomic for-
mulas of the form

x = y, x = c, y = f (~x), r (~x)

where all variables are evaluated to values in dom( j ).
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8.2 Ehrenfeucht–Fraïssé Game

8.12 Definition. For an integer N ≥ 1 the N -round Ehrenfeucht–Fraïssé
game, denoted by EF(A,B, N ), is played by players I and II as follows.
In round 1 ≤ i ≤ N player I chooses one of the structures A or B and
picks an element ai ∈ A (bi ∈ B , respectively). II answers by choosing
an element bi ∈ B (ai ∈ A, respectively) from the other structure. After
the N rounds they formed the partial function ai 7→ bi . II wins if this
function is a partial isomorphism, and I wins if it is not.

518. The graph G1 is a circle (i.e., a finite connected graph where all vertices
have degree 2) of length 2N , and the graph G2 is the infinite path (connected
and all vertices have degree 2). Show that player II can win the N -round
game.

519. Let ϕ(x, y) be a quantifier-free formula with two free variables. Suppose
AÍ∀x∃y ϕ(x, y), while BÍ¬∀x∃y ϕ(x, y).

(a) Show that for large enough N , I wins the game.

(b) For each N construct structures A, B and a formula ϕ(x, y) as above
such that II wins the N -round game.

520. Show that if for all N II wins the N -round game then A and B are
elementarily equivalent.

521. (a) Let A and B be two discrete linear orderings with initial points and
without endpoints. Show that II wins the N -round game for all N , thus
A and B are elementarily equivalent.

(b) Show that if N is not fixed in advance, then I could win.

522. In two linear orders every point has either an immediate predecessor or
an immediate successor but not both. In which cases can II win the N -round
EF game for all N ?

523. The type τ contains n unary relation symbols R1, . . . , Rn , and the τ-type
structuresA andB satisfy the following condition: the number of elements in
every Boolean combination of the relations is either equal, or both numbers
are larger than N (possibly infinite). Show that II wins the N -round EF game.

524. Let A= 〈ω,0,≤,S〉 where S is the successor function, and B= {ω+Z,0,
≤,S〉 where the set of integers Z is appended after ω. Show that A and B are
elementarily equivalent.

525. Suppose there are neither constant nor function symbols in the type
τ. Assume moreover that II wins the n-round Ehrenfeucht–Fraïssé game.
Show that A and B are indistinguishable by closed formulas of the form
∀x1∃x2 . . .δ(~x) where δ is quantifier-free.

526. Take an infinite path P on vertices {vi : i ∈Z} where vi is connected to
vi−1 and vi+1. Build a graph A by dropping finite paths from vertices of P
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8 Elementary Equivalence

so that it has the following property. For each finite sequence 〈i1, . . . , ik〉 of
natural numbers there are k consecutive vertices on P such that the length
of paths dropped from these vertices are i1, . . . , ik in this order. Let B be the
same graph as A with the only difference that the path dropped from v0 is
replaced by an infinite path. Show that II can win the EF game for every N .

527. Give elementarily equivalent structures A and B such that player I wins
the N -round EF game for every N .

8.13 Theorem (Fraïssé). Suppose τ is a finite type and A, B are τ-
structures. Then A and B are elementarily equivalent iff for all N
II wins the N -round game EF(A,B, N ).

8.14 Definition. A set I of partial isomorphisms between A and B is a
back-and-forth system if I 6= ; and the following stipulations hold:

(Forth) For all f ∈ I and a ∈ A there is g ∈ I such that f ⊆ g and a ∈
dom(g ).

(Back) For all f ∈ I and b ∈ B there is g ∈ I such that f ⊆ g and b ∈
ran(g ).

I :A�B denotes that I is a back-and-forth system between A and B,
and A�B means that there is an I such that I : A�B. In this case
we say that A and B are back-and-forth equivalent.

528. If A and B are countable, then A∼=B if and only if A�B.

What can be said about uncountable structures? Below L∞,ω denotes the
language which is similar to a first-order language but in which arbitrary
conjunctions with a bounded number of variables are allowed. We write
A≡∞,ω B if for all closed ϕ ∈ L∞,ω we have AÍϕ if and only if BÍϕ.

8.15 Theorem (Karp). A≡∞,ω B if and only if A�B.

529. Prove Theorem 8.15.

Hint. The set

I = { f : A → B : f is finite and preserves all L∞,ω− formulas}

is a back-and-forth system.

530. Give A and B such that A≡B while A /�B.

531. Prove that countable models of the following theories are back-and-
forth equivalent (and therefore these theories are ℵ0-categorical, hence com-
plete).

(a) Dense linear orderings without endpoints.

(b) Dense linear orderings with left (right) endpoint.
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8.3 Quantifier Elimination

(c) Atomless Boolean algebras.

532. Construct two non-isomorphic atomless Boolean algebras of the same
cardinality.

8.3 QUANTIFIER ELIMINATION

8.16 Definition. The theory Γ ⊂ F (τ) has quantifier elimination if for
every formula ϕ(~x) ∈ F (τ) there is a quantifier-free formula ψ(~x) such
that ΓÍϕ(~x) ↔ψ(~x).

533. Let τ= 〈P〉 and Γ= {∀xP (x) ∨∀x¬P (x)}. Show that Γ does not admit
quantifier elimination. Add a constant symbol to τ and extend Γ so that the
extended theory eliminates quantifiers.

534. Let A= 〈R,+, · ,0,1,≤〉 and consider the formula Φ(a,b,c) ≡ ∃x (ax2 +
bx + c = 0). Is this formula equivalent in A to a quantifier-free one?

535. Assume that for every formula ϕ of the form ∃x(`1 ∧ ·· · ∧ `n) where
each `i is a literal (that is, either an atomic formula or the negation of an
atomic formula), there is a quantifier-free formula δ such that Γ Í ϕ ↔ δ.
Show that Γ admits quantifier elimination.

536. Prove that the theory of dense linear ordering without endpoints has
quantifier elimination.

Hint. Use strict inequality and observe that every literal can be assumed
to be not negated.

537. Suppose Γ has built-in Skolem functions (Definition 8.4). Show that Γ
has quantifier elimination. Is the reverse implication true?

538. (a) Suppose Γ has built-in Skolem functions, A Í Γ, and B is a sub-
structure of A. Show that B is an elementary submodel of A.

(b) Suppose Γ has quantifier elimination, A Í Γ, B is a substructure of A,
and BÍ Γ. Show that B is an elementary submodel of A.

8.17 Definition (Conservative extension). Let Γ⊂ F (τ), τ⊂ τ′ and Γ′ ⊂
F (τ′). Γ′ is a conservative extension of Γ, if Γ⊂ Γ′ and for each ϕ ∈ F (τ)
we have ΓÍϕ if and only if Γ′ Íϕ.

539. Let Γ ⊂ F (τ) be a theory. Prove that Γ has a conservative extension
which has quantifier elimination.

540. Assume Γ ⊂ F (τ) has quantifier elimination. Does it follow that Γ is
complete?
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8 Elementary Equivalence

541. Let τ be a finite similarity type and let A be a τ-structure. Assume that
every finite partial isomorphism of A can be extended to an automorphism
of A.

(a) Prove that for each formula ϕ there is a quantifier-free formula δ such
that AÍϕ↔ δ.

(b) Show that if AÍ Γ and Γ is complete, then Γ has quantifier elimination.

Hint. The assumption that τ is finite implies that there is a formula which
tells whether there is a partial isomorphism between two tuples.

542. Let Γ⊂ F (τ) be a theory and ϕ(~x) ∈ F (τ) be a formula. Prove that the
following two statements are equivalent:

(i) There is a quantifier-free formula δ(~x) such that ΓÍϕ(~x) ↔ δ(~x).

(ii) Whenever A,A′ Í Γ and B is a common substructure of A and A′, then
for all~b ∈ B we have AÍϕ[~b] if and only if A′ Íϕ[~b].

543. Let Γ⊂ F (τ) be a theory. Suppose that for all quantifier-free formulas
δ(x,~y) ∈ F (τ), if A,A′ Í Γ and B is a common substructure of A and A′,~b ∈ B ,
and if there is an a ∈ A such that AÍ δ[a,~b], then there is an a′ ∈ A′ such that
A′ Í δ[a′,~b]. Prove that Γ has quantifier elimination.

8.18 Definition. A theory Γ is model complete if every embedding of
models of Γ is an elementary embedding.

544. Prove that any theory with quantifier elimination is model complete.

545. Let A be a dense linear order without endpoints and a ∈ A. Show that
the substructure with ground set B = A−{a} is an elementary submodel.

546. Let Γ be the theory asserting that the equivalence relation E has in-
finitely many classes and each class is infinite, see Problem 361. Prove that Γ
is model complete.

547. Demonstrate that Th(〈ω,S〉), where S is the successor function, is not
model complete.

548. Let Γ⊂ F (τ) and let B be a τ-structure. Assume that for every universal
formula ϕ whenever ΓÍϕ then BÍϕ. Prove that B can be embedded into
some model of Γ.

549. Show that the following statements are equivalent:

(i) Γ is model complete.

(ii) For any formula ϕ(~x) there is an existential formula ψ(~x) such that

ΓÍ∀~x (ϕ(~x) ↔ψ(~x)).

(iii) For any formula ϕ(~x) there is a universal formula ψ(~x) such that

ΓÍ∀~x (ϕ(~x) ↔ψ(~x)).
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550. Suppose Γ⊂ F (τ) has a conservative extension Γ′ ⊂ F (τ′) such that (i)
Γ′ admits elimination of quantifiers, and (ii) for each closed quantifier-free
formula δ ∈ F (τ′) either Γ′ Í δ or Γ′ Í¬δ. Prove that Γ is complete.

551. Show that the theory of 〈ω,S〉 does not have quantifier elimination while
that of 〈Z,S〉 does.

552. (a) Let τ = 〈0,S〉 and Γ ⊂ F (τ). Show that the following formula set
from Problem 501 admits quantifier elimination:

S(x) = S(y) → x = y, 0 6= S(x), x 6= 0 →∃y(x = S(y),

x 6= S(x), x 6= SS(x), x 6= SSS(x), etc.

(b) Show that it is the theory of 〈ω,0,S〉.
(c) Show that every parametrically definable subset in the structure 〈ω,0,S〉

is either finite or co-finite.

553. Let Γ be the theory of discrete linear orderings without endpoints. Prove
the following:

(a) Γ does not have quantifier elimination,

(b) Γ is not κ-categorical for any infinite cardinal κ,

(c) Γ is complete.

554. Let Γ be the theory of discrete linear ordering with an initial element.

(a) Show that Γ does not have quantifier elimination, while a conservative
extension of type 〈≤,0,S〉 does.

(b) Show that Γ is complete.

555. The similarity type τ consists of the binary relation symbol ≤ and the
constants cn for n ∈ω. Γ is a set of axioms expressing that ≤ is a dense linear
ordering without endpoints and the sequence cn is strictly increasing. Prove
that Γ is complete. What is the number of non-isomorphic countable models
of Γ?

556. Prove that some conservative extension of Γ admits quantifier elimina-
tion where Γ is the theory of the models of an equivalence relation E

(a) with infinitely many classes all of which are infinite (see Problem 361),

(b) with infinitely many classes all of size 2,

(c) with infinitely many 2- and 3-element classes and every class has either
2 or 3 elements,

(d) with one equivalence class of size n for each n ∈ω,

(e) with infinitely many classes all of which are finite.

In each case determine the number of non-isomorphic countable models.

557. The following theories have quantifier elimination and are complete:

(a) infinite Abelian groups in which each non-unit element has order p,
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(b) divisible torsion-free Abelian groups,

(c) algebraically closed fields of characteristics 0 or p,

(d) real closed fields,

(e) atomless Boolean algebras.

558. Let F be an algebraically closed field and F′ its proper subfield which
also is algebraically closed. Is it true that F′ is an elementary subfield of F ?

Notation. The Presburger arithmetic is the theory of the structure
〈ω,0,1,+,≤〉 of the natural numbers without multiplication.

8.19 Theorem (M. Presburger). Extend the type 〈0,1,+,≤〉 with the
unary predicate symbols Rn for n ≥ 2 with the interpretation that Rn(x)
holds if x is divisible by n. With this conservative extension Presburger
arithmetic admits elimination of quantifiers.

8.4 EXAMPLES

559. Suppose that the infinite τ-structure A has cardinality at least |τ|. Prove
that A has a proper elementary extension of the same cardinality.

560. Work in the language 〈+,0〉 of groups and show that Z⊕Z is not ele-
mentarily equivalent to Z.

561. Does there exist a non-Archimedean field elementarily equivalent to R?

Hint. Use compactness.

562. Let A be a proper elementary extension of the ordered field R. Show
that A is non-Archimedean.

563. Using that no free group contains infinitely divisible elements prove
that the class of free groups is not closed under elementary equivalence.

Notation. A graph G is locally finite if every vertex has finite degree.

564. Let G be a connected, locally finite graph. Show that G has no proper
elementary subgraphs.

565. Let G1 and G2 be two locally finite graphs. For each vertex v ∈G1 and
natural number n ∈ω let G1(v,n) be the spanned subgraph of G1 that consists
of vertices of distance at most n from v. Assume{

G1(v,n) : v ∈G1,n ∈ω
}= {

G2(v,n) : v ∈G2,n ∈ω
}
.

Prove that G1 and G2 are elementarily equivalent.

Hint. Use the Ehrenfeucht–Fraïssé game.
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8.4 Examples

566. Construct two connected, countable, elementarily equivalent graphs
which are not isomorphic. Can these graphs be locally finite?

567. For each pair of infinite cardinals κ and λ construct two elementarily
equivalent graphs G and H such that |G| = |H |, χ(G) = κ while χ(H) =λ.

568. Give two elementarily equivalent orderings, exactly one of them is well
ordered.

569. Let A be a dense linear ordering without endpoints. Prove that the truth
of a formula depends only on the order of its free variables (and whether they
are equal).

570. Let A and B be two countable dense linear orderings without end-
points and f : A → B a finite partial isomorphism. Prove that f extends to an
isomorphism.

571. Construct two dense linear orderings A and B without endpoints of the
same cardinality and a finite partial isomorphism f : A → B which cannot be
extended to an isomorphism.

572. Let A be a dense ordering without endpoints and let B ⊆ A be such
that the ordering restricted to B is dense without endpoints. Prove that the
structure B with ground set B is an elementary submodel of A.

573. Let A be a discrete linear order with initial element 0. B is a subset of A
which contains 0 and with each b ∈ B it also contains the successor of b, and
for b 6= 0 the predecessor of b. Show that B is an elementary submodel of A.

574. Find a structure A elementary equivalent to 〈ω,≤〉 such that 〈R,≤〉 can
be embedded into A.

575. Find a countable structure A which can be properly elementary embed-
ded into itself and

(a) A is a dense ordering without endpoints.

(b) A is a discrete ordering without endpoints.

(c) A is a discrete ordering with initial point but without right endpoint.

576. Give a structure A and X ⊂ A such that A has no minimal elementary
substructure containing X .

577. Give two elementarily equivalent but not isomorphic structures such
that each is isomorphic to a substructure of the other.

Hint. Any two discrete linear orderings without endpoints are elementar-
ily equivalent (see Problem 553).

578. Let τ be a countable type and A be a τ-type structure whose universe is
just ω1. Prove that there exists a countable ordinal α<ω1 such that α is the
universe of a (a) substructure (b) elementary substructure of A.
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579. The ordinal α is regarded as an ordered structure with ordering <.

(a) Show that ω is not an elementary substructure of ω+4.

(b) Show that ω+ω is not an elementary substructure of ω ·ω.

(c) Show that ω ·ω is not an elementary substructure of ω1.

580. Let A be a countable ordinal with its usual ordering. Can A have proper
elementary submodels?

581. Find a complete theory on finite or countable language which has
(a) one; (b) countably many; (c) continuum many countable models up to
isomorphism.

582. Find a complete theory on a finite or countable language which has
(a) three, (b) four, (c) n for some n > 4 pairwise non-isomorphic countable
models.

583.∗ Give a theory Γ which has a countable model, but every other model of
Γ has size at least 2ω.

Hint. Consider an almost disjoint family of subsets of ω (Problem 1) and
the usual ordering on ω.

584. Let Γ ⊆ F (τ) be a theory. Prove that Γ has a conservative extension
which has built-in Skolem functions.

585. A is an infinite structure in which there are two orderings: ≤1 and ≤2.
Show that there is an infinite subset B ⊂ A where ≤1 and ≤2 either coincide,
or one is the reverse of the other.

586. Suppose Γ⊂ F (τ) has an infinite model. Show that Γ has a model A in
which there are distinct elements {ai : i ∈ω} in A such that

(a) AÍϕ[ai1 ] ↔ϕ[ai2 ] for every i1, i2 ∈ω and ϕ(x) ∈ F (τ);

(b) AÍϕ[ai1 , a j1 ] ↔ϕ[ai2 , a j2 ] for every i1 < j1, i2 < j2, and ϕ(x, y) ∈ F (τ).

8.20 Definition (Indiscernibles). Let A be a τ-structure, H ⊂ A. (H ,¿)
is indiscernible in A if ¿ is an ordering on H , and for every pair of
¿-increasing sequences ~a,~b ∈ H of the same length, AÍϕ[ā] ↔ϕ[b̄]
for every formula ϕ(~x) ∈ F (τ).

587. Suppose the binary symbol < is in the type τ, and the interpretation
<A is an ordering in A. Let (H ,¿) be indiscernible in A. Show that ¿ and <
on H are either the same or the reverse of each other.

588. Let A = 〈A,<〉 be a dense linear ordering without endpoints. Pick a
strictly decreasing sequence 〈ai : i ∈ω〉. Show that H = {ai : i ∈ω} with the
ordering ai ¿ a j iff i < j is indiscernible.

589. Suppose τ contains function symbols only. Let A be a free algebra
generated by the free set of generators X . Show that (X ,¿) is indiscernible
in A for every ordering ¿.
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590. Let A be a discrete linear order with initial point. By Problem 368 it has
the structure ω+Z×M for some ordered set M . Suppose H ⊂ A contains a
single element from each copy of Z. Show that H is indiscernible with the
inherited ordering.

591. Suppose (H ,¿) is indiscernible in A where ¿ is a well-ordering. Show
that at most |F (τ)| different types can be realized (Definition 7.18) in the
substructure generated by H .

8.21 Theorem. Let A be infinite and (H ,¿) be an arbitrary ordering.
There is an elementary extension B of A such that H ⊂ B and (H ,¿) is
indiscernible in B.

592. Prove Theorem 8.21.

593. For each infinite κ some linear ordering on κ has 2κ many automor-
phisms.

594. Suppose (H ,¿) is indiscernible in A, B ⊆ H , and π : B → H is a ¿-
preserving injection. Show that the substructures of A generated by B and
generated by π[B ] are isomorphic.

595. Suppose Γ⊂ F (τ) has infinite models, and κ≥ |τ| is infinite. Show that
Γ has a model of cardinality κ which has 2κ many automorphisms.

596. Suppose τ is countable, and Γ has infinite models. Show that Γ has
arbitrary large models in which only countably many different types are
realized.
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Notation. In this chapter the i -th coordinate of an element a from the
product

∏
i∈I Ai will be denoted by a(i ). For a vector ~a = 〈a1, . . . , an〉

formed from elements of the product, ~a(i ) denotes the vector of the
i -th elements: ~a(i ) = 〈a1(i ), . . . , an(i )〉 ∈ An

i .

9.1 Definition (Product of structures). The direct product of the τ-struc-
tures {Ai : i ∈ I }, denoted by

∏
i∈I Ai , has universe

∏
i∈I Ai , and the

interpretation of symbols is done coordinatewise:

cΠA = 〈cAi : i ∈ I 〉,
f ΠA(~a) = 〈 f Ai (~a(i )) : i ∈ I 〉, and

~a ∈ rΠA ⇔ ~a(i ) ∈ rAi for all i ∈ I .

597. Let e : X →Πi Ai be an evaluation over ΠiAi , then e(i ) is an evaluation
over Ai . Show that terms are evaluated coordinatewise, that is, the i -th
coordinate of tΠA[e] is tAi [e(i )] for each term t ∈ E(τ).

598. Find a structure A and a closed formula ϕ such that A Í ϕ, while
A×A 6Íϕ. Can ϕ be an atomic formula?

599. Let ϕ ∈ F (t ) be a closed ∃1 formula, i.e., it is of the form ∃~x δ(~x) where δ

is quantifier-free. Is it true that if Ai Íϕ for all i ∈ I , then ΠiAi Íϕ?

600. Let R1(~x) and R2(~x) be two n-variable relation symbols and ϑ be the for-
mula Q1x1 · · ·Qn xn (R1(~x) → R2(~x)), where each Qi is a quantifier. Suppose
Ai Íϑ for all i ∈ I . Show that ΠiAi Íϑ.

Notation. For a family F ⊂℘(I ) of indices and a ∈∏
i Ai define

a /F = {
b ∈∏

i Ai : {i ∈ I : a(i ) = b(i )} ∈F }
.

The factor
∏

i Ai /F is the collection {a /F : a ∈∏
i Ai }.

601. Suppose F is a filter. (a) Show that a ∈ a /F , and a /F and b /F are
either disjoint or identical. (b) Show that in this case the partition Πi Ai /F of
Πi Ai is compatible with the interpretation of the function symbols in ΠiAi .
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9 Ultraproducts

9.2 Definition (Ultraproduct). Let U be an ultrafilter on I . The ultra-
product

∏
i∈I Ai /U of the τ-structures Ai has ground set

∏
i Ai /U , and

the interpretation of the symbols are

cΠA/U = cΠA/U ,

f ΠA/U (~a/U ) = f ΠA(~a)/U ,

~a/U ∈ rΠA/U ⇔ {i ∈ I :~a(i ) ∈ rAi } ∈U .

If U is a filter only then
∏

i Ai /U is called reduced product.

602. Show that Definition 9.2 is sound.

603. Show that the ultraproduct of finitely many structures is always isomor-
phic to one of the components.

604. Show that an ultraproduct of ultraproducts is isomorphic to an ultra-
product of the original structures.

605. Suppose all structures Ai are finite, and there are finitely many non-
isomorphic structures among {Ai : i ∈ I }. Show that Πi∈IAi /U is isomorphic
to one of the Ai ’s.

9.3 Theorem (Łoś lemma—fundamental theorem of ultraproducts).
Let Ai be τ-structures for i ∈ I , U be an ultrafilter on I and e : X →Πi Ai

be an evaluation. Then the following statements hold:

• for a term t ∈ E(τ),

tΠA/U [e/U ] = tΠA[e]/U ,

• for a formula ϕ ∈ F (τ),∏
i Ai /U Íϕ[e/U ] if and only if

{
i ∈ I :Ai Íϕ[e(i )]

} ∈U .

606. Show that ΠiAi /U Íϕ if and only if {i ∈ I :Ai Íϕ } ∈U .

Notation. If all structures Ai are isomorphic to A, then the index set
I is identified with the cardinal κ= |I |, the ultraproduct

∏
i∈κAi /U is

called ultrapower, and is denoted by κA/U .

607. Show that the ultrapower of κA/U is elementarily equivalent to A.

608. Let Ai be a set of structures for i ∈ I and let A=ΠiAα/U .

(a) Suppose |Ai | ≤ n for each i ∈ I . Prove that |A| ≤ n.

(b) Suppose X = {|Ai | : i ∈ I } ⊂ω is a finite set of natural numbers. Prove that
|A| ∈ X .

(c) Suppose X is a finite set of natural numbers such that {i ∈ I : |Ai | ∈ X } ∈U .
Prove that |A| ∈ X .
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9 Ultraproducts

609. Let U be a non-trivial ultrafilter on ω, and A be a countable structure.
Show that ωA/U has cardinality 2ω.

Hint. Use almost disjoint sets.

610. Let Ai be a finite structure with ni elements and U a non-trivial ul-
trafilter on ω. Show that if limni = ∞ then the ultraproduct ΠiAi /U has
continuum many elements. What happens if we suppose limsupni =∞?

611. Let δ :A→ κA/U be the diagonal mapping δ(a) = 〈a : i ∈ κ〉/U . Prove
that δ is an elementary embedding of A into κA/U , i.e., δ[A] is isomorphic
to A and is an elementary substructure of κA/U .

612. Let A be infinite, and U be a non-trivial ultrafilter over ω. Show that A
has a proper elementary embedding to ωA/U .

613. Every countable structure has an elementary extension of cardinality
continuum, independently of the cardinality of the type. (See also Problems
495 and 583.)

614. Let κ be an infinite cardinal, |I | = κ, and suppose that the structures Ai

are infinite for i ∈ I . Show that for some ultrafilter U over I the cardinality of∏
i Ai /U is at least 2κ.

615. Suppose A is infinite and has cardinality < 2κ. Show that A has an
elementary extension of cardinality 2κ independently of the cardinality of
the type.

616. Construct an infinite structure A so that A and all ultrapowers ωA/U
are isomorphic whenever U is an ultrafilter on ω. Compare it to Problem
612 which says that an infinite structure can be properly embedded into its
ultrapowers.

617. Show that the ω-ultrapower of the complex numbers C, as a field, is
isomorphic to itself.

618. Give two sequence of structures Ai and Bi for i ∈ω such that Ai 6∼=B j

for all i , j ∈ω, but ΠiAi /U ∼=ΠiBi /U .

619. The structures Ai can be classified into finitely many classes regarding
elementary equivalence. Show that ΠiAi /U belongs to one of these classes,
as well.

620. Give two element structures Ai such that the non-trivial ultraproduct
Πi<ωAi /U is elementary equivalent with none of the Ai ’s.

621. Let U ⊆℘(I ) be an ultrafilter, J ∈U and V be the trace of U on J ⊆ I (see
Problem 37). Show that Πi∈IAi /U and Π j∈JA j /V are isomorphic.
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9 Ultraproducts

9.4 Theorem (Compactness theorem). Γ has a model if and only if each
finite subset of Γ has a model.

622. Prove Theorem 9.4 using ultraproducts (see Problem 418).

623. Prove that if Γ has arbitrarily large finite models, then it has an infinite
model. (Cf. Problem 419)

624. Let U be an ultrafilter on I , Aξ be structures for ξ ∈ I , and E ⊂ U . For
each e ∈ E we have a formula ϕe . Suppose that for each ξ ∈ I there is an
evaluation fξ over Aξ such that Aξ Íϕe [ fξ] for every e ∈ E with ξ ∈ e. Show
that ΠξAξ/U Íϕe [〈 fξ〉/U ] for each e ∈ E .

625. Let U be a regular ultrafilter on I (see Definition 1.17) witnessed by
E ⊂U , and K be a collection of structures. Suppose that every finite subset
of Γ= {ϕe : e ∈ E } has a model in K. Show that there are structures Aξ ∈K for
ξ ∈ I such that ΠξAξ/U Í Γ (Cf. Problem 622).

626. Show that every structure can be embedded into an appropriate ultra-
product of its finitely generated substructures.

627. Let T (x) = {ϕi (x) : i ∈ω} be a set of countably many formulas with one
free variable x, and suppose that any finite subset of T (x) can be realized
(Definition 7.18) in Πi∈ωAi /U where U is a non-trivial ultrafilter on ω. Prove
that T (x) can also be realized in ΠiAi /U .

An easy consequence of the Łoś lemme is that if two structures have iso-
morphic ultrapowers, then they are elementarily equivalent (see Problem
607). The converse is the celebrated theorem of H. J. Keisler and S. Shelah.

9.5 Theorem (Keisler–Shelah). A is elementarily equivalent to B if and
only if they have isomorphic ultrapowers κA/U and κB/U .

9.1 WHAT ULTRAPRODUCTS LOOK LIKE

628. Suppose the structure A is the disjoint union of the structures A1 and
A2. Show that the ultrapower κA/U is the disjoint union of the ultrapowers
κA1/U and κA2/U .

629. Let Gn be the cyclic graph on n vertices. Describe, up to isomorphism,
the product Πi∈ωGi /U for non-trivial U .

630. Denote by Gn the path on n vertices. Describe, up to isomorphism, all
ultraproducts Πn∈ωGn/U , where U is non-trivial.

631. Show that if the non-trivial ultrapower ωG/U of a graph G is connected,
then the diameter of G is finite. (See also Problem 423.)
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9.1 What Ultraproducts Look Like

632. Let G1 and G2 be countable, 3-regular, cycle-free graphs. Is it true that
they are isomorphic? Describe, up to isomorphism, all graphs ωG1/U where
U is a non-trivial ultrafilter on ω.

What about countable, 4-regular, cycle-free graphs?

633. Let H be the complete, infinite binary tree. Describe, up to isomor-
phism, the graph ωH/U .

634. Let G be the countable broom (see Problem 487): a vertex v which is the
endpoint of an infinite path, and countably many edges are attached to it.
Describe, up to isomorphism, all non-trivial ultrapowers ωG/U .

635. Prove that if the chromatic number of the ultraproduct Πi∈ωGi /U is
k ∈ω, then there is a finite k-chromatic graph which can be embedded into
U-almost every Gi .

636. Let A = 〈ω,S〉 where S is the successor function. Describe, up to iso-
morphism, all non-trivial ultrapowers ωA/U .

637. The similarity type τ contains the constant symbol 0 and the unary
function symbol S. Give a set Γ⊂ F (τ) of formulas expressing that 0 is not
a successor of anything, non-zero elements are successors, and different
elements have different successors.

Describe, up to isomorphism, all non-trivial ultrapowers ωA/U of some
countable model AÍ Γ.

638. Let A= 〈ω,<〉 be the ordering of the natural numbers. In a non-trivial
ultrapower ωA/U each element has an immediate successor. For a1, a1 ∈
ωA/U and a1 < a2 we say that the distance from a1 to a2 is finite if a2 can
be reached from a1 using finitely many successor steps. Show that if the
distance from a1 to a2 is infinite, then there is an a1 < c < a2 such that both
distances from a1 to c, and from c to a2 are infinite.

639. Let A= 〈Z,<〉 be the discrete ordering of the integers. By Problem 553
the order in the ultraproduct ωA/U is isomorphic to Z×M for some linear
ordering 〈M ,<〉. Show that M is a dense linear ordering without endpoints.

640. Let A= 〈ω,<〉. Show that any countable set in a non-trivial ultrapower
ωA/U is bounded. Find a strictly increasing sequence of length ω1 in ωA/U .

641. Construct an uncountable ordering with the following property: the
intersection of countably many strictly decreasing intervals I1 ⊃ I2 ⊃ . . .
always contains a whole interval.

642. Does there exist a dense ordering without endpoints with the following
property: if A and B are two countable subsets so that all elements of A are
below the elements of B , then there is a whole interval between A and B ?

643. LetB be the usual ordering of the reals andA= ωB/U with a non-trivial
U . Write 0A for the equivalence class of the all-zero sequence.
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9 Ultraproducts

(a) Show that if a0 > a1 > ·· · > an > ·· · > 0A is a decreasing sequence, then
one can always find a b > 0 which separates all the an ’s from 0A, that is,
0A < b < an for all n <ω.

(b) Prove that the ordering of ωA/U is not complete: there is a bounded set
that has no least upper bound.

644. The partial order E is well founded if each non-empty subset contains
an E-minimal element, see Problem 422. Let A be a structure and suppose
EA is well founded. Give sufficient and necessary condition for E to be well
founded in a non-trivial ultrapower ωA/U .

645. The similarity type of A contains countably many unary relation sym-
bols Ri . Suppose that each element of A satisfies finitely many of the Ri ’s
only; and for all i1, . . . , in there exists a ∈ A such that a satisfies Ri1 , . . . ,Rin

only. Let X ⊆ω be infinite and U be a non-trivial ultrafilter on ω.

(a) Prove that ωA/U contains an element a such that a satisfies Ri if and
only if i ∈ X .

(b) Show that ωA/U contains infinitely many such elements.

(c) Show that ωA/U contains continuum many such elements.

9.2 APPLICATIONS

646. A group is a torsion group if all elements are of finite order. Give torsion
groups Gn such that Πn<ωGn/U for non-trivial U is torsion-free.

647. Let Z be free the group generated by a single element and U be a non-
trivial ultrafilter on ω. Show that ωZ/U contains infinitely divisible elements.

Prove that if G is a free group, then G contains no infinitely divisible ele-
ments but ωG/U does contain such elements.

648. Let Ci be the cyclic group of order n and U be a non-trivial ultrafilter
on ω. Which of the following statements are correct?

(a) Πi<ωCi /U is infinite.

(b) Πi<ωCi /U is torsion-free.

(c) Πi<ωCi /U can be torsion-free.

(d) Πi<ωCi /U can be a torsion group.

649. Let Fn be the n-th finite field. Show that there is a non-trivial ultrafilter
U on ω such that ΠnFn/U has (a) characteristic 2, (b) characteristic zero.

650. Prove that there exists no ultrafilter U such that Πp prime Fp /U is isomor-
phic to the field of complex numbers.

651. Prove that for any prime p there is a non-trivial ultraproduct of all finite
fields of characteristics p which contains the algebraic closure of the field Fp .

652. Prove that for any prime p, an ultraproduct of all finite fields of charac-
teristic p is not algebraically closed.
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653. Let ϕ be a closed formula in the language of fields and suppose ϕ is
true on all fields of characteristics zero. Show that ϕ is true in all fields of
characteristics p for every large enough p.

654.∗ Find not algebraically closed fields Fn of characteristics p (zero or
prime) such that each non-trivial ultraproductΠnFn/U is algebraically closed.

655. Let F be a finite field, and {pe : e ∈ E } be a collection of polynomials with
variables x1, x2, . . . , xn , . . . over F. Suppose that for all finite J ⊆ E the system
of equations {p j = 0 : j ∈ J } has a solution in F. Show that in this case the
collection {pe = 0 : e ∈ E } has a solution in F, too. (Cf. Problem 259)

Hint. Let U be a regular ultrafilter witnessed by E ⊂ U (Definition 1.17),
and fξ be the solution for the subsystem {pe = 0 : ξ ∈ e}. Then use Problem
624.

656. Let {pe : e ∈ E } be a countable collection of polynomials over the com-
plex numbers C. Suppose each finite subcollection has a solution in C. Show
that in this case the whole collection has a solution as well.

Hint. The ultrapower ωC/U is isomorphic to C by Problem 617.

657. Let F be a field and U be a non-trivial ultrafilter on κ. Identify F with its
diagonal image in B= κF/U . This way B can be considered a field extension
of F. Prove that all the elements in B àF are transcendental over F.

658. An ordered field is a field with an ordering ≤ which is translation in-
variant: x ≤ y iff x +u ≤ y +u, and the product of non-negative elements is
non-negative: (x ≥ 0 ∧ y ≥ 0) → x y ≥ 0. The field F is orderable if an order
can be defined on it which makes it an ordered field.

(a) Prove that there is a unique field ordering of the reals.

(b) Show that finite fields cannot be ordered.

(c) Show that an ultraproduct of finite fields cannot be ordered.

(d) Prove that if a field is orderable, then it has characteristics 0.

(e) Give a field which admits (at least) two different orderings.

(f) Prove that F is orderable if and only if −1 is not a sum of squares.

9.3 ADVANCED EXERCISES

659. Let |A| = λ, where λ is an infinite cardinal. Show that if U is a regular
ultrafilter on κ (Definition 1.17), then κA/U has cardinality λκ.

660. Show that one can find an infinite cardinal κ, a structureA of cardinality
κ, and two non-trivial ultrafilters U and V on κ such that κA/U and κA/V
have different cardinalities.

661. Without assuming the continuum hypothesis give two structures A and
B such that A≡B, |A| = |B | = ℵ2, and there are no ultrafilters U ,V on ω with
ωA/U and ωB/V isomorphic.
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Hint. Use total orders with cofinality ω2 and ω1.

662. Without assuming the continuum hypothesis give two non-isomorphic
structures A and B such that |A| = |B| = ℵ2, and that ωA/U and ωB/V are
isomorphic for all non-trivial ultrafilters on ω.

663. Give an example of a countable structure A which has 22ω
many non-

isomorphic ultrapowers ωA/U .

Hint. Use an uncountable language: for each subset of ω introduce a
unary relation.

664. Let U be a regular ultrafilter on κ. Show that 〈κ+,<〉 can be embedded
into κ〈ω,<〉/U .

665. For a graph A let Fin(A) be the set of finite subgraphs of A. Show that if
Fin(A) ⊆ Fin(B), then A can be embedded into some ultrapower of B.

666. Let A be ℵ0-categorical and B be countable. Suppose every finitely
generated substructure of B can be embedded into A. Prove that in this case
B can be embedded into A.

667. Prove that on each torsion-free Abelian group there is a shift-invariant
total order, i.e., a ≤ b iff a + c ≤ b + c.

Hint. A finitely generated substructure is isomorphic to Zn for some n ∈ω.

668. GL(n,F) is the multiplicative group of non-singular n×n matrices over
the field F. The group G is n-representable if it is isomorphic to a subgroup
of GL(n,F) for some field F.

Prove that G is n-representable if all of its finitely generated subgroups are
n-representable.

9.6 Definition (Types). Let A be a τ-structure and X ⊆ A. τX ⊃ τ de-
notes the similarity type which contains the additional constant sym-
bols ca for each a ∈ X with interpretation cAa = a. A subset T (~x) ⊂ F (τX )
(with free variables~x) is a type in A over X if T (~x) is finitely satisfiable
in A.

9.7 Definition (Saturated and compact structures). The τ-structure A

is κ-saturated if all types T (~x) ⊂ F (τX ) with |X | < κ can be satisfied in A.
A is saturated if it is |A|-saturated, and σ-saturated if it is ω1-saturated.

A is κ-compact if all types T (~x) with |T (~x)| < κ can be satisfied in A.
A is compact if it is |A|-compact, and σ-compact if it is ω1-compact.

669. Prove that 〈Q,<〉 is saturated.

670. Show that 〈Q,<, ·,+,0,1〉 is not saturated.

Hint. Try to describe an irrational number via types.
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671. Prove that 〈R,<〉 is ℵ0-saturated but not ℵ1-saturated.

672. No infinite model A can be |A|+-saturated.

673. Show that a structure A is κ-saturated for all cardinals κ if and only if A
is finite.

674. Every κ-saturated model is κ-compact. If κ> |F (τ)|, then a κ-compact
structure is also κ-saturated.

675. T (~x) ⊆ F (τX ) is an n-type if~x = 〈x1, . . . , xn〉, and it is an ω-type if count-
ably many different free variables might occur in T . Show that if A realizes
all 1-types T (x) ⊂ F (τX ) over every |X | < κ, then it also realizes all ω-types.

676. Let {Ri : i <ω} be a countable set of unary relation symbols, and let Σ
be the set of formulas

∃v(Ri0 (v) ∧ ·· · ∧ Rin (v) ∧ ¬R j0 (v) ∧ ·· · ∧¬R jm (v))

for all {i0, . . . , in}∩ { j0, . . . , jm} =;. Prove that Σ has a saturated model.

677. (a) Prove that ωA/U is σ-compact, i.e., all countable types can be real-
ized in ωA/U .

(b) Show that each structure of countable similarity type has a σ-saturated
elementary extension.

9.8Theorem. Elementarily equivalent, saturated structures of the same
cardinality are isomorphic.

678. Prove Theorem 9.8.

679. Assume 2ℵ0 =ℵ1 and letA andB be elementarily equivalent, countable
structures of a countable similarity type. Prove that ωA/U and ωB/U are
isomorphic for any non-trivial ultrafilter U .

680. (a) Show that the set of complex numbers, as an algebraic structure, is
σ-saturated.

(b) Let F be a countable collection of multivariate polynomial equations
pi (zi1 , . . . , zik ) = 0 over the complex numbers. Show that if every finite
subset of F has a solution, then F has a solution.

681. Prove that in any σ-saturated, dense, linear ordering without endpoints,
the intersection of countably many intervals I1 ⊇ I2 ⊇ . . . always contains a
whole interval.

682. Let U be a regular ultrafilter over the infinite κ. Prove that κA/U is
κ+-compact over A (more precisely, over the diagonal image of A), i.e., all
types over A that have cardinality at most κ can be realized in ωA/U .
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Remark. It follows that if the similarity type of A contains at most κ sym-
bols, then κA/U is κ+-saturated over (the diagonal image of) A.

9.4 AXIOMATIZABILITY

9.9 Definition. A non-empty class K of τ-type structures is axiomatiz-
able or elementary if for some set of formulas Γ⊆ F (τ) we have

K= {
A : AÍ Γ

}
,

in which case K is axiomatized by Γ. K is finitely axiomatizable if there
is a finite Γ which axiomatizes it.

683. Show that ifK is axiomatizable then it contains a structure of cardinality
at most |τ| ·ω.

684. Prove that the class of finite τ-structures is not axiomatizable, while the
class of infinite τ-structures is axiomatizable.

685. Prove that a class consisting of isomorphic structures is axiomatizable
if and only if these structures are finite.

686. Let A be a fixed infinite model and set K1 = {B : A≺B}, K2 = {B : A
can be elementarily embedded into B}. Which one of the following cases
can occur?

(a) Both K1 and K2 are axiomatizable.

(b) K1 is axiomatizable but K2 is not.

(c) K2 is axiomatizable but K1 is not.

(d) Neither K1 nor K2 are axiomatizable.

687.∗ The formula set Γ⊂ F (τ) is independent if Γà {ϕ} 6Íϕ for every ϕ ∈ Γ.
Suppose |τ| ≤ω and K is an axiomatizable class of τ-type structures. Show
that K can be axiomatized by an independent set of formulas.

Remark (Reznikoff). Every axiomatizable class is axiomatizable by an
independent set of formulas.

688. Let K be a class of τ-type structures, and let Γ = {ϕ : A Í ϕ for each
A ∈K }. Show that a structure is elementarily equivalent to an ultraproduct
of structures from K if and only if it is a model of Γ.

689. Suppose that the class K is axiomatizable but not finitely axiomatizable.
Is it true that (a) at least one structure from K, (b) all structures from K are
elementarily equivalent to an ultraproduct of structures not in K ?

9.10 Theorem (Keisler). A class K of τ-type structures is axiomatizable
iff K is closed under elementary equivalence and ultraproducts.
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K is finitely axiomatizable if and only if both K and its complement are
axiomatizable.

690. Prove Theorem 9.10.

691. Give an example of a class K of τ-type structures, if possible, such that

(a) K is closed under ultraproducts but not under elementary equivalence.

(b) K is closed under elementary equivalence but not under ultraproducts.

(c) K and its complement are closed under ultraproducts and isomorphism
but not under elementary equivalence.

Hint. Use the Keisler–Shelah isomorphism theorem 9.5.

692. Let Γ1,Γ2 ⊆ F (τ) and suppose that for every τ-type structure A we have
either AÍ Γ1 or AÍ Γ2 but not both. Prove that the class of models of Γ1 is
finitely axiomatizable.

693. Suppose K is axiomatized by Γ and K is finitely axiomatizable. Show
that some finite subset of Γ axiomatizes K.

694. Prove that the class K of models of Γ is axiomatizable by

(a) closed ∀1 formulas if and only if K is closed under substructures,

(b) closed ∃1 formulas if and only if K is closed under extensions.

695. Suppose K is axiomatizable by ∀∃-formulas. Show that K is closed
under unions of chains.

696. Show that the theory of A= 〈ω,0,S,<〉 is not axiomatizable by universal
formulas. Find a conservative extension which has such an axiomatization.

9.4.1 NON-AXIOMATIZABILITY

697. Show that the following structure classes are not axiomatizable:

(a) cyclic graphs,

(b) connected graphs,

(c) finite groups,

(d) torsion groups (each element has finite order),

(e) free groups,

(f) simple groups,

(g) fields of positive characteristics,

(h) Archimedean fields,

(i) rings isomorphic to F [x] for some field F of zero characteristics,

(j) well-founded binary relations,

(k) well-orders.

698. Prove that the class of linear orderings can be axiomatized by universal
formulas, while the class of dense linear orderings without endpoints cannot.
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699. A partition F = A∪∗ B for two non-empty sets of a totally ordered field
F (Problem 658) is a Dedekind-cut, if each element of A is smaller than all
elements of B . F is Dedekind-complete if for each Dedekind-cut (A,B) either
A has a largest element or B has a smallest element.

Show that the class of totally ordered Dedekind-complete fields is not
axiomatizable.

700. Let G be the class of all simple graphs and χ(G) be the chromatic num-
ber of the graph G . Prove that for each k ≥ 3 none of the classes

K=k = {
G ∈G : χ(G) = k

}
,

K>k = {
G ∈G : χ(G) > k

}
,

K6=k = {
G ∈G : χ(G) 6= k

}
are axiomatizable, while K2 = {G ∈G : χ(G) = 2} is axiomatizable.

Hint. Use a theorem of Erdős stating that for every pair g ,k ≥ 3 of natural
numbers there is a graph G(g ,k) of girth g and chromatic number k.

701. Prove that the class of planar graphs is not axiomatizable.

9.4.2 NOT FINITE AXIOMATIZABILITY

702. Prove that the theory of planar graphs is axiomatizable, but not finitely
axiomatizable.

703. LetK consists of those graphs whose vertices have infinite degree. Show
that K is not finitely axiomatizable.

704.∗ Give a finitely axiomatizable (non-empty) class of graphs in which each
vertex of each graph has infinite degree.

Hint. Using (the finitely axiomatizable) ordering, the formula ∀x∃y(x < y)
guarantees that the structure is infinite. To embed the ordering to the
graph use Problem 449.

705. Show that the following classes are axiomatizable but not finitely:

(a) infinite groups,

(b) torsion-free Abelian groups,

(c) divisible torsion-free Abelian groups,

(d) fields of characteristics 0,

(e) algebraically closed fields,

(f) real closed fields,

(g) cycle-free graphs,

(h) 3-regular cycle-free graphs.
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706. The similarity type τ contains the constant 0 and the unary function
symbol S. Γ is the set of axioms expressing: 0 is not a successor of anything;
non-zero elements are successors; different elements have different suc-
cessors; finally, for all n ≥ 1 no element is the n-th successor of itself (see
Problems 501 and 552). Let K be the class of models of Γ. Show that K is not
finitely axiomatizable.
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ARITHMETIC 10

L. Csirmaz and Z. Gyenis, Mathematical Logic, Problem Books
in Mathematics, https://doi.org/10.1007/978-3-030-79010-3_10
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10.1 ROBINSON’S AXIOM SYSTEM

Notation. The standard model of arithmetic is the structure N =
〈ω,0,1,+, ·〉 of type τN = 〈0,1,+, ·〉 with the natural interpretation.
Next to the symbols in τN , x ≤ y will be used as an abbreviation for
∃z(z +x = y), and x < y for (x ≤ y ∧ x 6= y).

The axiom system Q, first set out by R. M. Robinson, describes some basic
features of N and plays an essential role in establishing undecidability.

10.1 Definition (Robinson’s axioms). The system Q consists of the τN -
type formulas Q1–Q7 below:

Q1 x +1 6= 0,

Q2 x +1 = y +1 → x = y ,

Q3 x +0 = x,

Q4 x + (y +1) = (x + y)+1,

Q5 x ·0 = 0,

Q6 x · (y +1) = (x · y)+x,

Q7 y 6= 0 →∃x (y = x +1).

707. Check that NÍQ.

708. Show that Q ` 0 6= 1.

709. Show that Q ` 0+x = 0 → x = 0, and Q ` 0+1 = 1.

Notation. For natural numbers n the τN -term πn is defined inductively
as follows: π0 = 0, π1 = 0+1, and, in general, πn+1 =πn +1. Clearly, in
the standard model N, πN

n = n for every n ∈ω.

710. Prove that for natural numbers n, p the following statements are theo-
rems of Q: (a) πn +πp =πn+p , (b) πn ·πp =πn·p .
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10 Arithmetic

711. Show that Q ` (x ≤πn) ∨ (πn ≤ x).

712. Prove that in each model of Q we have

(x ≤πn) → (x =π0 ∨ ·· · ∨ x =πn).

713. Show that Q `πn 6=πp whenever n 6= p. Show that Q `πn ≤πp if n ≤ p,
and Q `¬(πn ≤πp ) otherwise.

714. Let AÍQ and assume a +b =πn for two elements a,b ∈ A. Show that
both a and b are equal to πi for some i .

715. Find a model of Q where x +1 6= x fails.

716. Find a model of Q where the addition is not commutative.

717. In each model of Q the axioms imply a +0 = a. Is it true that 0+a = a
always holds?

718. Let D be a partially ordered set of “infinite numbers” where every pair
has a least upper bound. The ground set of A is the disjoint union ω∪D.
The result of addition or multiplication of two infinite numbers is their least
upper bound. Complete the interpretation so that A becomes a model of Q.

719. Find models of Q where

(a) x +x = x holds for some x 6= 0,

(b) ≤ is not an ordering,

(c) there are different elements such that neither a ≤ b nor b ≤ a,

(d) there are different elements such that both a ≤ b and b ≤ a.

720.∗ Find a model of Q in which (x < y) → (x +1 ≤ y) does not hold.

Notation. Bounded quantifiers are of the form (∀x<t) and (∃x<t)
where the term t ∈ E(τN ) does not contain x. Their meaning is

(∀x<t )ϕ means ∀x(x < t → ϕ),

(∃x<t )ϕ means ∃x(x < t ∧ ϕ).

721. Show that every model A of Q contains an isomorphic copy of N as an
initial segment (see Definition 8.10) with respect to the relation ≤A.

722. Suppose that the closed ϕ ∈ F (τN ) contains bounded quantifiers only.
Show that NÍϕ implies Q `ϕ.

723. Find a formula ϕ(x) such that Q `ϕ(πn) for all n ∈ω, while Q 0∀xϕ(x).
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10.2 Undecidability

10.2 UNDECIDABILITY

In this section τ is a fixed finite type, and α is the coding of τ-type terms
and formulas as defined in Section 6.5.

10.2 Definition. The theory Γ⊆ F (τ) is recursive (recursively enumer-
able) if the set of codes {α(ϕ) : ϕ ∈ Γ} is recursive (recursively enumer-
able, respectively). Γ is decidable if the set of its consequences, namely,
{ϕ ∈ F (τ) : Γ`ϕ} is recursive; otherwise Γ is undecidable.

724. If Γ is recursively enumerable, then so is {ϕ : Γ`ϕ}.

725. Show that every undecidable set of formulas can be extended to a
decidable one.

10.2.1 DECIDABLE THEORIES

726. Suppose that Γ has no infinite models. Prove that Γ is decidable.

727. (a) The empty set of formulas in the empty similarity type is decidable.

(b) Let τ consist of k unary relation symbols. Then ;⊂ F (τ) is decidable.

(c) The theory of dense linear ordering without endpoints is decidable.

728. Create a recursive set Γ⊂ F (;) which is undecidable.

Hint. See Problem 307.

729 (Craig). Suppose Γ⊆ F (τ) is recursively enumerable. Find a recursive
set Σ with the same consequences, that is, {ϕ : Σ`ϕ} = {ϕ : Γ`ϕ}.

10.3 Theorem. Γ is decidable if it is recursive and complete (as in Defi-
nition 8.6).

730. Prove Theorem 10.3.

731. Let Γ be recursive and κ-categorical for some infinite cardinal κ. Show
that Γ is decidable if, in addition, it has no finite models. Give a counterex-
ample when Γ has finite models.

732. Show that these theories are decidable:

(a) dense linear orderings without endpoints,

(b) discrete linear orderings without endpoint,

(c) infinite Abelian groups in which each non-unit element has order p,

(d) divisible torsion-free Abelian groups,

(e) algebraically closed fields of characteristic 0,

(f) real closed fields,

(g) atomless Boolean algebras.
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Remark. Decidability of Abelian groups was proved by Wanda Szmielew.

10.2.2 UNDECIDABLE THEORIES

733. (a) Suppose Γ,∆⊂ F (τ), ∆ is finite, and Γ∪∆ is undecidable. Prove that
Γ is undecidable.

(b) Suppose there is a finite undecidable theory ∆ ⊆ F (τ). Show that the
empty theory of type τ is undecidable.

734. Let c be a new constant symbol not in τ. Suppose Γ⊂ F (τ) is undecid-
able in the type τ∪ {c}. Show that it is undecidable in type τ.

Notation. The theory ∆⊂ F (τ) is essentially undecidable, if it is finite,
and every consistent τ-type extension of ∆ is undecidable.

735. Let ∆⊂ F (τ) be essentially undecidable, and τ′ be another finite type.
Suppose that a model of ∆ can be defined semantically (see Definition 7.16)
in a model of Γ⊆ F (τ′).

(a) Show that Γ is undecidable.

(b) Show that there is an essentially undecidable ∆′ ⊂ F (τ′) such that ∆′∪Γ

is consistent.

736. In Problem 735 “essentially” is essential: give an undecidable theory ∆

and a model of ∆ which can be semantically defined in a model of a decidable
theory.

The topic of the next few problems is the representation of ωn →ω func-
tions by formulas. To this end the type τ is assumed to extend τN so that
natural numbers can be identified with the τ-terms π0, π1, etc. It is also
assumed tacitly that all considered theories prove πk 6=π` for distinct k
and `.

10.4 Definition. Let τN ⊆ τ. The theory Γ⊂ F (τ) represents the function
f : ωn →ω if there is a formula ϕ(~x, y) ∈ F (τ) such that for all ~a ∈ωn ,

Γ ` ∀y (ϕ(π~a , y) ↔ y =π f (~a) ).

Γ represents the relation R ⊆ωn if there is a formula ϕ(~x) ∈ F (τ) such
that ~a ∈ R implies Γ`ϕ(π~a), and ~a ∉ R implies Γ`¬ϕ(π~a).

737. (a) An inconsistent theory represents every function and relation.

(b) If Γ represents f and Γ⊆ Γ′ ⊆ F (τ), then Γ′ represents f as well.

(c) A consistent theory can represent at most countably many functions and
relations.

(d) For every countable set of unary functions there is a consistent theory Γ

over a finite type τ⊇ τN which represents all of them.
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(e) If a consistent, recursive Γ represents f , then f is recursive.

738. Prove that Robinson’s axiom system Q represents all recursive functions.

Hint. Use induction on the definition of recursive functions.

739. Show that Γ represents the relation R if and only if it represents its
characteristic function χR .

740. Give an example for a relation R ⊆ ω and a theory Γ so that n ∈ R if
Γ`ϕ(πn), and n ∉ R if Γ0ϕ(πn), while R is not representable in Γ.

741. Find a consistent Γ that represents recursive functions such that for any
pair of different infinite recursive sets A and B there are representations ϕ(x)
and ψ(x), respectively, of A and B such that Γ`∃x (¬ϕ(x) ∧ψ(x)).

742. Suppose Γ is decidable. Show that the set {〈α(ϕ),n〉 : Γ0ϕ(πn)} ⊂ω2 is
recursive.

10.5 Theorem (Church). If Γ is consistent and represents all recursive
functions, then Γ is undecidable.

743. Prove Theorem 10.5.

Hint. Use the diagonal of the relation from Problem 742.

744. Show that both consistency and representability of recursive functions
are necessary in Church’s theorem 10.5.

745. Show that Q is undecidable. Show that every consistent extension of Q
is undecidable.

746. Let Γ⊂ F (τN ) be such that it has a model AÍ Γ in which Q holds. Prove
that Γ is undecidable.

747. Suppose Γ ⊆ F (τ) has a model in which the standard arithmetic N =
〈ω,0,1,+, ·〉 can be semantically defined. Show that Γ is undecidable.

748. Show that these theories are undecidable:

(a) theory of the natural numbers: Th(N),

(b) set theory,

(c) theory of rings,

(d) theory of graphs,

(e) theory of lattices,

(f) theory of groups,

(g) theory of fields.

749. Suppose τ contains a binary relation symbol or a binary function sym-
bol. Show that it is undecidable whether a τ-type formula is true in every
τ-structure.

750. Suppose τ contains two unary function symbols. Show that the empty
τ-type theory is undecidable.
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Remark. If τ contains only unary relation symbols and at most one unary
function symbol, then the τ-type empty theory is decidable, see also
Problem 727(b).

10.6Theorem (Gödel, first incompleteness). If Γ is consistent, recursive,
and represents recursive functions, then it is incomplete.

751. Prove Theorem 10.6.

752. Assume Γ is consistent, recursive, and represents recursive functions.
Construct a formula ϕ(x) such that Γ`ϕ(0) ∨ϕ(1) but neither Γ`ϕ(0) nor
Γ`ϕ(1).

753. Let Γ be a consistent, recursive theory that represents recursive func-
tions. Construct a formula ϕ(x, y) such that Γ ` ∀x ∃!y ϕ(x, y), but for all
natural numbers i and j , Γ0ϕ(πi ,π j ).

754. Find, if possible, a consistent theory such that it is

(a) recursive, complete, decidable;

(b) recursive, complete, undecidable;

(c) recursive, incomplete, decidable;

(d) recursive, incomplete, undecidable;

(e) not recursive, complete, decidable;

(f) not recursive, complete, undecidable;

(g) not recursive, incomplete, decidable;

(h) not recursive, incomplete, undecidable.

10.3 DERIVABILITY

In this section the similarity type τ is finite, extends τN , all theories prove
πk 6=π` for different k and `, and α is the coding of τ-type terms and for-
mulas from Section 6.5. In addition, all theories are assumed to represent
all recursive functions.

Notation. We write pϕq to denote the term πα(ϕ).

755. Suppose Γ represents the (recursive) function 〈α(ϕ),n〉 7→α(ϕ(πn)) by
the formula χ(x1, x2, y) ∈ F (τ). Let Ψ(x) ≡∀y (χ(x, x, y) →Φ(y)). Show that

Γ`Ψ(πm) ↔Φ(pϕ(πm)q)

for every ϕ(x) ∈ F (τ) where m =α(ϕ).
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10.7 Theorem (Fixed point theorem). Assume Γ represents recursive
functions. For every formula Φ(x) with a single free variable x there
there is a closed formula ν such that

Γ ` ν↔Φ(pνq).

756. Prove Theorem 10.7.

757. Suppose Γ is consistent. Show that there is no formula Φ(x) such that
Γ ` ϕ implies Γ ` Φ(pϕq), and Γ 0 ϕ implies Γ ` ¬Φ(pϕq) for every closed
formula ϕ.

758. Prove Church’s theorem 10.5 using the fixed point theorem.

759. Suppose Γ is consistent. Show that there is no formula Φ(x) such that
Γ`ϕ↔Φ(pϕq) holds for every closed ϕ.

760. Prove that every formula Φ(x) has infinitely many different fixed points.

761. Prove that for any pair of formulas Φ1(x) and Φ2(x) there are closed ν1

and ν2 such that

Γ` ν1 ↔Φ1(pν2q),

Γ` ν2 ↔Φ2(pν1q).

762. Prove that for any pair of formulas Φ1(x, y) and Φ2(x, y) there are closed
ν1 and ν2 such that

Γ` ν1 ↔Φ1(pν1q,pν2q),

Γ` ν2 ↔Φ2(pν1q,pν2q).

763. Let Γ be consistent. Write A = {α(ϕ) : ϕ is closed and Γ ` ϕ}, and
B = {α(ϕ) : ϕ is closed and Γ ` ¬ϕ}. Show that there is no recursive C that
separates A and B , that is A ⊂C and B ⊂ (ωàC ).

10.8 Definition (Provability predicate). The code of the formula se-
quence ϕ1, . . . , ϕn is 〈α(ϕ1), . . . ,α(ϕn)〉 ∈ ω. Let Γ ⊂ F (τ) be a theory.
The provability predicate is the binary relation

PPΓ = {〈u,α(ϕ)〉 ∈ω2 : u is the code of a derivation of ϕ from Γ },

which is recursive when Γ is recursive.

Notation. For a recursive Γ ⊆ F (τ) let ProvΓ(x, y) ∈ F (τ) be an arbi-
trary Γ-representation of the provability predicate PPΓ, and define
PrΓ(x) ≡ ∃uProvΓ(u, x). If there is no danger of confusion, the index Γ

is omitted.
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764. (a) If Γ`ϕ, then Γ`Pr(pϕq).

(b) If Γ0ϕ, then Γ`¬Prov(πn ,pϕq) for every n ∈ω.

765. Suppose Γ⊂ F (τ) is recursive and consistent. For any total recursive
function f there is a formula ϕ ∈ F (τ) such that Γ`ϕ, but ϕ has no derivation
whose code would be smaller than f (α(ϕ)).

766. (a) Suppose Γ`∀xϕ(x). Prove that there is a recursive function f such
that for every i ∈ω, Γ`ϕ(πi ) has a derivation with code less than f (i ).

(b) Find a recursive Γ and a formula ϕ(x) such that for all i ∈ ω we have
Γ`ϕ(πi ) but there is no recursive function f such that some derivation
of Γ`ϕ(πi ) has code less than f (i ).

767. Let ν be a fixed point of the formula ¬Pr(x), that is, Γ` ν↔¬Pr(pνq).
Show that if Γ is consistent, then Γ0 ν.

Remark. This ν is the famous “I am not derivable” formula created first by
K. Gödel. While it expresses the truth (it is not derivable), without further
assumptions it might happen that Γ`¬ν, see Problems 772 and 814.

768. Suppose Γ proves that “what is provable is true,” namely, Γ`Pr(pϕq) →
ϕ for every closed ϕ. Show that Γ is inconsistent.

769. Γ is recursive and consistent. Show that Γ is not ω-consistent, that is,
there is a formula ϕ(x) such that Γ`ϕ(πn) for all n ∈ω, while Γ0∀xϕ(x).

Notation (J. B. Rosser). Denote by n(x) the representation of the recur-
sive function that gives back the code of the negation of the universal
closure of the formula that has code x. Take any representation formula
ProvΓ of the provability predicate and write

Prov∗Γ(u, i ) ≡ ProvΓ(u, i ) ∧ (∀v≤u)¬ProvΓ(v,n(i )).

Let moreover Pr∗Γ(x) ≡∃u Prov∗Γ(u, x), and Con∗Γ ≡¬Pr∗Γ(p⊥q).

770. Suppose Q ⊆ Γ. Show that Prov∗Γ also represents the provability predi-
cate.

771. Suppose Q ⊆ Γ, ϕ is closed, and Γ`¬ϕ. Show that Γ`¬Pr∗(pϕq).

772. Suppose Q ⊆ Γ is consistent. Let ν∗ be the fixed point of ¬Pr∗(x). Show
that Γ0 ν∗ and Γ0¬ν∗.

773. If Q ⊆ Γ is recursive, then Γ`Con∗Γ.

774. Suppose Q ⊆ Γ is recursive. Show that there is a fixed point ν of the
formula Pr∗(x) such that (a) Γ` ν, (b) Γ`¬ν.

775. Suppose Q ⊆ Γ, and A, B are disjoint recursively enumerable sets.
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(a) Find a formula ϕ(x) so that if n ∈ A then Γ ` ϕ(πn), and if n ∈ B then
Γ`¬ϕ(πn).

(b) Suppose Γ is recursive and consistent. Show that it is not always possible
to require in addition to (a) that for every n ∈ ω either Γ ` ϕ(πn) or
Γ`¬ϕ(πn).

10.4 PEANO’S AXIOM SYSTEM

Peano’s axiom system consists of infinitely many axioms. The first few
ones describe the basic properties of the successor, addition and multipli-
cations; while the most important one is the axiom of full induction. This
latter one is, in fact, infinitely many formulas, and rather should be called
an axiom scheme.

The main purpose of Peano’s axioms was to give a faithful description
of the standard model N of the arithmetic.

10.9 Definition (Peano axioms). The similarity type is τN , the axioms
system is also called Peano arithmetic and is denoted by PA. The first six
axioms are the same as that of Q, and Q7 is replaced by the induction
axiom (scheme):

PA1 x +1 6= 0;

PA2 x +1 = y +1 → x = y ;

PA3 x +0 = x;

PA4 x + (y +1) = (x + y)+1;

PA5 x ·0 = 0;

PA6 x · (y +1) = (x · y)+x;

PA7
[
ϕ(0,~p) ∧∀x

(
ϕ(x,~p) →ϕ(x +1,~p)

)]→∀xϕ(x,~p).

In PA7 the variables ~p are the parameters of the induction.
Similar to Q, the relations ≤ and < are defined as abbreviations for
∃z(z +x = y) and (x ≤ y ∧ x 6= y), respectively.

776. Show that every model of PA is also a model of Q.

777. Show that the first axiom PA1 does not follow from the other Peano
axioms.

778. Show that the following formulas are consequences of PA:

(a) (x + y)+ z = x + (y + z),

(b) x + z = y + z → x = y ,

(c) x + y = 0 → x = 0 ∧ y = 0,

(d) x + y = y +x,

(e) x · y = y · x.

779. Show that in every Peano model ≤ is a total discrete order with 0 as the
smallest element, and x +1 as the immediate successor of x.
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780. x | y is an abbreviation for ∃z(z · x = y). Show that

PA ` (∀a≥1)∀b (∃!r <a) (a |b + r ).

781. The following scheme is usually dubbed as strong induction:

∀x
[
(∀y < x)ϕ(y,~p) →ϕ(x,~p)

]→∀xϕ(x,~p). (?)

Show that the strong induction follows from the Peano axioms.

782. Find a model A of PA1–PA6 such that A Í 0+1 6= 1, while the strong
induction holds in A for every formula ϕ(x,~p).

783. Let PA− be the set of Peano axioms where the induction axiom PA7 can
only be used without the parameters ~p. Show that induction with parameters
is a theorem of PA−.

784. Show that the collection principle holds for the relation ≤ (see Defini-
tion 8.9) in every Peano model.

785. Suppose A Í PA1–PA6, and ≤A is a total discrete order with 0 as the
minimal element and x + 1 as the immediate successor of x. Show that
A ÍPA7 if and only if every subset of A definable using parameters (see
Definition 7.15) has a minimal element.

786. (a) Show that a subset B ⊂ω is definable in N with parameters (Defini-
tion 7.15) iff it is definable without parameters.

(b) Find a Peano model A and a subset X ⊂ A which can be defined with
parameters but not without parameters.

787. Suppose A Í PA1–PA6, and ≤A is a total discrete order compatible
with the addition (see Problem 785). Show that if every set X ⊆ A definable
without parameters has a ≤A-minimal element, then every set definable by
parameters also has a minimal element.

788. Let AÍ PA, and B ⊆ A be the set of definable elements in A. Show that
B is an elementary substructure of A (in particular, B is a PA model).

789. Show that every model A Í PA is an end extension of the standard
model N for the total ordering ≤A (see Definition 8.10).

Notation. In a Peano model an element is finite or standard if it is
in the initial segment isomorphic to N, and infinite or non-standard
otherwise.

790. Show that every non-standard model contains infinitely many infinite
elements.

791. The standard part N cannot be defined in any non-standard Peano
model.
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792 (Overspill principle). Let A be a non-standard model and ~p ∈ A be
parameters. Then AÍϕ(πn ,~p) for all n ∈ω iff there exists an infinite a ∈ A
such that AÍ (∀x < a)ϕ(x,~p).

793. Show that every countable Peano model has a proper elementary end
extension.

Remark. The MacDowell–Specker theorem states that not only countable,
but every Peano model has a proper elementary end extension.

794. Prove that there are 2ℵ0 non-isomorphic countable non-standard mod-
els.

Hint. For a subset X of the prime numbers construct a countable model
which realizes the type TX (c) = {p | c : p ∈ X }∪ {p - c : p ∉ X }.

795. Assume we know the following two statements:

(i) If the closed formula ϕ ∈ F (τPA) does not contain multiplication, then
either PA `ϕ, or PA `¬ϕ.

(ii) There is a closed formula ψ ∈ F (τPA) such that neither PA ` ψ, nor
PA `¬ψ.

Show that there are Peano models A and B such that their reducts to the
symbols 〈0,1,+〉 are isomorphic, the multiplication, however, is different.

Remark. (i) follows from the fact that the 〈0,1,+〉-reduct of Peano
models—the Presburger arithmetic—has quantifier elimination, see The-
orem 8.19. (ii) follows from Gödel’s first incompleteness theorem 10.6.

796. The order type of a non-standard Peano model A is ω+Z×M for some
linear ordering 〈M ,≤〉 (Problems 779 and 554).

(a) Show that 〈M ,≤〉 is a dense linear ordering without endpoints.

(b) A countable non-standard model has order type ω+Z×Q.

(c) The order type cannot be ω+Z×R where R is the set of reals.

10.10 Definition. A function f : ωn → ω is PA-definable if there is a
formula ϕ f (~x, y) such that in every PA-model ϕ f defines a function
and NÍϕ f [~a,b] iff f (~a) = b.

797. If the function f is PA-defined by ϕ f , then PA `∀~x∃!yϕ f (~x, y) and ϕ f

represents f in PA in sense of Definition 10.4.

798. Give a function f and two PA-representations ϕ and ψ of f such that ϕ
is a PA-definition of f while ψ is not.

799. Show that the following functions are PA-definable: x .− y , K<(x, y),
[
p

x ], rem(x, y) (remainder), the function which returns the smallest power
of 2 which is bigger than x.

800. Suppose f1(x) and f2(x) are PA-definable functions, moreover PA `
fi (0) = 1 and PA `∀x( fi (x +1) = 2 · fi (x)) for i = 1,2. Show that f1 and f2 are
the same functions in every PA-model.
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10.11 Theorem. There are PA-definable functions Elem(u, i ) and Len(u)
so that PA ` Len(0) = 0, and

PA `∀u∀z∃v
(
Len(v) = Len(u)+1 ∧
Elem(v,Len(u)) = z ∧
(∀i < Len(u))Elem(v, i ) =Elem(u, i )

)
.

Remark. The coding functions based on Gödel’s β-function (Problem 126)
have this property. The proof requires establishing a significant part of
elementary number theory in PA. Proving the same statement for the al-
ternative coding outlined in Problems 129 and 130 is more straightforward.

801. Show that there is a PA-definable function f such that PA ` f (0) = 1 ∧
∀x( f (x +1) = 2 · f (x)). Show that PA ` f (πn) =π2n for all n ∈ω.

10.12 Definition. The faithful representation ϕ f (~x, y) ∈ F (τN ) of the
primitive recursive functions f is defined by structural induction:

• for initial functions ϕ0(x, y) ≡ y = 0 (zero), ϕS (x, y) ≡ y = x +1 (suc-
cessor), and ϕU k

i
(~x, y) ≡ y = xi (projections),

• for composition f =Comp(g ,h1, . . . ,h`)

ϕ f (~x, y) ≡ ∃z1 . . .∃z`

(∧
i
ϕgi (~x, zi ) ∧ ϕh(~z, y)

)
,

• and for the primitive recursion operator f =PrRec(g ,h)

ϕ(~p, x, y) ≡ ∃u
(
Len(u) = x +1 ∧ ϕg (~p,0,Elem(u,0)) ∧
∧ (∀i<x)ϕh(~p, i ,Elem(u, i ),Elem(u, i +1)) ∧
∧ y =Elem(u, x)

)
.

802. Let f be primitive recursive, and ϕ f be its faithful representation. Show
that (a) PA `∀~x∃!yϕ f (~x, y), (b) ϕ f represents f in PA in sense of Definition
10.4.

Remark. It follows that every primitive recursive function is PA-defined
by its faithful representation.

803.∗ Show that the Ackermann function (Definition 4.4) is PA-definable.

804. Let τ be a finite similarity type, and Γ⊂ F (τ) be a primitive recursive
theory. Show that the provability predicate

PPΓ = {〈u,α(ϕ)〉 ∈ω2 : u is the code of a derivation of ϕ from Γ }

is primitive recursive.
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10.4 Peano’s Axiom System

Notation. For a finite type τ ⊇ τN and a primitive recursive Γ ⊆ F (τ),
Prov◦Γ(u, x) ∈ F (τN ) is the faithful representation of the provability pred-
icate PPΓ. Let moreover Pr◦Γ(x) ≡ ∃u Prov◦Γ(u, x).

805. Suppose Γ,∆⊆ F (τ) are primitive recursive theories. Show that

(a) Γ`ϕ implies PA `Pr◦Γ(pϕq),

(b) PA `Pr◦Γ(pϕq) →Pr◦Γ∪∆(pϕq),

(c) PA ` (
Pr◦Γ(pϕq) ∧Pr◦Γ(pϕ→ψq)

)→Pr◦Γ(pψq).

10.13 Theorem. For a primitive recursive theory Γ, PA ` Pr◦Γ(pϕq) →
Pr◦PA(pPr◦Γ(pϕq)q).

Remark. The statement follows from the facts thatPr◦Γ(x) is PA-equivalent
to a Σ∗

1 -formula, and PA `ψ→Pr◦PA(pψq) for every closed Σ∗
1 -formula ψ.

In the rest of this section PA ⊆ Γ⊂ F (τ) is a fixed primitive recursive theory,
and Pr(x) means Pr◦Γ(x).

806. Prove that

(a) Γ` (
Pr(pϕq) ∧Pr(pϕ→ψq)

)→Pr(pψq),

(b) Γ`ϕ→ψ implies Γ`Pr(pϕq) →Pr(pψq),

(c) Γ`∧
i ϕi →ψ implies Γ`∧

i Pr(pϕiq) →Pr(pψq),

(d) Γ`Pr(pϕq) →Pr(pPr(pϕq)q).

807. Show that Γ` (
Pr(pϕq) ∧Pr(p¬ϕq)

)→Pr(p⊥q) where ϕ is closed.

808. Find a closed ϕ such that Γ`ϕ↔Pr(p¬ϕq).

809. Find a closed ϕ such that both Γ`ϕ→Pr(pϕq) and Γ`ϕ→Pr(p¬ϕq).
Find ϕ in the form of Pr(•).

810. Let ν be a fixed point of ¬Pr(x), that is, Γ` ν↔¬Pr(pνq). Show that
Γ`¬ν↔Pr(p⊥q).

811. Show that Γ`ϕ→Pr(pϕq) for all closed ϕ if and only if Γ`Pr(p⊥q).

10.14 Theorem (Gödel’s second incompleteness). Suppose PA ⊆ Γ is
consistent and primitive recursive. Let Prov◦(u, x) be the faithful rep-
resentation of the provability predicate, and ConΓ ≡¬Pr◦Γ(p⊥q). Then
Γ0ConΓ.

812. Prove Theorem 10.14

813. Show that PA0¬ConPA. Create a consistent, primitive recursive theory
Γ⊃ PA such that Γ`¬ConΓ.

814. Show that there is a theory Γ and a fixed point Γ` ν↔¬Pr(pνq) such
that Γ`¬ν (see Problem 767).
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10 Arithmetic

815. Find a (consistent) Γ such that both Γ`Pr(pϕq) and Γ`Pr(p¬ϕq) hold
for some closed formula ϕ.

816. Does Γ`Pr(pϕq) imply Γ`ϕ for closed formulas ϕ?

817. Let ϕ be closed, and µ be a fixed point of Pr(x) →ϕ. Show that

(a) Γ`Pr(pϕq) →Pr(pµq),

(b) Γ`Pr(pµq) →Pr(pϕq),

(c) Γ`Pr(pPr(pϕq)→ϕq) →Pr(pϕq).

10.15 Theorem (Löb). If Γ`Pr(pϕq) →ϕ for some closed ϕ, then Γ`ϕ.

818. Prove Theorem 10.15.

819. Show that formulas which say “I am derivable” are derivable.

820. Show that all fixed points of (a) Pr(x), (b) ¬Pr(x) are Γ-equivalent.

821. Let µ be a fixed point of Pr(x)→ϕ. Show that Γ`µ↔ (Pr(pϕq)→ϕ).

10.5 ARITHMETICAL HIERARCHY

10.16 Definition (Σn , Πn , ∆n formulas). ∆0 is the set of all τN -type for-
mulas in which all quantifiers are bounded.
Let Σ0 =Π0 =∆0. Σn , Πn and ∆n are defined inductively as

• ψ ∈Σn+1 if there is a ϕ ∈Πn such that NÍψ(~y) ↔∃xϕ(x,~y)

• ψ ∈Πn+1 if there is a ϕ ∈Σn such that NÍψ(~y) ↔∀xϕ(x,~y)

• ∆n+1 =Σn+1 ∩Πn+1.

10.17 Definition (Σn , Πn , ∆n sets). The subset A ⊆ωn is ∆k (Σk , Πk ) if
there exists a formula ϕ(~x) ∈∆k (Σk , Πk , respectively) so that ~a ∈ A iff
NÍϕ[~a]. A subset of ωn is arithmetical if it belongs to

⋃
k (Σk ∪Πk ).

822. Show that the set of prime numbers is ∆0.

823. Find, for each ∆0-formula ψ(x, y), another ∆0-formula ϕ(y, z) such that
NÍ (∀x<z)∃yψ(x, y) ↔∃yϕ(y, z).

824. Prove that the set of Σ1-formulas is closed under ∨, ∧, bounded quanti-
fiers (∃x<t ), (∀x<t ), and the existential quantifier ∃x.

825. Show that the Σn and Πn sets are closed under union and intersection,
and ∆n sets are closed under complementation.

826. Show that for each Σn formula ϕ(~x) there is a ∆0 formula ϑ(~x, y1, . . . , yn)
such that NÍϕ(~x) ↔∃y1∀y2∃y3 . . .ϑ(~x,~y).
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10.5 Arithmetical Hierarchy

827. Let A be a τN -type structure which is an end extension of N. Let e be
an evaluation over N. Show that for every ∆0 formula ϕ

(a) NÍϕ[e] iff AÍϕ[e],

(b) NÍ (∃yϕ)[e] implies AÍ (∃yϕ)[e],

(c) NÍ (∀yϕ)[e] provided AÍ (∀yϕ)[e].

828. Let ϕ(~x, y) ∈∆0. Prove that NÍ (∃yϕ)[~a] iff Q ` (∃yϕ)[π~a].

829. Find a recursive function b(·) such that for every closed ∆0 formula ϕ,
whenever i is the code of ϕ, then b(i ) is the code of one of the derivations
Q `ϕ or Q `¬ϕ.

830. Show that for every ∆1 subset A ⊆ωn there is a Σ1 formula ϑ(~x) such
that ~a ∈ A implies Q `ϑ(π~a), and ~a ∉ A implies Q `¬ϑ(π~a).

Hint. Use Rosser’s trick as in Problem 775.

831. Show that if the graph of the function f is Σ1, then it is also ∆1.

832. (a) Show that the graph of Gödel’s β-function (Definition 4.8) is ∆0.

(b) The graphs of the functions Len(u), Elem(u, i ), and u _z are also ∆0.

833. Construct Σ1 formulas so that

(a) NÍϕ[x, y, z] iff z = x y .

(b) NÍψ[x, y] iff x = y ! (factorial).

834. Prove that every ∆0 set is primitive recursive.

835. Prove that if f is primitive recursive, then its graph is Σ1.

836. (Kleene’s T ). For each n ≥ 1 there is a Σ1 set Tn ⊆ ωn+1 such that for
every n-variable partial recursive function f there exists an index e ∈ω such
that so that f (~a) =↓ if and only if 〈e,~a〉 ∈ Tn .

837. Prove that a set A ⊆ωn is recursively enumerable if and only if it is Σ1.

838. Prove that recursive sets and ∆1-sets coincide.

839. (a) Prove that the ∆0 subsets of ω are uniformly primitive recursive:
there is a primitive recursive relation U ⊂ω2 such that for every ϕ(x) ∈∆0,

{n ∈ω :NÍϕ[n]} = {n ∈ω : 〈α(ϕ),n〉 ∈U }.

(b) There is a primitive recursive set which is not ∆0.

840. Suppose ϕ(x, y) is a Σ1 formula and N Í ∃yϕ(πn , y) for every n ∈ ω.
Show that there is a recursive function f such that NÍϕ(πn ,π f (n)).

841. (a) Show that every recursive function f has a Σ1 representation ϕ(x, y),
that is, NÍ∀z(ϕ(πn , z) ↔ z =π f (n)) for all n ∈ω.
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(b) Show that if a function has such a Σ1 representation, then it is recursive.

842.∗ Let Γ⊂ F (τN ) be a fixed primitive recursive theory extending PA such
that N is a model of Γ. The function f is provably recursive if it has a Σ1

representation ϕ(x, y) ≡ ∃zψ(x, y, z) with ψ ∈∆0 such that Γ`∀x ∃y ϕ(x, y).
Construct a recursive function that grows faster than any provably recursive
function (and thus it is not provably recursive).

843. (a) There are universal Σ1 sets U 1
k ⊂ ωk+1 such that for every Σ1 set

A ⊆ωk one can find an e ∈ω such that ~a ∈ A iff 〈e,~a〉 ∈U 1
k .

(b) Prove that Σ1 sets are not closed under taking complements.

(c) Conclude that Σ1 6=Π1, and ∆1 6=Σ1, ∆1 6=Π1.

844. There is no universal recursive relation, i.e., a recursive U ⊂ω2 so that
for all recursive A ⊂ω one can find i ∈ω with a ∈ A iff 〈i , a〉 ∈U .

845. (a) For every n ≥ 2 there are universal Σn sets U n
k ⊂ωk+1 such that for

every Σn set A ⊆ωk one can find an e ∈ω such that ~a ∈ A iff 〈e,~a〉 ∈U n
k .

(b) Σn sets are not closed under taking complements.

(c) ∆n is a proper subset of both Σn , and Πn .

846. A Σ∗
n formula has a sequence of n alternating quantifiers before a ∆0

formula starting with an existential quantifiers. Show that for n ≥ 1

Satn = {α(ϕ) : ϕ ∈Σ∗
n is closed and NÍϕ} ∈Σn .

10.18 Theorem (Tarski). Truth is not arithmetical, that is, the set of
codes of the true arithmetical formulas {α(ϕ) :NÍϕ} is not in any Σn .

847. Prove Theorem 10.18.

848. Find a Peano model A such that the set {α(ϕ) :AÍϕ} is arithmetical.
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SELECTED APPLICATIONS 11

L. Csirmaz and Z. Gyenis, Mathematical Logic, Problem Books
in Mathematics, https://doi.org/10.1007/978-3-030-79010-3_11

123

11.1 INDEPENDENT UNARY RELATIONS

In this section κ is an infinite cardinal. The similarity type τ= 〈Ui : i < κ〉
contains unary relation symbols only, and Γ ⊂ F (τ) is the theory which
says that any Boolean combination of finitely many of the Ui ’s contains at
least one element.

849. Show that every Boolean combination of finitely many relations contain
infinitely many elements.

850. Show that Γ is consistent.

851. Construct B from AÍ Γ by adding a new element that realizes all the
relations Ui for i < κ. Show that A and B are elementarily equivalent.

852. Suppose κ=ω. Construct two non-isomorphic countable models of Γ.

853. Prove that {A : AÍ Γ} is not finitely axiomatizable.

854. Suppose κ = ω and let A be a countable model of Γ. Prove that any
Boolean combination of finitely many of the Ui ’s contains continuum many
elements in B=Aω/U .

855. Prove that Γ admits quantifier elimination. Show that Γ is complete.

856. Find two elementarily equivalent structures A and B such that I wins
the Ehrenfeucht–Fraïssé game for all N . (See Problems 520, 527).

857. For which cardinality λ is Γ λ-categorical?

11.2 UNIVERSAL GRAPHS

11.1 Definition. Let τ be the similarity type of graphs. For n,m ∈ω let
ϕn,m be the formula expressing that whenever one picks disjoint finite
sets A and B with |A| = n and |B | = m, then there exists an element
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11 Selected Applications

which is connected to each element of A but is not connected to any
element of B . Let Γ⊂ F (τ) be the theory

Γ= {
ϕn,m : n,m <ω

}∪{∀x¬E(x, x), ∀x∀y(E(x, y) → E(y, x))
}

Models of Γ are called universal graphs.

858. Prove that Γ is consistent.

859. Show that Γ has infinite models only.

860. In a universal graph every vertex has infinite degree.

861. Let G be a countable universal graph. Show that each countable graph
can be embedded into G.

862. Let A and B be countable universal graphs. Prove that each finite
partial isomorphism f : A → B extends to an isomorphism. Particularly, A∼=
B.

863. Show that Γ is complete, ℵ0-categorical, and admits elimination of
quantifiers.

864. Let G be a universal graph. Show that the subgraph with one less vertex
is an elementary substructure of G.

865. Let G be a universal graph on ω1. Show that it has a vertex of degree
ω1.

866. Let G be a countable universal graph and U be a non-principal ultra-
filter over ω. Show that ωG/U contains a complete subgraph of cardinality
ℵ1.

867. Construct a universal graph G of cardinality ℵ1 such that

(a) G contains a complete subgraph of cardinality ℵ1.

(b) G does not contain a complete subgraph of cardinality ℵ1.

Hint. Consider a bijection f :κ→ [κ]<ω and for a,b ∈ κ draw an edge iff
a ∈ f (b) or b ∈ f (a).

868.∗ Construct a universal graph of cardinality ℵ1 which has at least one
countable degree vertex.

11.3 UNIVERSAL TOURNAMENTS

11.2 Definition. A tournament is a directed graph with exactly one di-
rected edge between every pair of points. Formally, it is a structure
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11.3 Universal Tournaments

T = 〈V ,E〉 where V is a non-empty set of vertices and E is a binary
relation such that TÍ η, where η is the formula

∀x∀y
(
E(x, y) → (x 6= y ∧¬E(y, x)) ∧ x 6= y → (E(x, y) ∨ E(y, x))

)
ET is the dominance relation, and we say that a dominates b if 〈a,b〉 ∈
ET.

869. For k ∈ ω the formula χk asserts “for each set of k vertices there is a
vertex which dominates each of them.”

(a) Fix k ∈ω. Is there a finite tournament that satisfies ϕk ?

(b) Construct a tournament that satisfies χk for all k ∈ω.

11.3 Definition. For n,m ∈ω let ψn,m be the first-order formula express-
ing that whenever one picks two disjoint finite sets of vertices A and B
with |A| = n and |B | = m, then there is a vertex z which dominates each
vertex in A and is dominated by every vertex in B . Write

Γ= {
ψn,m : n,m <ω

}∪{
η
}
.

Models of Γ are called universal tournaments.

870. Show that Γ is consistent and Γ has infinite models only.

871. Let T be a countable universal tournament. Prove that each countable
tournament can be embedded into T.

872. Prove that Γ is complete and ℵ0-categorical.

873. Call a tournament T = 〈V ,E〉 transitive if E is transitive. Let T be a
countable universal tournament and U a non-principal ultrafilter over ω.
Show that ωT/U contains a transitive subtournament of cardinality ℵ1.

874. Let (X ,<) be an arbitrary strict total ordering and let T be a countable
universal tournament. Show that for suitable κ and ultrafilter U , (X ,<) can
be embedded into κT/U .

875. Construct, without reference to Problems 873 and 874, a universal tour-
nament T of cardinality ℵ1 such that T contains a transitive subtournament
of cardinality ℵ1.
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11.4 ZERO-ONE LAW

Notation. For a non-empty finite set G of structures and a set Σ of
formulas Prob(G ÍΣ) is the probability that a randomly chosen (with
uniform distribution) structure from G satisfies Σ:

Prob(G ÍΣ) = |{A ∈G :AÍΣ}|
|G| .

Let M be a class of structures closed under isomorphism and denote by
Mn the set of structures in M that has universe n. Then Prob(Mn Íϑ) is
the fraction of all M-structures of size n where ϑ holds. If the limit

lim
n→∞Prob(Mn Íϑ)

exists, then this limit is called the asymptotic probability of ϑ in M . If the
limit is 1 (or 0), then ϑ is almost surely true (or false) in M .

876. Verify the statements below:

(a) ϑ is almost surely true iff ¬ϑ is almost surely false.

(b) ϑ∧ϕ is almost surely true iff both ϑ and ϕ are almost surely true.

(We tacitly assume that all limits in question exist.)

877. Let τ = 〈U ,c〉 where U is a unary relation symbol and c is a constant
symbol. Determine the asymptotic probability of the formula U (c) in the
class of all τ-structures.

878. Let τ consists of a single unary function symbol f . Determine the
asymptotic probability of the formula ∀x( f (x) 6= x) in the class of all τ-
structures.

879. Suppose Γ⊆ F (τ) is complete and that every γ ∈ Γ is almost surely true
in M . Prove that every closed ϕ ∈ F (τ) is either almost surely true or almost
surely false in M .

880. Prove that each ϕk,` from Definition 11.1 is almost surely true in the class
of simple graphs. Prove the analogous statement for ψk,` from Definition 11.3
for tournaments.

881 (0–1 law for graphs and tournaments). Every closed formula in the
language of graphs is either almost surely true or almost surely false in the
class of simple graphs and in the class of tournaments.

882. Let G be a fixed finite simple graph. What is the asymptotic probability
that a randomly chosen finite simple graph contains G as a subgraph?

883. Let τ= 〈E〉 be the similarity type of graphs. Determine the asymptotic
probabilities of the formulas ∀x¬E(x, x) and ∀x∀y(E(x, y) → E(y, x)).
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11.4 Zero-One Law

The goal of the next few problems is to show that the zero-one law holds
in the class of all structures of a given finite relational language.

884. Let τ be a finite similarity type that contains relation symbols only.
Construct a set Γτ of formulas expressing the following property:

For any finite subset B of the domain, any k-ary relation R ∈ τ, and any
set PR ⊆ (B ∪ {y})k of k-tuples such that every ~a ∈ PR contains y , there is
y ∉ B such that R(~a) holds iff ~a ∈ PR .

885. Show that Γτ from the previous problem has a countable model.

886. Show that Γτ is ℵ0-categorical and complete.

887. Prove that each formula in Γτ is almost surely true in the class of all
τ-structures.

888 (R. Fagin). Show that each formula in a finite relational language is
either almost surely true or almost surely false.
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L. Csirmaz and Z. Gyenis, Mathematical Logic, Problem Books
in Mathematics, https://doi.org/10.1007/978-3-030-79010-3_12
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12.1 SPECIAL SET SYSTEMS

1. Solution 1. Q is dense in R, hence for all γ ∈ R there is an increasing
sequence {qγ

i }i∈ω ⊆Q converging to γ. Clearly two sequences with different
limits can have at most finitely many common members. Thus {{qγ

i } : γ ∈R}
is an almost disjoint family of cardinality continuum on Q.

Solution 2. Consider the infinite binary tree. Every branch of it can be coded
as function a : ω→ 2: at a node in the i th level we turn left if a(i ) = 1 and turn
right if a(i ) = 0. Two branches can have at most a finite number of common
nodes, therefore the family consisting of branches of the countable set of
nodes of an infinite binary tree is an almost disjoint family of cardinality 2ℵ0 .

Solution 3. Let Sα be an infinite strip of width five on the plane in direction
α centered at the origin. Any two of these strips have finite intersection but
contain infinitely many lattice points.

Solution 4. Let a0a1a2 . . . be an infinite 0–1 sequence with a0 = 1, and define
bn to be the integer with binary form a0a1 . . . an . For each such sequence
let B consist of the integers of the form

∏n
i=0 pbi

i , where pi is the i -th prime
number.

2. (a) Let F consist of X and all finite subsets of X . Then F is maximal, and
if X is countable so is F .

(b) “The complement of the union of finitely many elements from F is
infinite.” Indeed, if this is the case, then let F = {Ai : i ∈ω} and pick bn from
X −⋃

i<n Ai different from previously chosen bi ’s. Then B ∩ An ⊆ {b0, . . . ,bn},
i.e. F ∪ {B} is almost disjoint. Furthermore B is infinite and B ∩ An is finite,
therefore B 6= An .

(c) We have to maintain the condition in (b). Let F = {Ai : i ∈ ω} and
pick bn 6= cn from X −⋃

i<n Ai different from previously chosen bi ’s and
ci ’s. Let B = {bi }, and C = {ci }. Then, as before, B 6= An as B is infinite and
B ∩An ⊆ {b0, . . . ,bn}. Moreover X −⋃

i<n Ai −B ⊇ {cn ,cn+1, . . . }, i.e. this is also
infinite.

This construction can be used to define the subsets Aα for α<ω1 as follows.
A0 is an infinite subset of X whose complement is infinite. If Aβ has been
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defined for β<α then let Aα be the subset B from the previous construction.
{Aα : α<ω1} will be almost disjoint.

Remark. It is consistent that an almost disjoint family of cardinality ω1

over a countable set is not maximal. Over a countable set there is an
almost disjoint family of cardinality 2ω, see Problem 1.

3. We may replace κ with κ×κ. It is enough to construct a sequence of
functions fα :κ→ κ for α< κ+ such that any two differ from a certain point
onward. We do this by transfinite recursion. Suppose 〈 fβ : β<α〉 is already
given and enumerate α as α= {αξ : ξ< κ}. Now let fα(ξ) be different from all
fαζ

(ξ), ζ< ξ. This will be good, since if we have β<α< κ+, then β=αζ for
some ζ< κ and then fβ(ξ) 6= fα(ξ) for ξ> ζ.

4. Without loss of generality, we may assume that every set in F is infinite.
Let X be the set of all countable subsets of κ; obviously |X | = κω. For each
A ∈F let X A = {x ∈ X : x ⊆ A}. As F is A.D, for different A,B ∈F , X A and XB

are disjoint. Consequently |F | ≤ |X |, as was claimed.
Consider the tree of height ω where each node splits into κ siblings. It

has κω many branches and κ nodes. Let F consist of the branches. As any
two branches have a finite intersection, this is an almost disjoint family of
cardinality κω.

5. Solution 1. Let Ar = {p : p is a polynomial with rational coefficients
and p(r ) > 0} and F = {Ar : r ∈ R}. Then F is independent: If r1, . . . ,rn

are different real numbers and ε1, . . . ,εn are 0-1 numbers then there is a
polynomial p with rational coefficients such that p(ri ) > 0 if and only if
εi = 1. Such a polynomial can be constructed, e.g., by interpolation.

Solution 2. Let {Aα : α< 2ω} be a family of infinite subsets of ω such that no
one is covered by a finite union of the others. The families created in Problem
1 have this property. The independent family will be defined on the set of
finite subsets of ω as follows: Bα = {F ⊆ω : |F | <ω, Aα∩F 6= ;}. To show that
this family is independent, let α1, . . . , αn and β1, . . . , βk be pairwise different
indices. By assumption for each i there is an element in Aαi à

⋃
j Aβ j . The set

of these elements is a finite F ⊂ω which intersects each Aαi (is an element
of Bαi ), and disjoint from each Aβ j (not in Bβ j ), as required.

6. It is enough to prove the statement for one specific set of cardinality κ.
Suppose κ is infinite and let X be the set of functions that are defined on the
powerset of a finite subset of κ and take 0 and 1 only:

X = {
f :℘(D f ) → 2 : D f ∈ [κ]<ω

}
.

Then the cardinality of X is equal to
∑

n∈ωκn ·22n =ω ·κ= κ. For each subset
A ⊆ κ put

FA = {
f ∈ X : f (A∩D f ) = 1

}
.

We claim that F = {FA : A ⊆ κ} ⊆℘(X ) is independent.
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Pick different subsets A0, . . . , An−1 ⊆ κ and 0-1 numbers ε0, . . . ,εn−1. We
shall prove that F ε0

A0
∩·· ·∩F εn−1

An−1
is not empty. Observe that

F ε0
A0

∩·· ·∩F εn−1
An−1

= {
f ∈ X : f (Ai ∩D f ) = εi , i ∈ n

}
.

For each different i , j < n pick an arbitrary element xi , j from the symmetric
difference of Ai and A j

xi , j ∈ (Ai ∪ A j )− (Ai ∩ A j ),

and write D f = {xi , j : i 6= j < n}. As xi , j cannot be contained in both Ai and
A j , it is straightforward that D f ∩ Ai 6= D f ∩ A j . Therefore one can define
a function f : ℘(D f ) → 2 in such a way that f (Ai ∩D f ) = εi for i < n. Then,
obviously, f ∈ F ε0

A0
∩·· ·∩F εn−1

An−1
, as desired.

7. {a1, . . . , an} ∈ Xa1 ∩ . . .∩Xan .

8. Yes. Let X be the set of the finite subsets of κ, and, for α ∈ κ, let Aα = {a ∈
X : α ∈ a}. Then a ∈ Aα if and only if α ∈ a, i.e. each a ∈ X is in finitely many
Aα only. On the other hand a = {α1, . . . ,αn} is in Aα1 ∩ ·· ·∩ Aαn , therefore
{Aα} has the finite intersection property (see Problem 7).

9. Solution 1. For a prime p let Ap = {pn qk : q 6= p is prime, 0 < n,k}. Then
Ap ∩ Aq is infinite, as p i q j belongs to the intersection for all i , j ≥ 1, while
Ap ∩ Aq ∩ Ar is empty.

Solution 2. Split X into infinitely many disjoint infinite parts Xi , j indexed
by the two-element subsets of ω. Let Ai =⋃

{Xi , j : j ∈ω, j 6= i }. Then Xi , j =
Ai ∩ A j is infinite, and Ai ∩ A j ∩ Ak is empty.

10. Similarly to Problem 9, split X into infinitely many disjoint infinite parts
Xa indexed by the n-element subsets of ω. Let Ai = ⋃

{Xa : i ∈ a}. Then
Ai1 ∩·· ·∩ Ain = X{i1,...in }, which is infinite, while

⋂n+1
k=1 Aik =;.

11. Let X =ℵ1 and forF ⊆℘(X ) let Φ(F ) be the property that |F | is countable.
Then there is no maximal F satisfying Φ.

12. (a) Solution 1. Let 0 <α< 1 be a real number and write it as an infinite
sequence of digits: α = 0.a1a2 . . . . The function fα :ω → ω is defined as
follows. fα(0) = 1, and fα(k) = 1a1 . . . ak where this sequence is a 10-base
decimal number. If α and β differ, then fα and fβ take different values from
somewhere on.

Solution 2. Let F be an almost disjoint family on ω (see Problem 1). For A ∈F
let f A : ω → A be a bijection. Now if A,B ∈ F are different, then |A ∩B | is
finite, hence |ran( f A)∩ran( fB )| is also finite, thus |{i ∈ω : f A(i ) = fB (i )}| < ℵ0.

(b) For 0 <α< 1 let fα(i ) = [αi ], the integer part of αi .

13. We may assume An ⊇ {0,1, . . . ,2n −1}. For a sequence s : ω→ 2 let fs be
the element of

∏
n<ω An such that fs (n) is the natural number whose binary

expansion is given by the first n digits of s. For different 0–1 sequences s and
t we have | fs ∩ ft | is finite.
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14. For each n ∈ ω let Gn be a finite group of size at least 2n . Let X be the
disjoint union X =⋃

n Gn . X is countably infinite. By Problem 13 there is a
set F ⊆ ∏

n<ωGn of cardinality continuum such that | f ∩ g | < ω whenever
f , g ∈ F are different. For a given f ∈ F define a permutation π f of X as
follows: for x ∈ Gn let π f (x) = x · f (n) where · is the multiplication in the
group Gn . For distinct f , g ∈ F the permutations π f and πg coincide exactly
on elements x ∈ Gn where f (n) = g (n). This follows from properties of
groups as x · f (n) = x · g (n) implies f (n) = g (n). By the choice of F , π f and
πg coincide on at most finitely many elements. Finally, take any bijection
between X and ω to get permutations defined on ω.

Remark. This construction can be modified to obtain a subgroup of per-
mutations of cardinality continuum such that distinct members of this
subgroup can agree on finitely many places only. Assume that An ⊆Gn

contains 2n elements which freely generate the finite group Gn . Mod-
ify the previous construction so that F is a subset of

∏
n<ω An instead of∏

n<ωGn . The rest remains the same. Then the subgroup generated by
{π f : f ∈ F } is as desired.

15. We define the functions fα for α< κ+. If α< κ then let fα(ξ) =α. If α≥ κ

then fix a one-to-one function gα :α→ κ. If fβ has been defined for all β<α,
then pick fα(ξ) < κ so that it differs from any fβ(ξ) where gα(β) < ξ. As there
are less than κ many such β, one can find an appropriate value. Thus, if
α>β and fα(ξ) = fβ(ξ) then gα(β) > ξ. For fixed α and β there are less than
κ many such ξ’s.

16. We need 2κ many functions, so our functions will be indexed by the
subsets of κ. Also, the functions will be defined on a set X of cardinality κ

rather than on κ itself.
The requirement that the family {D( f , g )} has the FIP is equivalent to

requiring that given finitely many functions, one can find an x ∈ X where
all functions take different values. Given finitely many subsets A1, . . . , An

of κ, one can find a finite subset D of κ such that A1 ∩D, . . . , An ∩D are
different subsets of D . Now let X be the collection of functions x which map
all subsets of a finite subset Dx of κ into different elements of κ, and let
f A(x) = x(A∩Dx ). Clearly X has cardinality κ and if A1 ∩Dx , . . . , An ∩Dx are
all different, then f A1 (x), . . . , f An (x) are different as well.

17. It is enough to construct a family of one-to-one functions f with dom( f ) =
X , ran( f ) = Y where |X | = |Y | = κ. We will have X = κ∪ A where |A| = κ is
disjoint from κ, and Y = κ×κ. Let F be the family of functions from Problem
16 and for each f ∈ F construct the function g : (A ∪κ) → κ×κ as follows.
When x ∈ κ then g (x) = 〈x, f (x)〉, and if x ∈ A, then g (x) covers the remaining
part of κ×κ. It is clear that g is one-to-one and preserves the required FIP.

18. For each A ∈D pick a one-to-one function g A :κ→ A. Then∣∣{ξ< κ : g A(ξ) = gB (ξ)}
∣∣≤ |A∩B | < κ.
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19. Very similar to Problem 16. The functions will be indexed by subsets
of κ. Given the subsets A1, . . . , An one can find a finite subsets D such that
Ai ∩D are all different. X will be the set of all functions x whose domain is
the power set of a finite subset Dx of κ, and the values x(A) for A ⊆ Dx are
different natural numbers from 0 to 2|Dx |−1. Trivially, X has cardinality κ.
For A ⊆ κ let f A(x) = x(A∩Dx ). Now, if Ai ∩Dx are all different, then f Ai (x)
are different, as well.

20. For f , g ∈ ωω we say that f <∗ g ( f is dominated by g ) if there is n ∈
ω such that for all n < m we have f (m) < g (m). We shall define an <∗-
increasing ω1-sequence of functions. This we do by transfinite recursion. Let
f0 be arbitrary and suppose fα has already been defined for α<β<ω1. As α

is countable there is an enumeration {gn : n ∈ω} of the sequence 〈 fα : α<β〉.
Then the function

fβ(n) = max{gi (n) : i ≤ n}+1,

continues the sequence.

Remark. It is consistent that 2ω is arbitrarily large, and there is an <∗-
increasing sequence of length 2ω. It is also consistent that there is no
<∗-increasing sequence of length ω2 while 2ω is arbitrarily large.

21. The union of a chain of filters is a filter, as well, hence applying Zorn’s
lemma 1.3 to the set Q = {G : F ⊆ G, G is a filter on P } ordered by inclusion
gives the solution.

22. Let m be a maximal element of P . Then F = {m} is a filter which avoids
q . If we do not allow principal filters then P = {0, . . . ,n} (ordered by the usual
ordering) and q = n−1 is a counterexample: any proper filter should contain
q due to upward closedness of P .

23. P will consists of finite partial functions from ω to 2, P = {p :ω→ 2 : |p| <
ω}, and for p, q ∈ P we let p < q if q ⊆ p, that is, p extends q as a function.
For n ∈ω and h :ω→ 2 let Dn = {p ∈ P : n ∈ dom(p)} and Eh = {p ∈ P : ∃n ∈
dom(p)(p(n) 6= h(n))}. A moment of thought shows that Dn and Eh are dense
in P . Let F be a filter on P and put f = ⋃F . It can be checked that f is a
function. If F intersects each Dn , then f has as domain all of ω. Similarly, if
F intersects each Eh , then f differs from every function from ω to 2, which
is impossible. Therefore F must avoid some of the Eh ’s.

24. Using that Dn+1 is dense, define, by induction on n, a sequence p0 ≥
p1 ≥ . . . so that p0 ∈ P is arbitrary and pn+1 ∈ Dn+1 is an extension of pn .
Write F = {q ∈ P : ∃n(q ≥ pn)}. Then F is a filter (generated by the pn ’s)
which intersects each Dn .

25. For a normal filter F let P = {G : F ⊆ G, G is a normal filter on G} be
ordered by inclusion. The union of an increasing chain of P belongs to P
hence applying Zorn’s lemma we get a maximal normal filter extending F .
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26. It is false. Let G = S3 be the symmetric group of degree 3 and let H1 =
{(1), (12)}, H2 = {(1), (13)} be two conjugate subgroups. If a normal filter F
contains H1 then it must contain its conjugate H2 as well. The intersection
H1 ∩H2 = {(1)}. But no normal filter can contain the one-element subgroup,
hence no normal filter may contain H1.

27. F is closed for the intersection since HA ∩ HB = HA∪B . Also, if H ∈F
then g H g−1 ∈ F as g HA g−1 is the pointwise stabilizer of g A. Finally the
one-element subgroup (consisting of the identity permutation) is not in F
as U is infinite.

28. Let U ⊆℘(X ) be a set system which is maximal with respect to FIP. We
have to check the properties of an ultrafilter. ;∉U is evident. If A ∈U and
A ⊆ B , then ; 6= A∩A0∩ . . .∩An−1 ⊆ B ∩A0∩ . . .∩An−1. It follows that U∪{B}
still has FIP, therefore by maximality B ∈ U , thus U is closed upwards. For
A,B ∈ U we have A ∩B 6= ;, consequently U ∪ {A ∩B} still has FIP, so by
maximality A ∩B ∈ U . Finally, suppose X ⊇ A ∉ U . Then there exists B ∈ U
such that A ∩B = ;. But clearly (X − A)∩ A = ;, hence B ⊆ X − A and by
upward closedness we have X − A ∈U .

29. Let F ⊆℘(X ) be a set system with FIP, and let P = {H⊆℘(X ) :F ⊆H,H
has FIP }. Then (P,⊆) is a partially ordered set. If C is a chain in P , then

⋃C
still has FIP and it is an upper bound for the chain. Hence, by Zorn’s lemma,
we might conclude that there is a maximal set system with respect to FIP. By
Problem 28 it is an ultrafilter.

30. Let X = {xi : i < n} be finite and let U be an ultrafilter on X . We show
that {xi } ∈ U for some i < n. For if not, then by maximality, for all i < n we
have X − {xi } ∈U and hence

⋂
i<n(X − {xi }) ∈U . But this latter intersection is

empty; a contradiction.
Next, we show that over any infinite set there is a non-trivial ultrafilter.

To this end, let X be infinite and let F consist of co-finite subsets of X :
F = {A ⊆ X : X − A is finite}. Clearly F has the FIP and hence by Problems
29 and 28 it extends to an ultrafilter U . Since for all x ∈ X we have X − {x} ∈U ,
U is non-trivial.

Finally, suppose U is an ultrafilter on X and A = {a0, . . . , an−1} is a finite
subset of X . We show that A ∈U implies that {ai } ∈U for some i ∈ n. For if
not, then X − {ai } ∈U for all i ∈ n and then⋂

i∈n
(X − {ai }) = X − ⋃

i∈n
{ai } = X − A

belongs to U which contradicts A ∈U .

31. Let X = ⋃∗
i∈n Xi be a partition and assume Xi , X j ∈ U for two different

i , j . Then by FIP we get Xi ∩X j =;∈U which cannot be the case.
Next, we show that Xi ∈ U for some i ∈ n. For if not, then by maximality,

for all i ∈ n we have X − Xi ∈ U and by FIP we get
⋂

i∈n(X − Xi ) ∈ U . But⋂
i∈n(X −Xi ) = X −⋃

i∈n Xi = X −X =;, which contradicts ;∉U .
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For infinite partitions no similar statement holds in general. For example,
no member of the partition

⋃
n∈ω{n} is contained in any proper ultrafilter

on ω.

32. It does follow. We shall show that F is closed upwards and closed under
intersection. Let A,B ∈F and A ⊆C ⊆ X be arbitrary.

If C is not a member of F then, as C ∪∗ (X −C ) is a partition of X , we get
that X −C is in F . Then the partition (X −C )∪∗ A ∪∗ (C − A) = X violates
our assumption that exactly one member of a partition may belong to F .
Therefore F is closed upwards.

Now suppose A ∩B ∉ F . Using upward closedness, A ∪B ∈ F and thus
X − (A∪B) ∉F . Considering the partition

X = (
X − (A∪B)

)∪∗ (A−B)∪∗ (B − A)∪∗ (A∩B),

we get that exactly one of A −B or B − A is in F , say A −B . Then X can be
partitioned into (B − A)∪∗ (X −B)∪∗ (A ∩B); no member of this partition
belongs to F : a contradiction.

33. Let {Aα : α< 2κ} be an independent family of subsets of κ (see Problem
6). For a function ε : 2κ → 2 let Fε be the following set

Fε =
{

Aε(α)
α : α< 2κ

}
,

which has the FIP, by the independence of the Aα’s. Using Problems 28 and
29, Fε can be extended to an ultrafilter Uε. For different ε’s we get different
Uε’s, consequently, the number of ultrafilters on κ is at least 22κ

. Since each
ultrafilter on κ is an element of ℘(℘(κ)), there are at most 22κ

many.

34. Let U be an ultrafilter on ω and pick an arbitrary A ∉ U . Let π be any
non-trivial permutation of ω that is identical on ω−A. We claim that U =πU .

Choose an arbitrary B ∈ U and consider the set B ∩ (ω−πB). Since π is
identical on B − A, it follows that this intersection is contained in A which,
by upward closedness of U , implies B ∩ (ω−πB) ∉U . Therefore ω−πB ∉U
and hence πB ∈U .

Applying the same argument to π−1 we get that B ∈U if and only if πB ∈U .

35. Yes. There are 22ω
many ultrafilters and only 2ω many permutations.

36. Let ω= X0 ∪·· ·∪ Xn be partitioned into n +1 infinite distinct sets. For
all Ui there is some ni such that Xni ∈Ui . If X is the union of the Xni ’s, then
X ∈U1 ∩·· ·∩Un and X is co-infinite since it is disjoint from the X j for which
j ∉ {n1, . . . ,nn}.

37. Let U be an ultrafilter on X , let Y ⊆ X and denote the trace of U on Y by
T . We claim that

T =
{

℘(Y ) if Y ∉U
an ultrafilter if Y ∈U .
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Given any subset A ⊆ Y we have A = ((X −Y )∪ A)∩Y , which belongs to T
provided Y ∉U as in this case (X −Y )∪ A ∈U .

Let us assume that Y ∈U and let A,B ∈U be arbitrary. Clearly A∩Y 6= ; ∉ T
and (A∩Y )∩ (B ∩Y ) = (A∩B)∩Y ∈ T therefore T is non-trivial and closed
under intersection. If A∩Y ⊆ B ⊆ Y then B ∩Y = B which proves that T is
upward closed. Finally, if Z ⊆ Y does not belong to T then Z cannot be an
element of U and hence (X −Z )∩Y = Y −Z in is T .

From the claim it follows that V = {
Y ⊆ X : Y ∈U}=U .

38. We claim that V is an ultrafilter (over dom f ) if and only if ran f ∈U .

Solution 1. Observe that f is a bijection between dom f and ran f and hence
V is “isomorphic” to the trace of U on ran f , i.e. B ⊆ dom f is in V if and only
if f [B ] belongs to the trace of U on ran f . Using Problem 37 we get that V is
an ultrafilter (on dom f ) if and only if ran f ∈U , otherwise V =℘(dom f ).

Solution 2 (Without reference to Problem 37). V is closed under intersection
because f −1(A)∩ f −1(B) = f −1(A∩B) and is upwards closed: If f −1(A) ⊆C ⊆
dom f for some A ∈U , then A ⊆ f [C ] hence f [C ] ∈U thus, by injectivity of f ,
we get f −1( f [C ]) =C ∈V . Maximality follows from the fact that

B ∈V ⇔ B = f −1(A) for some A ∈U such that f [B ] = A∩ ran f .

Similarly, ; ∉ V if and only if ran f intersects each member of U , which is
equivalent to ran f ∈U .

39. Each homomorphism h :B → 2 gives rise to an ultrafilter Uh = h−1(1) =
{b ∈ B : h(b) = 1} and conversely using the ultrafilter U one can define the
map

hU (x) =
{

1 if x ∈U
0 otherwise.

which is a homomorphism. Not surprisingly hUh = h.

40. The map f :B →℘(B∗), f (x) = Nx is an isomorphism: N0 =;, Nx∧y =
Nx ∩Ny , Nx∨y = Nx ∪Ny , B∗−Nx = N−x .

41. {Nx : x ∈ B} is a basis for a topology because it is closed under intersection:
Nx∩Ny = Nx∧y and N0 =;. Open sets are of the form

⋃
x∈Γ Nx for someΓ⊆ B.

Since B∗−Nx = N−x , this basis consists of closed-open sets, thus B∗ is zero
dimensional.

Suppose U ,V ∈ B∗ are different. Then there is some x ∈ B such that x ∈U
and −x ∈V which means U ∈ Nx and V ∈ N−x . Hence the disjoint open sets
Nx and N−x separate U and V , therefore B∗ is Hausdorff.

Next, we prove that B∗ is compact. Let F be a family of closed sets having
the FIP. We have to show that

⋂
F is not empty. As B∗ − Nx = N−x , each

closed set is an intersection of basic open sets, hence, by replacing F with
the family of those basic open sets that are contained in some elements of
F , without loss of generality we may assume that F consists of basic open
sets F = {Nx : x ∈ Γ}, where Γ ⊆ B. Then Γ has the FIP, and thus there

136



12.1 Special Set Systems

is an ultrafilter U containing Γ. Now, for any Nx ∈ F we have x ∈ Γ ⊆ U ,
equivalently U ∈ Nx , consequently U ∈⋂

F .

42. If U is trivial then U = Ua for an atom a ∈ B, but the only element of
Na is U , hence U is isolated. Conversely, if U is isolated, say U is the only
element of Nx , then U is the unique ultrafilter which extends the filter Fx

concentrated on x. This means Fx is an ultrafilter and thus Fx =U .
It follows that there is some non-trivial ultrafilter on B provided B∗ is

infinite. Namely, since B∗ is compact (Problem 41) and infinite, it has an
accumulation point. Such a point is not isolated.

43. (a) For any non-trivial ultrafilter U on X , the family U ∪ {;} defines a
topology on X in which U converges to every point p ∈ X .

(b) Let X be the countable discrete topology (in which every set is open).
As no non-trivial ultrafilter can contain a finite set and each point has a finite
neighbourhood, no non-trivial ultrafilter converges. Note that each trivial
ultrafilter converges to the point it is concentrated on, regardless of topology.

44. (a) If both p and q are limit points of U , then they cannot have disjoint
neighborhoods as in this case ; would be in U , therefore X is not Hausdorff.

Conversely, suppose p and q do not have disjoint neighborhoods. Then
the family N (p)∪N (q) of neighbours of p and q has the FIP, and hence it
extends to an ultrafilter (see Problems 28, 29). This ultrafilter converges to
both p and q .

(b) Suppose X is compact and let U be an ultrafilter on X . Since each
finite intersection of (closed) elements of U is not empty, by compactness
of X , the intersection of all closed sets of U is not empty. Pick an element x
from this intersection. Since x is in the closure of every element of U , every
neighbourhood N of x meets every member of U . This means N ∈U since
else X −N would be an element of U and clearly N does not meet X −N . (To
put it another way {A∩B : A ∈U , B ∈ N (x)} is a proper filter on X , which is
also maximal, hence this filter is U itself, thus N (x) ⊆U ).

Conversely, let {Uα : α ∈ A} be an open cover of X with no finite subcover.
Then the family

{
X −Uα : α ∈ A

}
has the FIP, hence extends to an ultrafilter

U (see Problems 28, 29). As U does not contain any of the Uα’s, it cannot have
any limit points in

⋃
αUα = X .

45. (a) Denote by X ⊕ i the set where the containment of i is “swapped,”
namely, it is X −{i } when i ∈ X , and X ∪{i } when i ∉ X . Observe that if {i } ∉U
then X ∈U and X ⊕ i ∈U are equivalent.

If U is non-trivial, then for every X ⊆ω and finite F there is an Y ∈U such
that X ∩F = Y ∩F , namely, Y = (ω−F )∪ (X ∩F ) will do. It follows that all
subsets of ω are in the closure of U . If U is generated by the one-element
set {i }, then all subsets of ω containing i (and only these subsets) are in the
closure of U .

(b) Let X ∈U , F be a finite set, and i ∉ F be so that {i } ∉U . Then Y = X⊕ i ∈
U , and X ∩F = Y ∩F , i.e. U is dense in itself.
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46. R=⋃
n∈ω(−n,n).

47. Take any partition An (n <ω) of ω into infinite sets. Let

V = {B ⊂ω : |B ∩ Ai | <ω for all but finitely many i ∈ω}.

The complements of the sets in V have the FIP, thus there is an ultrafilter
which does not contain any element from V . Then each Ak ∉U .

48. As the sequence is bounded, there are a < b ∈ R such that for all n ∈ω,
xn ∈ [a,b]. Suppose on the contrary that there is no ultralimit. Then for every
r ∈ [a,b] there is εr > 0 such that {n : |xn − r | < εr } is not in U . As [a,b] is
compact, there are finitely many such r ’s so that Xr = {n : |xn − r | < εr } is
a partition of ω. But any finite partition contains a set in U , which yields a
contradiction.

The ultralimit clearly is an accumulation point, thus there must be a sub-
sequence converging to it.

Finally, take U and a partition An as in Problem 47. Let xn = 1/k if n ∈ Ak .
As there is no X ∈ U that meets each Ak in a finite set, on each X ∈ U the
subsequence (xn)n∈X does not converge to 0.

49. A is not Lebesgue measurable. By way of reaching a contradiction sup-
pose otherwise. As exactly one of X and ωàX is in U , exactly one of a and
1−a is in A with the exception of countably many dyadic numbers. If A is
measurable so is 1− A and has the same measure; they are almost disjoint,
and their union is the unit interval. Consequently, A has measure 1/2.

As U is non-trivial ultrafilter, the same reasoning shows that in any dyadic
interval [ j /2n , ( j +1)/2n] the relative measure of A is 1/2. As every interval
of length d contains a dyadic interval of length at most d/4, the relative
measure of A in any interval is at most 7/8. But this contradicts Lebesgue’s
density theorem which says that a positive measure set has density arbitrarily
close to 1 in some interval.

50. No such group and ultrafilter exist. Let a ∈ G arbitrary, and H be the
subgroup generated by a. Pick one element from each equivalence class in
G/H ; let this set be X . The sets {g +X : g ∈ H } are disjoint, and their union is
G . If H is finite, then at least one member of this family is in the ultrafilter,
but all of them cannot be there.

If H is infinite, then let Y =⋃{
k ·a +X : k is an even integer

}
. Now Y and

a +Y are disjoint, their union is G , thus exactly one of these sets is in the
ultrafilter.

51. If U and V are ultrafilters on G then so is U +V :

;∈U +V ⇔ {a : ;−a ∈U } ∈V ⇔ ;∈V .

A,B ∈U +V ⇔
{

{a : A−a ∈U } ∈V
{a : B −a ∈U } ∈V

}
⇔ {

a : (A−a)∩ (B −a) ∈U} ∈V
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⇒ {
a : (A∩B)−a ∈U} ∈V

⇔ A∩B ∈U +V .

A ∈U +V , A ⊆ B ⇒ {
a : A−a ∈U} ∈V

⇒ {
a : A−a ⊆ B −a ∈U} ∈V

⇒ B ∈U +V .

A ∉U +V ⇔ {
a : A−a ∈U} ∉V

⇔ G à{
a : A−a ∈U} ∈V

⇔ {
a : A−a ∉U} ∈V

⇔ {
a : (G à A)−a ∈U} ∈V

⇔ G à A ∈U +V .

We note that the same result holds when G is a semigroup.

52. (a) For g ∈G let Ug be the trivial ultrafilter concentrated on g and sup-
pose V is non-trivial. Observe first that

A ∈V +Ug ⇔ {
x ∈G : A−x ∈V} ∈Ug

⇔ g ∈ {
x ∈G : A−x ∈V}

⇔ A− g ∈V .

A ∈Ug +V ⇔ {
x ∈G : A−x ∈Ug

} ∈V
⇔ {

x ∈G : g ∈ A−x
} ∈V

⇔ A− g ∈V .

Consequently Ug +V =V+Ug , in particular Ua+Ub =Ua+b . However, U+V =
V +U does not, in general, hold.

In order to construct counterexamples U and V , we have to guarantee the
existence of disjoint sets E and F such that E ∈U +V and F ∈V+U . Suppose
G is countably infinite and pick two infinite subsets X = {x0, x1, . . .} and Y =
{y0, y1, . . .} of G . Furthermore, let Xi = {xi , xi+1, . . .} and Yi = {yi , yi+1, . . .} be
the initial segments respectively of X and Y . The families{

A ⊆G : X − A is finite}, and
{

A ⊆G : Y − A is finite
}

both have the FIP. and hence they can be extended to ultrafilters U and V .
Obviously Xi ∈U and Yi ∈V for all i ∈ω. It is enough to find disjoint subsets
E and F such that E − yi ∈U and F −xi ∈V as in this case

Y ⊆ {y : E − y ∈U } ∈V , and X ⊆ {x : F −x ∈V} ∈U ,

and therefore E ∈ U +V and F ∈ V +U . By letting E = {xi + y j : i ≥ j } and
F = {xi + y j : i < j } we get that E − yi ⊇ Xi ∈U and F −xi ⊇ Yi+1 ∈V .

So it remained to find a suitable group G and two infinite subsets X and Y
of G such that {

xi + y j : i ≥ j
}∩{

xi + y j : i < j
}=;,

139



12 Solutions

and it is not hard to check that G = (Z,+), X = {22n : n > 0} and Y = {22n+1 :
n > 1} is suitable.

(b) Associativity always holds

A ∈ (U +V)+W ⇔ {
s : A− s ∈U +V

} ∈W
⇔ {

s : {t : A− s − t ∈U } ∈V}
} ∈W

⇔ {
s : {t : A− t ∈U }− s ∈V} ∈W

⇔ {
t : A− t ∈U} ∈V +W

⇔ A ∈U + (V +W).

53. Observe that if either U or V is non-trivial then so is U +V . For if {g } ∈
U +V , then {x : {g − x} ∈ U } would be either empty (if U is non-trivial) or a
one-element set (if U is trivial). Consequently, for a non-trivial U and a trivial
V there is no solution of the equations U +W =V and W +U =V .

54. Proceed by induction on k. Let f : [ω]k → n be a coloring and let U be
a non-trivial ultrafilter on ω. Using U we obtain a coloring f ′ : [ω]k−1 → n
which is defined as

f ′({i1, . . . , ik−1}) = c ⇔ { j ∈ω : f ({i1, . . . , ik−1, j }) = c} ∈U .

Note, that because n is finite, exactly one of the partitions belongs to U , thus
f ′ is well defined. Now, by our inductive hypothesis there exists an infinite
S ⊆ω for which f ′ is homogeneous for some color. Let us say f ′|S = c for a
fixed c ∈ n. We may assume S ∈U , since it is trivial in the case k = 1, and this
property remains true in any step of the induction. Now f ′({i1, . . . , ik−1}) = c
means that { j ∈ ω : f ({i1, . . . , ik−1, j }) = c} = S0 ∈ U , hence S ∩S0 ∈ U . Then
f |S∩S0 = c, as desired.

55. It is enough to prove that pairs of κ2 can be colored by κ colors such
that no triangle becomes homogeneous. Define the coloring F :

[
κ2

]2 → κ as
follows

F
(
{ f , g }

)= the least α< κ such that f (α) 6= g (α).

Then, for distinct f , g ,h ∈ κ2, it is impossible to have F ({ f , g }) = F ({ f ,h}) =
F ({g ,h}).

56. We claim first that there is no increasing or decreasing chain of reals of
length ω1. For if 〈rα : α < ω1〉 were an increasing (decreasing) chain then
there would exist ω1 many different rationals rα < qα < rα+1 which is clearly
impossible.

If there were a homogenous set S of cardinality ℵ1, then one could select
an increasing (if S is red) or decreasing (S is blue) sequence of reals from S of
order type ω1; a contradiction.
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Remark. A similar construction shows that the edges of the complete
graph on 2κ the vertices can be colored by two colors so that it has no
homogeneous subsets of size κ+.

57. Since κ is infinite, there exists a bijection f :κ → [κ]<ω. For all α < κ,
write

eα = {
β ∈ κ : α ∈ f (β)

}
.

Then the family E = {eα : α< κ} has the FIP, thus it generates an ultrafilter U
(see Problems 28, 29). Now, E witnesses that U is regular: for ξ ∈ κ we have
ξ ∈ eα if and only if α ∈ f (ξ), hence {e ∈ E : ξ ∈ e} = {eα : α ∈ f (ξ)} is finite.

58. (a) Let U be regular with E ⊆U such that |E | = κ and f (ξ) = {e ∈ E : ξ ∈ e}
is finite for all ξ< κ. Suppose A ⊆ κ and |A| < κ. This implies |⋃a∈A f (a)| < κ,
therefore there exists some e ∈ E −⋃

a∈A f (a). Since e = {
ξ ∈ κ : e ∈ f (ξ)

} ⊆
κ− A, we get that κ− A ∈U , or equivalently A ∉U .

(b) E = {
{n,n +1,n +2, . . .} : n ∈ω

}
.

59. (a) For all cardinals ω≤λ< κ we construct an ultrafilter on κ which has
an element of cardinality λ. Partition κ into λ infinite parts: κ = ⋃∗

α<λ
Xα

and let V be an arbitrary non-trivial ultrafilter on λ. Define the family W of
subsets of κ as

W = { ⋃
α∈V

Xα : V ∈V}
.

Clearly, W has the FIP (in fact, closed under intersection; but not closed
upwards). Choose arbitrary elements xα ∈ Xα and put H = {xα : α<λ}. Then
W ∪ {H } also has the FIP and hence it extends to an ultrafilter U , which
cannot be uniform as H ∈U . Finally, note that for each α ∈ κ there is A ∈W
so that α ∉ A (this follows from non-triviality of V), therefore U cannot be
trivial.

(b) The ultrafilter constructed in (a) is non-regular by Problem 58 (a).

Remark. The statements “every uniform ultrafilter is regular” and “there
exist uniform non-regular ultrafilters over each successor of a regular
cardinal” are both consistent relative to ZFC.

60. Fix a regular ultrafilter U with E ⊆U such that |E | = κ and f (ξ) = {e ∈ E :
ξ ∈ e} is finite for all ξ< κ. For a filter F (on κ) the set system

{
X ×Y : X ∈U

and Y ∈F
}

has the FIP, thus extends to an ultrafilter F+ which is regular,
witnessed by F = {e×κ : e ∈ E }: for each ξ,ζ< κ the set

{
e×κ ∈ F : 〈ξ,ζ〉 ∈ e×κ

}
has cardinality f (ξ).

Using Problem 33 and that F1 6=F2 implies F+
1 6=F+

2 , we get 22κ
different

regular ultrafilters (on κ×κ).

12.2 GAMES AND VOTING

61. (a) Player I has a simple winning strategy: just pick the least odd number
that has not already been picked.
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(b) Again, player I can always win: he can pick twenty primes on his first
move.

(c) Player II can always win by always picking the least even number avail-
able.

62. This is the so-called strategy stealing argument.
(a) Suppose, by contradiction, that II has a winning strategy S. The first

player I will use S to win the game as follows. He pretends to be the second
player; picks an arbitrary element i0 ∈ω as the first move of the opponent,
consults S for the reply, and takes that element. Now player II answers by
taking i1. If i0 and i1 differ, then I consults S for the next move, otherwise
takes another untaken element from ω and considers it as the opponent’s
move. During the game S never advises a number which has been taken,
thus the set of elements taken by I belongs to the ultrafilter, i.e. I wins the
game.

Remark. The argument does not exclude the possibility that player II has
a drawing strategy, i.e. a strategy which prevents I from winning the game.

(b) Suppose player I has a winning strategy S. Player II will use S to win the
game. Player I pick i0 ∈ω and player II pretends that she is player I following
S and she chose i0; pick an element i1 ∈ω as the reply of the opponent, and
consult S for the reply which she takes. Following this strategy her points
together with i0 is in U because S always wins. As U is non-principal, her
points are in U , thus she wins the game. But this is impossible if player I has
a winning strategy.

63. We show that if I plays by a strategy, II can win against it; the other case
is similar. In each of the three games the first choice of I is a1 ∈ω, fixed by the
strategy. In the subsequent moves II chooses one of the games, takes a move
there, and then I responds in that game by the strategy. II will ensure that
she takes every element of ωà {a1} in one of the games. As U is non-trivial,
surely she will win one of the games.

She can do it. If at his next move I picks a number which he also has
taken in another game, then II chooses this number in the third game (forced
move). Otherwise she chooses the smallest number which has not been
claimed by her in any of the games, and takes it. In n rounds she has at most
n/2 forced moves, so she has plenty of moves to take every element of ω.

64. (a) Let A = [0,1) and both players pick an = 9 at each round n. After each
round player II does not have a winning strategy, for if player I picks any
other digit than 9, then II loses. Yet, player I will lose as 0.9̄ ∉ A.

(b) Suppose that I has no winning strategy. Then II can play such that after
her steps I still has no winning strategy (this is called the defensive strategy).
If A is closed, then this strategy of II is in fact a winning strategy. For, suppose
the real number r = 0.a1a2 . . . has been selected. We need to see that r ∉ A.
By way of contradiction, if r ∈ A, then by closedness of A there exists an
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ε > 0 such that the interval (r − ε,r + ε) is contained in A. Thus there is a
natural number N such that each real number the digits of which starts with
0.a1a2 . . . aN belongs to A. Thus, after the N -th step player I has the winning
strategy “play any number whatsoever”—a contradiction. (See also Solution
65(d)).

Remark (Martin, 1975). For every Borel set A one of the players has a
winning strategy in the game G(A).

(c) Enumerate A = {ri : i <ω}. At the i -th round II plays any number which
is different from the (2i )-th digit of ri .

Remark. Similar argument shows that if |A| < 2ω, then Player I cannot
have a winning strategy.

(d) Enumerate all the possible strategies and by transfinite induction con-
struct a set that none of the strategies are winning strategies for either player.
Each strategy S can be identified with a function S :10<ω → 10, therefore
there are only 2ω strategies. Let {σα : α < 2ω} and {τα : α < 2ω} be an enu-
meration of the strategies of I and II, respectively. For a strategy S of Player
I (player II) let P (S) denote the set of all possible infinite plays (i.e. the real
numbers 0.a1a2 . . .) in which I (player II) plays according to S. It is clear that
P (S) has cardinality continuum.

By transfinite recursion define the sets A = {aα : α< 2ω} and B = {bα : α<
2ω} as follows. For α= 0 pick any a0 ∈ P (τ0). As P (σ0) contains more than
one element, pick b0 ∈ P (σ0) such that b0 6= a0. In the inductive step suppose
the elements aβ and bβ have already been chosen for β<α. Then {bβ : β<α}
has cardinality smaller than continuum, thus the set P (τα)à {bβ : β<α} is
non-empty. Pick any element of this set and call it aα. Similarly pick any bα

from the set P (σα)à ({aβ : β<α}∪ {aα}).
It is not hard to check that A and B are disjoint. We claim that in the

game G(A) no player has a winning strategy. Indeed, suppose σ is a winning
strategy for I. Then P (σ) ⊆ A and σ=σα for some α< 2ω. At the α-th stage of
the induction we picked bα ∈ P (σα) and this bα cannot be in A as A∩B =;.

Assuming II has a winning strategy τ we get P (τ)∩ A = ;. There is an α

such that τ= τα but at stage α of the recursion we picked aα ∈ P (τα).

65. (a) The argument is similar to 64(c). Every branch can be identified with
a function s :ω→ 2. Enumerate A = {sα : α<ω}. Before the i -th move of II
the token sits on a node. If si meets that node, then II moves the token in the
direction to avoid the branch si , otherwise moves the token arbitrarily.

(b) Let τ be a strategy for II. We define a countable set Ā of branches so that
I can travel any branch not in Ā while playing against the strategy τ. To this
end assign a branch b(p) to each partial play p (played against the strategy τ

where the next move belongs to I) as follows. Suppose the token is at node s.
For the “no move” move of I τ answers by a0 ∈ {0,1} (going left or right). For
the ā0 move (go to the opposite direction) of I, τ answers by a1. For the ā0ā1
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move τ answers by a2, etc. The assigned branch is sā0ā1ā2 · · · . Ā is the set of
all branches b(p) for all partial plays p. As there are countably many partial
plays, this is a countable set.

Let b be a branch not in Ā, and p0 be the empty partial play. As b 6= b(p0),
there is a one-round partial play p1 ending in an initial segment of b. As
b 6= b(p1), there is a two-round partial play p2 ending in a longer initial
segment of b, etc. That is, the token travels along branch b, as claimed.

(c) Suppose I has a winning strategy σ in the game G(A). Let P (σ) denote
the set of all possible infinite plays (branches) in which I plays according to
σ. As σ is a winning strategy we have P (σ) ⊆ A. Suppose I plays according
to σ. At any step II can move the token in two directions. These different
directions necessarily determine different branches, and when the game
finishes all these branches must be in P (σ). Therefore |P (σ)| ≥ 2ω.

Remark. If the continuum hypothesis holds (that is ℵ1 = 2ℵ0 ), then any
infinite set A such that |A| < 2ℵ0 is countable, hence, by (a), Player II has
a winning strategy in the game G(A). Both players cannot have winning
strategies for the same game, therefore I must not have a winning strategy.

(d) Similar to Solution 64(b). Suppose I has no winning strategy. Then II
can play such that after her steps I still has no winning strategy. Call this
defensive strategy of II τ. We claim that τ is in fact a winning strategy for
II. Suppose the branch x ∈ B is the result of the infinite play (II following
strategy τ). We need to see x ∉ A. If x ∈ A, then there is an initial segment s of
x such that every (full) branch that extends x must be in A. But then player I
would have a trivial winning strategy: after reaching s move the token in any
direction whatsoever.

66. Suppose I wins against this strategy. There is a minimal k such that the
sequence b1, . . . ,bk chosen by I contains a finite subset in F . Then for all
n ≥ k, Sn(b1, . . . ,bk−1) = bk (and also, there could be no other element b 6= bk

so that {b1, . . . ,bk−1,b} covers a winning set in F ) because according to the
strategy Sn , player I cannot win before the n-th move. But then Ibk

∈U (as
the complement of Ibk

is finite), therefore after the (k −1)-st round in the
game, player II has picked bk , which yields a contradiction.

67. (a) Argument similar to Solution 65(d). The result of each infinite play
(a full evaluation of the propositional variables) can be identified with a
function f :ω → 2 (which can be considered as a branch of the complete
infinite binary tree). Let A denote the set of evaluations that make Γ false.
Then A has the property described in Problem 65(d): if f ∈ A then there is
γ ∈ Γ such that f (γ) is false. Let γ use the first n variables only. Then every
evaluation g that agrees with f up to the first n values makes γ false. (In
other words, every branch of the infinite binary tree that extends the initial
segment f � n falsifies Γ). By Problem 65(d) one of the players has a winning
strategy.
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(b) Take Γ= {A1, A2}. Clearly Γ is satisfiable, nevertheless II can set either
A1 or A2 be false.

68. (a) We make use of the following observation: if no vote goes for x, then
the result cannot be x. More precisely, let f : M → V be a voting such that
for all m ∈ M , f (m) 6= x. Then v( f ) 6= x (provided v is a fair voting). For, let
cx (m) = x for all m ∈ M . Then v(cx ) = x and since f and cx differ everywhere,
v( f ) cannot be x.

1. If f : M → V is a voting where none of the members voted for x, then
v( f ) 6= x, thus ;∉F .

2. Suppose A,B ∈ F , witnessed by the votings f A and fB : v( f A) = a and
f A(i ) = a iff i ∈ A; similarly v( fB ) = b and fB (i ) = b iff i ∈ B . Write

g A(i ) =
{

b if i ∈ A
a otherwise,

gB (i ) =
{

a if i ∈ B
b otherwise.

Then f A differs everywhere from g A , thus v( f A) 6= v(g A). By the obser-
vation above we obtain v(g A) = b. Similarly, v(gB ) = a. Finally, pick
x ∈V à {a,b} (such exists as |V | ≥ 3) and write

h(i ) =


a if i ∈ AàB
x if i ∈ A∩B
b if i ∈ B à A.

Then h differs from g A and gB everywhere, thus v(h) must be x. This
shows A∩B ∈F .

3. Say A ∈F is witnessed by f : M →V in that f (i ) = a iff i ∈ A and v( f ) = a.
Take any B ⊇ A and write

g (i ) =
{

b if i ∈ A
a otherwise

h(i ) =
{

a if i ∈ B
b otherwise

As f and g differ everywhere, we get v(g ) = b, and since g and h differs
everywhere, we obtain v(h) = a. This latter shows B ∈F .

4. Let

f (i ) =
{

a if i ∈ A
b otherwise

If A ∉F , then v( f ) 6= a, thus v( f ) = b, hence M à A ∈F .

(b) If M is finite, then the ultrafilter F in (a) must be principal. Therefore
there is m ∈ M such that A ∈ F iff m ∈ A. The vote of m determines the
outcome.

(c) Let M consists of an odd number ≥ 3 of board members, let V = {0,1}
and for a vote f : M →V define v( f ) =∑

i∈M f (i ) modulo 2.
Then v is a fair voting, however it is not autocratic. F is not an ultrafilter,

for example, because F contains all singletons {m} for m ∈ M .
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69. Take any ultrafilter F over M and for f : M →V define

v( f ) = x ⇔ {m ∈ M : f (m) = x} ∈F

Write Ix = {m ∈ M : f (m) = x}. M =⋃
x∈V Ix is a finite partition, thus exactly

one Ix ∈F . Therefore v is well defined. A moment of thought shows that v is
a fair voting scheme.

Conversely, let v be a fair voting scheme with |V | ≥ 3 and finite. Then there
exists an ultrafilter F according to Problem 68(a). Then for this F we have

v( f ) = x ⇔ {m ∈ M : f (m) = x} ∈F

for all f : M →V .

70. As K I
n contains a complete n-graph (the diagonal), its chromatic number

is at least n. On the other hand, let ci be an n-coloring of the i -th factor
for some i ∈ I . Then ci induces an n-coloring of the product by giving each
vertex the color of its i -th component. Therefore the chromatic number is
exactly n.

Take an ultrafilter U over I and for every i ∈ I let ci be a correct n-coloring
of the i -th factor of the product. Define v :K I

n → n as

v(a) = k ⇔ {i ∈ I : ci (a(i )) = k} ∈U .

Then v is well defined as exactly one member of the finite partition I =⋃n
k=1{i ∈ I : ci (a(i )) = k} belongs to the ultrafilter. We call this coloring in-

duced by the ci ’s and U . It is easy to check that v is a correct coloring of
K I

n .

We show that every correct coloring of K I
n is given by an induced coloring

by some ci ’s and an ultrafilter U . Note first that a correct coloring of K I
n

can be identified with a homomorphism v :K I
n → Kn which in turn can be

considered as a voting scheme.

This voting scheme is fair up to a permutation π of Kn : if every vote goes
to the same alternative, then we speak about the diagonal embedding of
Kn which is isomorphic to Kn . This isomorphism gives rise to the required
permutation: if f (i ) = x for all i ∈ I , then π◦v( f ) = x. Now, if every vote is
changed, then the outcome should change as well: if f , g ∈ K I

n are everywhere
different, then they are connected in the product graph, therefore a correct
coloring gives them different colors.

According to Problem 69 there must exist an ultrafilter U such that

π◦v( f ) = x ⇔ {i ∈ I : f (i ) = x} ∈F

for all f : I → Kn . This is the same as saying there are permutations πi such
that

v( f ) = x ⇔ {i ∈ I : πi ◦ f (i ) = x} ∈F
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12.3 FORMAL LANGUAGES AND AUTOMATA

71. (a) Let L = {w i : i < N } be a finite language and suppose w i = xi
1xi

2 · · ·xi
ni

.
We describe a DFA that accepts L. For each i < N and j < ni let q i

j be

the states and let qλ be the starting state. Halting states are the q i
ni

, and
transitions are δ(q i

j , xi
j+1) = q i

j+1 (for j < ni ) and δ(qλ, xi
1) = q i

1. (The states

q i1
j and q i2

j are the same if the first j symbols of wi1 and if wi2 are the same.)

(b) Every finite set is the finite union of its singletons, all of which are
regular by definition.

72. Let L1 = {a}, L2 = {aa}. Then (L1 ∩L2)∗ =;∗ =; 6= L∗
1 ∩L∗

2 .

Remark. (L1 ∩L2)∗ ⊆ L∗
1 ∩L∗

2 holds for arbitrary languages, as L1 ∩L2 ⊆
L1,L2, therefore (L1 ∩L2)∗ ⊆ L∗

1 ,L∗
2 .

73. (a) a∗b(a|b)∗. (b) a∗|a∗ba∗. (c) (a|b)∗bbb.

Sstart F
b

a a,b

Sstart F
b

a a

Astart

B

C D

E

b

a

a

b a

b

a

b

ba

Remark. The DFA in (c) figured above originates from a much simpler
non-deterministic automaton presented below. We used the method in
Problem 79 to convert this NFA into a DFA.

Sstart A B F

b

a

b b b
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74. (a)

Sstart

F

A

B

a

a

a

a

b b b b

(b) Let L1 be the set of words which contain an even number of a’ and an
even number of b’s. Split w ∈ L1 into segments of two letters; it has ab or ba
at an even number of places, thus the following expression defines L1:

L1 =
(
(aa|bb)∗ (ab|ba) (aa|bb)∗ (ab|ba)

)∗ (aa|bb)∗.

Let w ∈ L and consider the last place where b ∈ w is preceded by a word w ′

with an even number of a’s and b’s. If b follows immediately w ′, then w is
in the language L1 b L1. Otherwise w starts as w ′ab, followed by a block of
b’s followed by an a (making the number of a’s even). If the block of b’s is
even, then this is a longer sequence of even numbers of a’s and b’s. Thus
the block must contain an odd number of b’s, and then w is in the language
L1 ab(bb)∗a L1. The required expression can be

L1
(
b | (ab(bb)∗a)

)
L1.

75. Let p be larger than |Q|, where Q is the set of states in A. Suppose |w | ≥ p
and A accepts uwv. While reading w , eventually A returns to a state that has
already been visited. Let the first such state be q . Clearly, there are r < |Q|
steps while A returns to q . Let x be the part of w that was read before we
first reached q , let y be the part of w which was read before A returned to q ,
and let z be the remaining part of w .

76. If L is accepted by a DFA, then by the Pumping lemma 3.6 there exists
some p such that every w ∈ L can be written as w = x y z with |y | > 0, |x y | < p
such that x yn z ∈ L for all n ≥ 0. Choose a word of length |w | = p2 and let
w = x y z be its decomposition. Then x y2z has length p2 < |x y2z| < (p +1)2,
therefore x y2z ∉ L, contradicting the pumping lemma.

77. Let L = {an : n ∈ A} be accepted by a DFA. By the Pumping lemma 3.6
there is p such that if n ∈ A, then either n < p or there is 0 < k < p such
that n + t · k ∈ A for all t ≥ 0. Note that there might be several different
0 < k1 < . . . < k` < p with the property that n + t ·ki ∈ A. Thus A must be of
the form

A = F ∪ {n + t ·ki : n ∈ A,n ≥ p, t ≥ 0, 1 ≤ i ≤ `}

for some and finite set F that contains numbers < p. In short: A is eventually
periodic with block size at most the least common multiple of k1 . . . , k`.
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That all such sets A can be accepted by a DFA is easy to see. As an illus-
tration we design a DFA having two periods k1 = 2 and k2 = 5 for n > 3 and
below 3 only 1 ∈ A. We give the DFA as a regular expression:

a|a(aa)∗|a(aaaaa)∗.

Remark. The following are equivalent for a language L over a single letter:

• L is regular.

• L is context-free.

• A is eventually periodic.

• For ai =χi∈A the number 0.a0a1 . . . is rational.

• The generating function
∑

i∈A xi is a rational function (i.e. the quotient
of two polynomials).

78. (a) If L is accepted by a DFA, then by Theorem 3.6 there is p such that
whenever |anbn | ≥ p then anbn can be written as x y z with y not empty,
|x y | < p and such that for all i ≥ 0, x y i z ∈ L. But clearly there is i so that x y i z
is not of the form a`b` for some i .

(b) Suppose L f is accepted by a DFA. The Pumping lemma 3.6 gives us the
constant p. If there is n ∈ω such that f (n) ≥ p, then decompose anb f (n) ∈ L
into anbi bp . Using the pumping lemma there is 0 < k < p such that for all
t ≥ 0 the word anbi bp bt ·k belongs to L. But then f (n) = f (n)+ t ·k which is
a contradiction.

Consequently, f is bounded ( f (x) < p for the p given by the pumping
lemma). We claim f (n) is periodic for large enough n. According to the
pumping lemma there is 0 < k < p such that for each n ≥ p every word of the
form an+t ·k b f (n) belongs to L (t ≥ 0). Hence f (n) = f (n + t ·k) for all t ≥ 0,
provided n ≥ p.

Conversely, if f (n) is bounded and periodic for large enough n, then L f

is accepted by a DFA. We illustrate the design when the period is 3, and
f (0+3t ) = 2, f (1+3t ) = 4, f (2+3t ) = 2.

0start

1

2

• •

• • • •

• •

a

a

a

b b

b b b b

b b

We note that for any bounded and almost periodic f it is easy to construct
L f as a regular expression. As an illustration take

abbbb|aab|aaa(aa)∗bb|aaaa(aa)∗b.

This corresponds to f (1) = 4, f (2) = 1, f (3+2t ) = 2 and f (4+2t ) = 1.
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79. As DFA’s are special NFA’s, any languages accepted by some DFA are
accepted by some NFA. Conversely, for a NFA N = 〈Q,S,F,δ〉 construct the
DFA A= 〈Q ′,F ′,δ′〉, where Q ′ is the collection of non-empty subsets of Q,

F ′ = {
H ⊆Q |Q ∩F 6= ;}

,

i.e. the sets of states that include at least one halting state of N , and for
H ∈Q ′,

δ′(H , a) = {δ(p, a) : p ∈ H }.

If N accepts the language L, then so does A.

80. We assume that the alphabets are the same: simply add a sink state to
A which absorbs all letters which are not in ΣA . So let A= 〈Q A ,S A ,FA ,δA〉
and B = 〈QB ,SB ,FB ,δB 〉. In each case we construct the automaton M =
〈Q,S,F,δ〉 over the alphabet Σ, which might be non-deterministic.

(a) The basic idea is to construct an automaton that runs A and B in
parallel on a word w ∈Σ∗. At the end the final state (r1,r2) indicates whether
w ∈ L A or w ∈ LB . Set Σ=ΣA ∪ΣB , Q =Q A ×QB , S = (S A ,SB ), and

F = {(qA , qB ) ∈Q : either qA ∈ FA or qB ∈ FB },

δ((qA , qB ), x) = (δA(qA , x),δB (qB , x)).

(b) Same as in (a) except for the halting states which are F = FA ×FB .
(c) Idea: run A first and then B. The main difficulty is to figure out where

the L A prefix ends and the LB suffix starts in a word. This can be achieved by
creating a non-deterministic automaton. Take M=A∪B (disjoint union),
the starting state of M is S A , and its final states are those in FB . Add all
transitions from SB as non-deterministic choices to everyA-final state q ∈ FA .
Also, if SB is a final state in B, then mark states in FA as final states of M.

(d) Q, Σ, δ, S are the same as in A, but as for the halting states we let
F =Q A àFA .

(e) Similar to (c). Copy all transitions from S A as non-deterministic pos-
sibilities to every final state in FA . Also add S A as a final state so the new
automaton accepts the empty word.

81. Regular languages are precisely the languages generated from finite lan-
guages by the operations concatenation, union, and ∗. It is straightforward
that ;, {λ}, {a} for a ∈Σ can be generated by DFA. Apply Problem 80(a,c,e) to
complete the proof.

82. Let A= 〈Q,S,F,δ〉 be a DFA over the alphabet Σ. The language accepted
by A is

⋃
{LS,q : q ∈ F }, thus it suffices to show that all languages Lq1,q2 are

regular. We need a slightly stronger induction hypothesis: the transition
function δ can be undefined on some letters in Σ, in those cases the input is
automatically rejected.

If A has a single state q , then Lq,q is the language (a|b|c)∗ where a, b, c are
the letters for which there is a transition from q to itself.
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Now suppose the statement is true for |Q|−1 states. LetB be the automaton
when the state q ∈Q is deleted (and all transitions to q are illegal in B). The
language which is accepted by A starting from q , visiting states different
from q , then returning to q is

L =⋃
{a LB

q1,q2
b : δ(q, a) = q1, δ(q2,b) = q, a,b ∈Σ, q1, q2 ∈QB }.

This is a finite union, LB
q1,q2

is equivalent to a regular expression by induction,
thus L can also be specified as a regular expression. Consequently

LA
q,q = (

L∪ {a ∈Σ : δ(q, a) = q}
)∗

is also a regular expression. Now if A starts at q1 ∈ B and stops at q , then
there is a first visit to q from some q2 ∈ B , thus

LA
q1,q = ( ⋃

q2,a
{LB

q1,q2
a : a ∈Σ, δ(q2, a) = q}

)
LA

q,q .

Similar expressions work for the remaining cases.

83. Define L1 = {ck ai b j : k 6= 1, i , j ≥ 0}, L2 = {canbn : n ≥ 0}, and let L =
L1 ∪L2. L can be pumped (it satisfies the conclusion of Theorem 3.6). The
class of regular languages is closed under intersection (Problem 80(b)) and
L1 is regular but L2 is not. Hence, L cannot be regular as L∩L1 = L2.

84. Solution 1. Take a DFA A= 〈Q,S,F,δ〉 which accepts L. We create a non-
deterministic automaton B = 〈Q ∪ {T },T, {S},δ∗〉, that is, the states of B are
Q ∪ {T }, the starting state is T , and the only accepting state is S ∈Q. For each
a ∈Σ and q ∈Q, if δ(q, a) ∈ F then add q as a possible next state to δ∗(T, a).
For states q ∈ A, define δ∗ as the inverse of δ. (If δ∗(q, a) were empty for
some a ∈Σ, create a new sink state for B.) It is clear that an accepting run of
B is just a reverse of an accepting run of A.

Solution 2. Clearly (L1 |L2)R = LR
1 |LR

2 , (L1L2)R = LR
2 LR

1 , and (L∗)R = (LR )∗. As
every regular language L is a regular expression, LR is also a regular expres-
sion.

85. Using the congruence property of ∼ each run of the machine A/∼ where
the word w is accepted can be lifted up to a run of A which accepts w . The
converse clearly holds.

86. Take equivalent states q1 ∼ q2 witnessed by the words w1 and w2, that
is, A(w1) = q1, A(w2) = q2 while B(w1) =B(w2).

(i) Consider the transitions q1 q ′
1

α and q2 q ′
2

α . Then A(w1a) = q ′
1

and A(w2a) = q ′
2 while B(w1a) =B(w2a). Therefore q ′

1 ∼ q ′
2.

(ii) Suppose q1 is a halting state. Then A accepts w1, hence B(w1) should
be a halting state as A and B accept the same languages. As B(w2) =B(w1),
B accepts the word w2, hence so does A. Therefore A(w2) = q2 is a halting
state.
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87. Suppose B accepts the same language and has the same (minimal) num-
ber of states. Define the congruence relation ∼ from Problem 86 on the
states of A. If ∼ is a proper congruence, then A/∼ would be an automaton
accepting the same language (Problem 86) having a smaller number of states.
This is impossible by the choice of A. Therefore ∼ must be a trivial congru-
ence (each state is congruent to only itself), which implies that A and B are
isomorphic.

88. Make A deterministic by the algorithm of Problem 79. Take a maximal
congruence ∼ on A (the set of congruences of A is finite, so there is at least
one maximal congruence) and let B =A/∼. Problem 86 implies that B is
minimal: for if not, then there would be a minimal B′ defining a congruence
on B. But congruences of A/∼ can be obtained from congruences of A (by
the second homomorphism theorem of universal algebra), thus ∼ could not
be maximal.

89. Let A be a DFA which accepts L. For each state q ∈ Q let sq (n) be the
number of words of length n accepted by the automaton which starts from q
rather than from S. Thus sq (0) = 1 if q is a halting state, otherwise sq (0) = 0.
Clearly sq (n +1) = ∑

{sr (n) : there is a transition δ(q, a) = r }. Let sn be the
(column) vector 〈sq1 (n), sq2 (n), . . .〉, therefore there is a 0–1 matrix M such
that sn+1 = Msn , and then sn+d = M d sn . Consider the minimal polynomial
of M . It has rational coefficients and can be written as

M d = c1M d−1 + c2M d2 +·· ·+cd−1M + cd .

Multiplying this equation by sn we get

sn+d = c1sn+d−1 +·· ·+cd−1sn+1 + cd sn .

In particular this holds for the coordinate of sn indexed by the starting state
S, which gives the claim.

90. L = (a |ab)∗. If w ∈ L ends with an a, then removing this letter the
truncated word is also in L. If w ends with b, then the last two letters are ab,
and removing them we get another word in L. Thus s(n) = s(n −1)+ s(n −2),
as required.

91. Assume L is regular and let A = 〈Q,S,F,δ〉 be a DFA over the alphabet
Σ∪ {a} that accepts L. Consider a word w ∈ La . There are w1, w2 ∈ (Σ | a)∗

such that w1aw aw2 ∈ L. Take the path q1, . . . qn from the initial state to the
halting state that is labelled by w1aw aw2. Let qi be the last state visited
until w1a and let q j be the first state after passing w1aw . Then the path in
between qi and q j is labelled by w . qi is reached by an edge labelled by a
and we leave q j using an edge labelled by a.

Take all the possible paths from qi to q j that do not use the label a. These
paths induce a labelled subgraph of A, let us denote it by Bw . Bw is a DFA
if we set qi the starting state and q j the halting state. Observe that Bw
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accepts the word w , moreover for every word u accepted by Bw we have
w1auaw2 ∈ L. Therefore L(Bw ) ⊂ La .

Repeat the procedure for all possible w ∈ La . As A is finite, we get only
finitely many different Bw ’s. For each such Bw we have L(Bw ) ⊂ La , and
L(Bw ) is regular. Therefore the union of these languages is regular, and
clearly equals to La .

Notation. Several production rules with the same nonterminal on the
left-hand side are merged into a single rule separating the right-hand
sides by |.

92. (a) S → SS, S → (S), S → ().

(b) S → aSa, S → bSb, S →λ.

(c) S → T |U , T →V aT |V aV |TaV , U →V bU |V bV |UbV ,
V → aV bV |bV aV |λ.

93. (a) Not regular (Problem 78(a)), but context-free given by the grammar
S → aSb, S →λ.

(b) A similar argument as in Problem 78(a) shows that it is not regular, but
context-free.

(c) Regular shown by the regular expression abab(ab)∗, hence context-free
(Problem 94).

(d) Regular: abab(ab)∗(bc)∗, hence context-free.

(e) Context-free: S → bSbb | A, A → a A |λ.

94. Regular expressions can easily be converted into context-free production
rules. We only hint some examples: S → Sa |λ generates a∗; S → Ab, A →
Aa |λ generates a∗b. a(b|c)∗ can be produced by S → aX , X → bX |c X |λ;
etc.

95. Suppose the two context-free languages are represented by production
rules with starting symbols S1 and S2, respectively. To get the union add the
rule S → S1 |S2. To get concatenation add the rule S → S1S2. Finally, to get
the Kleene star, add the rule S → S1S |λ.

96. Add a new starting symbol S′ and add the rule S′ → S; this takes care of
the first restriction. Delete all occurrences of λ in the right-hand side strings.
If none of them becomes empty, then we are done. Otherwise we add new
production rules which handle the cases when the rule A → empty is used.
If this non-terminal A was processed before, then simply delete this rule
(as it adds no new possibilities). Otherwise on the right-hand side of each
production rule either keep or delete each occurrence of A, and then mark
A as processed. (If a right-hand side contains k A’s, then this means adding
2k −1 new production rules.)
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97. The proof is similar in spirit to that of Theorem 3.6, see Solution 75. A
parse tree is a tree labeled by symbols of the context-free grammar. The root
is labeled by the start symbol S. Leaves are labeled by terminal symbols or λ.
Interior nodes are labeled by variables (nonterminal symbols) and children
of a node are labeled by the right side of a production rule whose left side is
the variable of the parent. The yield of a parse tree is the concatenation of
the labels of the leaves in left-to-right order. Now w ∈ L if and only if w is the
yield of some parse tree.

S

A

A

u v w x y

Figure 12.1: Parse tree

If the set of production rules satisfy the conditions in Problem 96 then no
leaf is labeled by λ. Suppose the production rules use k variables and let s ∈ L
be long enough, say |s| ≥ 2k . Then the minimal size parse tree with yield s
must have a path of length at least k+1. Consider a longest path. As there are
only k variables, among the lowest k+1 we can find two nodes with the same
label, say A. The parse tree then looks like on Figure 12.1. Here vx cannot be
empty as otherwise there would be a smaller parser tree generating the word
uvw x y . Removing or repeating the gray subtree gives the desired conclusion,
see Figure 12.2.

A

u y

w

S

A

A

u v x y

A

v w x

Figure 12.2: Parse tree after replacement

98. By way of contradiction, assume L is context-free and let p be the con-
stant from the pumping lemma (Theorem 3.12). Each word anbncn can be
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written as uvw x y with |vx| ≥ 1, |vw x| ≤ p so that uv2w x2 y must belong to L.
Nevertheless, for large enough n it is not of the form ak bk ck .

99. (a) Both L1 = {ambmcn : m,n ≥ 0} and L2 = {ambncn : m,n ≥ 0} are
context-free, however L1 ∩L2 = {anbncn : n ≥ 0} is not.

(b) By Problem 95 the class of context-free languages is closed under taking
union. As A∩B = (A′∪B ′)′, the same class cannot be closed under comple-
mentation.

(c) L1 = {ai b j ck : i , j ,k ≥ 0} is regular (the regular expression a∗b∗c∗ gen-
erates L1) and L2 = {w ∈ {a,b,c}∗ : w has the same number of a, b and c} is
context-free, however L1 ∩L2 = {anbncn : n ≥ 0} is not context-free.

100. (a) There is no regular language that is universal for regular languages.
By way of contradiction, suppose U is universal for regular languages and U
is regular. By the Pumping lemma (Theorem 3.6) there is a pumping constant
p that corresponds to U . Take a regular language L such that ap ∈ L but for
any 0 < k ≤ p we have ap+k ∉ L. (It is straightforward to construct such an L.)

By assumption, L has a prefix w such that x ∈ L iff w x ∈U . Clearly then
w ap ∈U , hence by the pumping lemma, w ap+k ∈U for some k ≤ p. But this
contradicts the choice of L as ap+k ∉ L for any 0 < k ≤ p.

(b) Very similar argument to (a) using the pumping lemma for context-free
languages (Theorem 3.12).

(c) Assume a,b ∈ Σ and take a bijection f :F → a∗. For each L ∈ F the
prefix of L will be the word f (L)b. Define

U = { f (L)bx : L ∈F , and L accepts x}.

(d) Do the same as in (c) and let F+ =F ∪ {U }. Then U can be universal
for F+ if we choose the prefix of U to be λ.

12.4 RECURSION THEORY

101. (a) k(n) = k is S(k)(0(n)), which is Comp(S,Comp(S, · · ·Comp(S,0))).
(b) Predecessor: PrRec(U 1

1 ,U 2
1 ) as δ(0) = 0 and δ(m+1) = m =U 2

1 (m,δ(m)).
Sign: PrRec(U 1

1 ,Comp(1,U 2
1 )) as sgn(0) = 0 and sgn(n +1) = 1.

Limited subtraction: m .− 0 = m and m .− (n +1) = δ(m .− n).
(c) Addition: m +0 = m and m + (n +1) = (m +n)+1 = S(m +n). More

precisely, f (m,n) = m +n is defined as

+=PrRec(U 2
1 ,Comp(S,U 3

3 )).

Multiplication: m ·0 = 0 and m · (n +1) = (m ·n)+m, or

×=PrRec(U 2
2 ,Comp(+,U 3

3 ,U 3
1 )).

Exponentiation is similar.
(d) 0! = 1 and (n +1)! = (n +1) ·n!, or

PrRec
(
S,Comp(×,Comp(S,U 2

1 ),U 2
2 )

)
.
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102. K<(x, y) = 1 .− (y .− x).
E(x, y) = K<(x, y) ·K<(y, x).

103. (a) Use the primitive recursive operator for the functions f and h(~x,n,u) =
u + f (~x, y +1), as

σ f (~x,0)= f (~x,0),

σ f (~x, y +1)=σ f (~x, y)+ f (~x, y +1).

Similarly,
π f (~x,0)= f (~x,0),

π f (~x, y +1)=π f (~x, y) · f (~x, y +1).

(b) Let h′ = 1 .− (1 .− h), this takes zero where h is zero, and 1 otherwise.
Thus πh′ (~x, y) is zero if h takes zero between 0 and y (bounds included), and
1 otherwise. Thus adding up πh′ (~x, y) as y runs from 0 to g (~x) gives the value
of the bounded minimization:

f (~x) =σπh′ (~x, g (~x)).

104. (a) χA∧B =χA ·χB , χ¬A = 1 .−χA .
(b) See Problem 102 and use part (a) of this problem.
(c) Use Problem 103 (b).

105. f (~x) = h1(~x) ·χA1 (~x)+·· ·+hk (~x) ·χAk (~x).

106. By the previous problems the following is a primitive recursive defini-
tion of g (x, y) = [x/y ]:

g (0, y) = 0;

g (x +1, y) =
{

g (x)+1 if y > 0 and (∃i≤x +1)(i · y = x +1),
g (x) otherwise.

107. (a) Divisibility is a primitive recursive relation: m |n if and only if n =
m · [n/m] (see Problem 106). Let P (n) be the characteristic function of the set
of primes. P is primitive recursive: n is prime iff

(1 < n) ∧ (∀x<n)(x = 1 ∨ x - n).

Recall that if p is prime, then there is a prime between p and p !+1. Also note
that the factorial function is primitive recursive (0! = 1 and (n+1)! = (n+1)·n!).
Now let

h(z) = min
{

y ≤ z!+1 : z < y and P (y) = 1
}
.

Then h is primitive recursive by Problem 103. Now we can define the function
p(n) giving the n-th prime number as follows:

p(0) = 2, and p(n +1) = h(p(n)).

(b) Using Problem 104 (c) this function can be calculated as

min
{

y < x : p(n)y+1 - x
}
.
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108. (a) Consider the primitive recursive definition

f (x,0) = x,

f (x,n +1) = g ( f (x,n)).

As g is primitive recursive, so is f . Clearly, f (x,n) = g (n)(x), thus g (x)(x) =
f (x, x).

(b) g0(x) and h(x, y) = x y are primitive recursive, and define a(x,k) as

a(x,0) = g0(x),

a(x,n +1) = h(a(x,n), x).

Then gx (x) = a(x, x) is primitive recursive.

109. (a) Write g (1)(x) = g (x) and g (n+1)(x) = g (g (n)(x)). Induction on k shows
Ak (x) = g (k !)(x). Now g (n)(x) = f (x,n) for the primitive recursive f from
Solution 108. Thus A(x) = f (x, x!) is primitive recursive as x! is primitive
recursive.

(b) Here g (n)(x) = x +n, thus A(10) = A10(10) = g (10!)(10) = 10+ (10!).

(c) By (a), A(5) = g (120)(5). Now g (5) = 66, g (g (5)) = (
66 + 1

)(66+1) > 666
,

g 3(5) = g (g 2(5)) > 6g 2(5), thus

A(5) = g (120)(5) > 66. . .6
}

121

110. By induction on the complexity of f . For initial functions we have

• 0 < A(1,n),

• S(n) = A(0,n) < A(1,n),

• U k
i (~m) < A(1,m1 +·· ·+mk ).

For composition and primitive recursion one can take N to be 2 ·max +4 of
the corresponding N ’s of the subfunctions.

111. By Problem 110 A(m,m) grows faster than any primitive recursive func-
tion. If f (m) = A(m,m) were primitive recursive, then for some N ∈ ω we
would have A(m,m) < A(N ,m) for all m, yielding a contradiction when
m = N .

112. Suppose by contradiction that U (i ,~x) is a universal primitive recursive
function. Then

U (x1, x1, x2, . . . , xn)+1

is an n-variable primitive recursive function, therefore there is a k ∈ω such
that

U (k, x1, x2, . . . , xn) =U (x1, x1, x2, . . . , xn)+1.

Choosing x1 = k we obtain

U (k,k, x2, . . . , xn) =U (k,k, x2, . . . , xn)+1

for all x2, . . . , xn , which is impossible.
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113. There are continuum many continuous functions (they are determined
by their values at rationals, and |R|ω = 2ω), enumerate them.

If U (x, y) is continuous, then so is U (x, x)+1 which differs from U (x, y) for
all y .

114. (a) K<(x, x) is one for all x ∈ ω, thus the constant one function 1 is
Comp(K<,U 1

1 ,U 1
1 ). K<(x, x +1) is constant zero, thus 0 is

Comp(K<,U 1
1 ,Comp(+,U 1

1 ,1)).

(b) sgn(x) = K<(x,1); and x .− y is the smallest u for which x < u + y +1, or,
for which K<(x,u + y +1) = 0. Using the µ operator, the function x .− y is

µ
(
Comp(K<,U 3

1 ,Comp(+,Comp(+,U 3
3 ,U 3

2 ),Comp(1,U 3
1 )))

)
.

115. Apply the µ operator to the recursive function 1 .−χA .

116. (a), (b) See Solution 104 (a), (b).
(c) Let A ⊆ωn+1 be recursive. By (a) and (b) the relation

A∗ = {〈~x,n, i 〉 : 〈~x, i 〉 ∈ A or i ≥ n }

is recursive. For each 〈~x,n〉 there is an i with 〈~x,n, i 〉 ∈ A∗, thus Problem
115 gives the recursive function g (~x,n) whose value is the minimal i < n
for which 〈~x, i 〉 ∈ A, or n if no such an i < n exists. The recursive relation
g (~x,n) < n is the same as the relation

{〈~x,n〉 : (∃i<n)〈~x, i 〉 ∈ A}.

117. By Problem 115 as each function is the minimal value satisfying a recur-
sive relation:

[x/y] = min{u : y = 0 or (u +1) · y > x},

[
p

x] = min{u : (u +1) · (u +1) > x},

rem(x, y) = min{z : y = 0 or x = [x/y] · y + z}.

118. The function g which takes 0 everywhere except for finitely many places
is recursive (linear combination of characteristic functions of single-element
sets). Then ( f + g1) .− g2 is recursive as well.

119. Write

fn(x) =
{

f (x) if x ≤ n
0 otherwise.

Then fn is recursive (e.g. by Problem 118) and limn→∞ fn = f .

120. There are countably many recursive functions and ω< 2ω. This proves
the existence of a non-recursive function. A specific example could be given
using the halting problem, see Problem 230.
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121. The relation {(x, y) : f (x) = y} is recursive by Problem 116 (b), and
f −1(y) =µ{ x : f (x) = y}.

122. Take any non-recursive function g :ω→ω (see Problem 120), and put

fi (k) =
{

g (i ) if k = i
0 otherwise.

Then fi (i ) = g (i ) and fi can clearly be obtained by changing the constant 0
function at a single point, thus fi is recursive (see Problem 118).

123. f (~x) = h1(~x) ·χA1 (~x)+·· ·+hk (~x) ·χAk (~x).

124. (a) Choose u = (x+y+1)2+x. (b) By Problem 115 as K and L are recursive
functions.

125. Observe that b(i+1)+1 are pairwise coprime for 0 ≤ i < n if b is divisible
by n!. Use the Chinese Remainder Theorem.

126. (a) There are countably many finite sequences, enumerate them.
(b) Use Gödel’s β function with m = K (u) and b = L(u) from Problem 124

with Len(u) =β(m,b,0) and Elem(u, i ) =β(m,b, i +1).
For the additional property observe that Elem(i ,u) ≤ m. If Len(u) > 0 then

m ≥ 1 (as β(0,b, i ) = 0), and m = K (u) < u when 1 ≤ K (u).
(c) u is a sequence code if all v < u codes a different sequence. This hap-

pens if either Len(v) 6= Len(v), or Len(v) = Len(u) but for some i < Len(u),
Elem(v, i ) 6= Elem(u, i ). Use that recursive relations are closed for bounded
quantifiers, see Problem 116 (c).

(d) The relation “v codes a sequence which has length one more than
Len(u), the last element of v is z, and for i < Len(u) the i -th element of u and
v are the same” is recursive by Problem 116. Thus the “append” function is
recursive by Problem 115.

127. Using the recursive coding functions Elem and Len, let

Elem∗(u, i ) =
{
Elem(u .− 1, i ) if u > 0 ,
1 otherwise;

Len∗(u) =
{
Len(u .− 1 ) if u > 0 ,
1 otherwise.

They are recursive by Problem 123, and Len∗(0) = 1, while Elem∗(0,0) = 1 > 0.

128. [
p

x ] is primitive recursive as it is the smallest y ≤ x which satisfies
the primitive recursive relation (y +1)2 > x, see Problem 103(b). Therefore
functions K (u) and L(u) are also primitive recursive. Similarly, Gödel’s β func-
tions is primitive recursive (a bounded value satisfying a primitive recursive
relation), which means that Elem(u, i ) and Len(u) are primitive recursive. To
show that u _z is also primitive recursive, it is the smallest v which satisfies
the primitive recursive relation using a bounded quantifier

Len(v) = Len(u)+1 ∧ (∀i<n)Elem(u, i ) =Elem(v, i ) ∧ Elem(v,Len(u)) = z.

This v is bounded by the primitive recursive function (u + z +1)2(u+z+1).
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129. Divisibility is a recursive relation (see Problem 116), and the set of primes
P ⊂ω is recursive by using bounded quantifiers:

P = {
n : n ≥ 2 and (∀k<n)(k |n → k ≤ 1)

}
.

(a) This is the characteristic function of the recursive relation{
n : n ≥ 1 ∧ (∀k<n)((P (k) ∧ k |n) → k = 3)}.

(b) Let R be the relation in (a). Then

fb(x) = µ{y : x < y ∧ R(y)},

which is recursive by Problem 115.

(c) z = k ·x + y for the smallest 3-power k which is bigger than y . Using the
relation R in part (a) we can write

fc (x, y) = µ{n : R(n) ∧ y < n} · x + y.

(d) x can be split as x1x2 where x1 is 22 · · ·20. Thus fd is the characteristic
function of the recursive relation{

x : (∃x1 < x)(∃x2 < x)(x = fc (x1, x2) ∧ x1 > 1 ∧ x1 +3 = fb(x1) )
}
.

130. (a) x “contains” y if

• there is an s < x which is at least 2, its base 3 representation is a sequence
of 2’s followed by a zero (a recursive relation by Problem 129 (d));

• x starts with s, that is, x = fc (s, x ′) for some x ′ < x;

• y does not contain s: (∀y1<y)(∀y2<y)(∀y3<y) if y = fc (y1, fc (y2, y3))
then y2 6= s (actually, we need more: y differs from s, and y neither starts
nor ends with s);

• x contains the sequence s y s: (∃x1 < x)(∃x2 < x)(x = fc (x1, fc (t , x2)),
where t = fc (s, fc (y, s)).

This is clearly a Boolean combination and bounded quantification of recur-
sive relations.

(b) Write each yi in base 3 as vi , choose a separator s which has one more
digits than the longest yi sequence. Let x be the value of sv1sv2 . . .vn s in
base 3.

(c) For each x and z there is an x ′ which satisfies the following recursive
relation:

• for all u < x, if x “contains” u then x ′ “contains” u; and

• x ′ contains z; and

• for all v< x ′ if x ′ “contains” v then v= z or x “contains” v.

The minimal such an x ′ is a recursive function of x and z, see Problem 115.
From here use induction on n.
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131. The function p(n) is primitive recursive by Problem 107. The minimal
i < u satisfying the following primitive recursive relation is again primitive
recursive by Problem 103:

(∀ j <u) ( j ≤ i ∨ p( j ) - u ).

It returns the index of the largest prime dividing u (as it is always smaller
than u when u ≥ 2), and this is just the length of the sequence coded by u.

The function which returns the exponent of the i -th prime in u is primitive
recursive by Problem 107, thus the set of code numbers is primitive recursive;
define Len(u) = 0 if u is not a code number.

The append function is clearly primitive recursive when Len(u) = 0, other-
wise it is p(Len(u)+1)·[u/p(Len(u))]·p(Len(u))z , which is primitive recursive
as integer division and exponentiation are primitive recursive.

132. If 0 < Len(0), then Elem(0,0) < 0, which is impossible.

133. (a) fa(u) is the minimal v ∈ ω which satisfies the following recursive
relation (definition by cases and bounded quantifiers), thus it is recursive:

if Len(u) = 0 then Len(v) = 0,

if Len(u) > 0 then Len(v) = Len(u) .− 1 and (∀i<Len(u))
(

(u)i = (v)i
)
.

(b) Len(u) ≤ Len(v) ∧ (∀i<Len(u))
(
(u)i = (v)i

)
.

(c) fc (u) is the minimal element v satisfying the recursive relation

Len(v) = Len(u) ∧
(∀i<Len(u) )

(
Len((v)i ) = i ∧ Rb((v)i ,u)

)
.

134. Following the hint, u ∈ω is a code of 〈1,2, . . . ,2n−1〉 if the following holds:

• either Len(u) = 0 (empty sequence),

• or Len(u) > 0, and (u)0 = 1 ∧ (∀i<Len(u) .− 1)
(

(u)i+1 = 2 · (u)i
)
.

This R ⊆ω is a recursive relation. Let

g (n) =µ{u : u ∈ R and Len(u) > n },

which is recursive by Problem 115 as for each n there exists such a u. Finally,
the n-th element of g (n) is 2n = ((g (n))n .

135. Let f =PrRec(g ,h), and R f ⊆ω be the set of integers u ∈ω which satisfy
(u)i = f (i ) for all i < Len(u). Similarly to Solution 134, the relation R f is
recursive, consequently

g f (n) =µ{u : u ∈ R f and Len(u) > n}

is a recursive function. Finally f (n) = (g f (n))n .
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136. The two-place function g (i ,b) takes value n if n is the (b +1)-st place
where f (n) = i . Then g (i , i ) is the desired function, thus it suffices to show
that g is recursive. Let h(i ,u) be the smallest v ≥ u where f (v) = i ; this is
recursive by Problem 115. Then g can be defined by primitive recursion as

g (i ,0) = h(i ,0),

g (i ,b +1) = h(i , g (i ,b)+1).

137. Let g (i ) =µ{u : (∀ j ≤i ) ( f ( j ) ≤ u ) }. There are infinitely many i such that
f ( j ) ≤ f (i ) for all j ≤ i .

138. Consider the recursive relation (u,v) ∈ R defined as

Len(v) = Len(u)+1 ∧
(v)0 = 1 ∧
(∀i<Len(i ))

(
(v)i+1 = (v)i · f ((u)i )

)
.

Then h(u) =µ{v : (u,v) ∈ R } is recursive, and g (u) = (h(u))Len(u).

139. Let F (~x,n) be the code of the sequence 〈 f (~x,0), . . . , f (~x,n)〉. F can be
defined by primitive recursion as follows: F (~x,0) = 0_G(~x,u0) (as 0 is the
code of the empty sequence), and F (~x,n +1) = F (~x,n)_G(~x,F (~x,n)). Finally,
f (~x,n) = (F (~x,n))n .

140. Solution 139 works in this case.

141. There are countably many recursive functions, enumerate them as f0,
f1, etc., and let H(i ) = i ·max{ f j (i ) : j < i }.

142. Let g (b,k) be the minimal v such that u _z ≤ v for all u ≤ b and z ≤ k.
This is a recursive function. Let f (0,k) = 0 (the code of the empty sequence),
and f (n +1,k) = g ( f (n,k),k).

143. The celebrated Ramsey theorem says that the number f (k,r ) exists. The
point of this exercise is to show that this function is recursive.

First, we say that u ∈ω encodes an r -coloring of an n-graph if the elements
of u are triplets 〈i , j ,c〉 with i < j < n indicating that the edge i j has color
c < r ; and for every i < j there is a unique triplet specifying the edge color.
This is a recursive relation which can be written quite easily using logical
operators and bounded quantifiers. For example, the condition

(∀i<n) (∀ j <i ) (∃k<Len(u))
(
((u)k )0 = i ∧ ((u)k )1 = j ∧ ((u)k )2 < r

)
expresses that every edge has a (not necessarily unique) color.

A subgraph of size k is an increasing sequence v of length k such that the last
element of the sequence is less than n. The relation that the subgraph defined
by v is homogeneous in the coloring defined by u is similarly recursive. The
problem asks for the minimal n such that
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for every r -coloring u of an n-graph
there is a size k subgraph v

which is not homogeneous.
To finish the demonstration that f is recursive we need to show that both
quantifiers in the sentence above are bounded by recursive functions: for
a given n every r -coloring u is smaller than some recursive function f (n),
and, similarly, each size k subgraph v is smaller than some other recursive
function g (n). Both of them follow from Problem 142.

144. The first problem is that not every number is of the form y _z, thus
the recursive definition does not define C (x, y) for every y . A more serious
problem is that y _z can be strictly smaller than y , thus the Rec operator is
not applicable.

Use the idea of Solution 138: C (x, y) is the minimal u, which satisfies the
recursive relation

Len(u) = Len(x)+Len(y), and

(∀i < Len(x)) (u)i = (x)i , and

(∀ j < Len(y)) (u)Len(x)+ j = (y) j .

145. This is the minimal v which satisfies

Len(v) = Len(u) and

(∀i<Len(u)) (v)i = (u)Len(u)
.−(i+1).

146. A sequence of triplets 〈xi , yi , zi 〉 is an evaluation of the Ackermann
function, if looking at the i -th triplet in the sequence, one of the following
possibilities hold (see the Definition 4.4 on page xxx):

• xi = 0 and zi = yi +1 (first line of the definition);

• xi > 0 and yi = 0 and there is a j < i such that in the j -th triplet x j = xi −1,
y j = 1, and zi = z j (second line);

• both xi , yi are positive and there is a j < i such that x j = xi , y j = yi −1,
and there is a k < i such that xk = xi −1, yk = z j , and zk = zi (third line).

It is clear that the set of sequences which are “evaluations” is a recursive
relation, moreover for each n,m there is an evaluation which contains a
triplet where the first two elements are n and m, respectively (meaning
that the value of the Ackermann function can be computed at that place).
Consequently B(n,m) =µ {u : u is an evaluation of the Ackermann function,
and if v is the last element of u then (v)0 = n and (v)1 = m } is a recursive
function. Then A(n,m) is the third element of the last element of B(n,m).

147. (a) See Problem 115.
(b) The set of primitive recursive functions is not closed for the µ operator,

thus there must be some primitive recursive f for which µ( f ) is not primitive
recursive. Let f (~x, y) be such a function. Then the relation R(~x,u) defined by

f (~x,u) = 0 ∧ (∀v<u) f (~x,v) 6= 0

is primitive recursive, see Problem 104, and it is the graph of µ( f ).
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148. Let Len and Elem be primitive recursive coding functions (see Problem
131), and f :ω → ω be a not primitive recursive function whose graph is
primitive recursive (see Problem 147 (b)). Functions K (u) and L(u) from
Problem 124 are primitive recursive. For u∗ ∈ ω we let u = K (u∗) and y =
L(u∗). Define the functions Len∗ and Elem∗ as follows:

Len∗(u∗) =
{
Len(u) if f (Len(u)) = y ,
0 otherwise;

Elem∗(u∗, i ) =Elem(u, i ).

Len∗ and Elem∗ are primitive recursive as the relation f (x) = y is primitive
recursive; they are clearly coding functions. We claim that the corresponding
append function is not primitive recursive. If it were so, then the function

F (0) = code of the empty sequence,

F (n +1) = F (n)_0

returning the code of the all-zero sequence of length n would be primitive
recursive. As Len∗(F (n)) = n, we have f (n) = L(F (n)) for n ≥ 1, contradicting
that f is not primitive recursive.

149. Recall that 0 is the code of the empty sequence. If A is enumerated by
f1, . . . , fn , then let

f (i ) = 0_ f1(i )_ · · ·_ fn(i ).

The other direction is clear.

150. The function C (x, y) which returns the concatenation of the sequences
x and y is recursive, see Problem 144. Suppose the unary f enumerates A
and the unary g enumerates B . Then g (u) =C ( f ((u)0), g ((u)1)) enumerates
A×B .

151. Suppose f is defined on ωn , and τ from Problem 150 enumerates ωn . f
and the unary function f ((τ(u))0, . . . (τ(u))n−1) has the same range.

152. This is clear if A is finite. Otherwise fix the unary recursive function τ

enumerating ωn (see Problem 150) and let gτ(u) = g ((τ(u))0, . . . , (τ(u))n−1).
Define h by primitive recursion as h(0) =µ{u : gτ(u) = 0} and h(n+1) =µ{u :
gτ(u)) = 0 ∧ u > h(n) }.

153. (a) The relation A is the zero-set of the function 1 .− χA . The claim
follows from Problem 152.

(b) The enumerating function g must avoid all values it has taken earlier,
thus the Rec operator comes handy. Using the function τ enumerating ωn ,
the function

G(u) =µ{ j : τ( j ) ∈ A ∧ (∀i<Len(u)) j 6= (u)i }
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returns the minimal element of A which is not listed by any member of the
sequence u. As A is infinite, this is recursive, and Rec(G) is the required
enumeration.

(c) Suppose the unary h enumerates A ⊆ωn , where each h(i ) is a sequence
code of length n. First define g using the Rec operator such that the values
h(g ( j )) are all different:

G(u) =µ{ j : (∀i<Len(u)) h( j ) 6= h((u)i ) }

(that is, G(u) is the first place where h takes a value not encountered in u).
The final function is f ( j ) = h(g ( j )).

154. Suppose Ai ⊆ωn is enumerated by the unary fi for i = 1,2. The union is
enumerated by

f (i ) =
{

f1([i /2]) if i is even,
f2([i /2]) if i is odd.

Let ~a ∈ A1 ∩ A2 arbitrary (if the intersection is empty, there is nothing to
prove), and a ∈ω be the code of the sequence ~a. For i , j ∈ω let g (i , j ) = f1(i )
if f1(i ) = f2( j ), and g (i , j ) = a otherwise. It is clear that g is recursive and the
range of g is A1 ∩ A2.

155. Assume B is not empty, let ~b ∈ B arbitrary, and suppose the unary g
enumerates A. The recursive function

h(~x,u) =
{ 〈~x〉 if f (~x) = g (u),

〈~b〉 otherwise

enumerates B .

156. Let the unary recursive g enumerate the graph of f , and let H (~x) =µ{u :
the first n elements of g (u) encode~x } returning the smallest u which codes
〈~x, f (~x)〉. H is clearly recursive, and f (~x) is the last element of g (H(~x)).

157. Let f and g enumerate A and its complement, respectively. For each
~x ∈ωn the code x of the tuple ~x (computed as x = 0_x1

_ · · ·_xn) is in the
domain of either f or g (but not in both). Thus the function

H(~x) =µ{ j : x = f ( j ) ∨ x = g ( j ) }

is recursive (for each~x the indicated recursive relation holds for some j ∈ω).
The characteristic function of A is the recursive relation

f (H(~x)) = x.

158. If A∪B were recursive, then both A and the complement of A relative
to A∪B would be recursively enumerable, and thus we could apply the same
argument as in 157.

159. Let A be infinite and the range of the recursive function f . Define g by
recursion as g (0) = f (0) and g (n +1) = f (µ{y : f (y) > g (n)}). The range of g
is recursive and is an infinite subset of A.
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160. Enumerate all infinite recursive sets as G0, G1, . . . (there are count-
ably many of them). Choose distinct elements ai , bi , our set will be X =
{b0,b1, . . . }. At the i -th step choose ai ∈Gi (as Gi is infinite, there is an ele-
ment different from all previously chosen elements), and any bi different
from all the other elements. At the end ai ∉ X , thus Gi is not a subset of X .
On the other hand all bi ∈ X , thus X is infinite.

161. The Comp and µ operators on Ω∗ are extensions of the same operators
on Ω.

162. Let g (~x,u) be 0 if ~x ∈ A (independently of u), and 1 otherwise; it is
recursive. The function µ(g ) has domain A and it takes 0 there (the smallest
u where g (~x,u) = 0). Thus h = (1+µ(g )) · f is partial recursive.

163. Let A be the set of points where the function is defined. As A is finite,
it is recursive. The function f which takes the given values at A and zero
everywhere else is recursive. Apply Problem 162.

164. h(~x) = 0 · g (~x)+ f (~x).

165. Pick a (total) recursive function that takes every value infinitely often.
Such a function is, e.g., the excess function K (x) = x .− [

p
x ]2. Then g (n) =

f (K (n)) is suitable.

166. Assume that the unary recursive g (u) enumerates the graph of f (see
Problem 149). For~x ∈ωn let H (~x,u) be zero if the first n elements of the tuple
g (u) give~x, and 1 otherwise. As H is recursive, h =µ(H) is partial recursive.
If f is not defined at~x, then h(~x) =↑ (as H(~x,u) = 1 for all u); if f is defined
at ~x, then h(~x) is the tuple where the first n elements code ~x, and the last
element is the value of f . Thus f (~x) = (h(~x))n is partial recursive.

167. By induction on the definition of partial recursive functions in Defini-
tion 4.14. All initial functions are recursive, thus their graphs are enumerable
by Problem 153 (a).

The composition operator. Suppose that the graphs of g and h1 . . . ,h` are
all enumerable. If any of these graphs is empty, or the composite function f
has an empty domain, then there is nothing to prove. Thus pick a ∈ω coding
an arbitrary element of the graph of f . Let the unary recursive functions g̃ , h̃i

enumerate the corresponding graphs. The following `+1-variable recursive
function defined on (y1, . . . , y`, z) enumerates the graph of f :

g̃ (z) encodes a point in the graph of g , and for 1 ≤ i ≤ ` h̃i (yi ) encodes
a point in the graph of hi . If all sequences h̃i (yi ) agree on their first n
elements (encoding the argument ~x), and g̃ (z) encodes g at the place
determined by (n +1)-st elements of the tuples h̃i (yi ), then the functions
returns the encoding of~x followed by the last element of g̃ (z). Otherwise
the function returns a.

The µ operator. Assume that g̃ enumerates the graph of the function g , and
the domain of µ(g ) is not empty. At u ∈ω check if Len(u) > 0, and for each
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i < Len(u), g̃ ((u)i ) encodes g at (~x, i ) for the same~x; furthermore all function
values are positive except for the last one which is zero (the last coordinates
of g̃ ((u)i )). If this is the case, the result is the encoding of 〈~x,Len(u) .− 1〉,
otherwise the result is the fixed element from the graph.

168. (a) Suppose dom( f1) = A and dom( f2) =ω−A. Then dom(g1) =; while
dom(g2) =ω.

(b) g1 is partial recursive as Ω∗ is closed for addition and multiplication. By
Problems 166 and 167 it is enough to check that the graph of g2 is enumerable.
In even / odd steps take the next element from the enumeration of f1 and f2,
respectively, and check if the enumerated argument is in A (it is not in A).

169. (a) ⇒(b), (c): If A is enumerable, then so is A× A, which is the graph of
the partial recursive function with dom( f ) = ran( f ) = A.

(b), (c) ⇒ (a): If A ⊆ X ×Y is enumerable, then so is the projection πX (A) =
{x ∈ X : (x, y) ∈ A for some y ∈ Y }.

(b) ⇒ (d): If dom( f ′) = A then f (x) = f ′(x) ·0.
(d) ⇒ (b): dom( f ) = A.

Remark. The equivalence (b) ⇔ (c) also follows from Problem 203.

170. The graph of a partial recursive function is enumerable by Problem
167. If this is the graph of a total function, then the function is recursive by
Problem 156.

171. (a) Any sequence code determines uniquely the length and the elements
of the sequence. Thus α(σ) determines uniquely σ.

(b) Let C (u) be the characteristic function of expression codes. Assuming
C (u) has been defined for all v< u, C (u) = 1 if the following recursive relation
(referring to values C takes for smaller arguments) holds, otherwise C (u) = 0

u = 〈0〉, or
Len(u) = 2 ∧ (u)0 = 1 ∧ (u)1 < |Σ|, or
Len(u) = 3 ∧ (u)0 = 2 ∧ C ((u)1) = 1 ∧ C ((u)2) = 1, or
Len(u) = 3 ∧ (u)0 = 3 ∧ C ((u)1) = 1 ∧ C ((u)2) = 1, or
Len(u) = 2 ∧ (u)0 = 4 ∧ C ((u)1) = 1.

172. (a) f (n,u,v) is the smallest w for which the following four recursive
relations hold. The first two say that w contains every word of length at most
n which is in either u or v; the third one says that every word in w has length
at most n; and the last one says that every element of w comes from either v
or w :

(∀i<Len(u))
(
Len((u)i ) ≤ n → (∃k<Len(w)) (w)k = (u)i

)
,

(∀ j <Len(v))
(
Len((v)i ) ≤ n → (∃k<Len(w)) (w)k = (v) j

)
,

(∀k<Len(w)) (Len((w)k ) ≤ n ),

(∀k<Len(w))
(
(∃i<Len(u)) (w)k = (u)i ∨ (∃ j <Len(v)) (w)k = (v) j

)
.

(b) Similar to (a); concatenating two sequences is recursive by Problem 144.
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173. If w ∈ L∗ has length at most n, then w ∈ {λ}∪L∪·· ·∪Ln . Thus it suffices
to show that there is a recursive function h(n, i ,u) which encodes the length
≤ n words in the language {λ}∪L ∪ ·· ·∪Li ; then f (n, i ) = h(n,n,u) works.
h(n, i ,u) can be defined by primitive recursion on i using the functions in
Problem 172.

174. Observe that

(στ)∩Σ<n ⊆ (σ∩Σ<n)(τ∩Σ<n),

(σ∗)∩Σ<n ⊆ (σ∩Σ<n)∗, and

(σ|τ)∩Σ<n = (σ∩Σ<n)|(τ∩Σ<n).

Thus we can keep n fixed and generate σ∩Σ<n by “structural recursion” from
the constituent restricted languages τ∩Σ<n using the recursive functions in
Problems 172 and 173.

175. Trivial from Problem 174.

176. Similar to Solution 171 (b).

177. Lengthy but straightforward case by case checking. For example, if
(u)i = 〈ci , xi , yi 〉 and ci codes PrRec(g ,h) as ci = 〈`+1,2,α(g ),α(h)〉, then
we must have Len(xi ) = `+1 (saying that the arguments for PrRec(g ,h) are
〈~x,n〉 as coded by xi ). If the last element of xi is zero, then we must have
yi = g (~x,0), and then some (u) j must code this computation:

(xi )` = 0 → (∃ j < i )
(

((u) j )0 =α(g ) ∧ ((u) j )1 = xi ∧ ((u) j )2 = yi
)
.

If the last element of xi is positive, then yi = h(~x,n −1, f (~x,n −1)), thus we
must have an earlier triplet which computes z = f (~x,n −1):

(∃ j < i ) (u) j = 〈ci ,〈~x,n −1〉, z〉,

and another earlier triplet which computes yi = h(~x,n −1, z):

(∃k < i ) (u)k = 〈α(h),〈~x,n −1, z〉, yi 〉.

178. If i is a code of a primitive recursive function with arity n, then let
Hn(i ,~x) be the minimal justified computation u (Problem 177) which ends
with the triplet 〈i ,〈~x〉, y〉. Such a u exists as the function can be computed at
~x. Let Wn(i ,~x) be the last element of the last element of Hn(i ,~x).

179. Otherwise there would be an i ∈ω such that W1(i , x) =W1(x, x)+1 for
all x ∈ω, in particular for x = i .

180. Let g (x) be the unary primitive recursive function which takes 2 ev-
erywhere. Then fi+1 =PrRec(g ,Comp( fi ,U 2

2 )). Thus α( fi+1) = 〈1,2,α(g ), z〉,
where z = 〈2,1,α( fi ),α(U 2

2 )〉. As both α(g ) and α(U 2
2 ) are fixed natural num-

bers (they do not depend on i ), α( fi+1) is a recursive function of α( fi ). Use
primitive recursion to define i 7→α( fi ).
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181. By course-of-values recursion: one can tell whether u ∈ω is a function
code if the same is known for all v< u. See also Problems 176 and 171.

182. This is the function g (x)·0. Let α(0) ∈ω be the code of the unary all-zero
function (see Problem 114 (a)). To get the required function apply the Comp
operator to the multiplication, g , and 0 functions. Thus f (i ) can be the code
of the sequence 〈1,1,α( · ), i ,α(0)〉, which can be computed with the append
function as

0_ 1_ 1_α( · )_i_α(0).

183. Define f by primitive recursion. The identically zero and one functions
are 0 and 1, their codes are concrete natural numbers. Let f (0) =α(0), and
f (i +1) be the code of Comp(+, f (i ),1), that is,

f (i +1) = 0_1_1_α(+)_ f (i )_α(1).

184. Let Ci (x) be the function which takes i everywhere, then gi (x) is just
the composition g (x,Ci (x)). It has code 〈1,1,α(g ),α(U 1

1 ),α(Ci )〉, which is
a recursive function of α(g ) and i as the function i 7→α(Ci ) is recursive by
Problem 183.

185. (a) If the function in the triplet 〈ci , xi , yi 〉 encodes the µ(g ) operation,
then for each j ≤ yi there must be an earlier triplet computing g at xi

_ j ,
giving a non-zero result for j < yi , and zero for j = yi .

(b) As in Solution 177, only handling the µ operation is indicated. Thus
let (u)i = 〈ci , xi , yi 〉 where ci = 〈`,2,α(g )〉 codes µ(g ). Then for each j ≤ yi g
must be computed earlier at xi

_ j yielding correct results:

(∀ j ≤ yi ) (∃k < i )
(

(u)k = 〈α(g ), xi
_ j , z j 〉 ∧ ( j < yi → z j > 0) ∧ ( j = yi → z j = 0)

)
.

186. Let a = 〈~x, g (~x)〉 be a point in the graph of g . If u is a justified com-
putation ending with a triplet 〈α(g ), xi , yi 〉, then output xi

_yi , otherwise
output a.

187. g (~x) = y if and only if there is a justified computation u ending with the
triplet 〈α(g ),〈~x〉, y〉, see Definition 4.15. Thus let

Hn(e,~x,u) =
{

0 if u is a justified computation ending with 〈e,〈~x〉, y〉,
1 otherwise,

and let U (t ) be the last element of the last element of t . The number e in the
theorem is the code of g .

188. Let e be the code of g , then the graph of g is

{〈~x,G(u)〉 : Hn(e,~x,u) = 0 ∧ (∀v<u) Hn(e,~x,v) 6= 0}.

As the condition is clearly a recursive one, this set can be enumerated by
checking whether for a given tuple (~x,u) it holds or not. If yes, the next point
of the enumeration is 〈~x,G(u)〉, if not, the next point is some fixed point of
the graph.

169



12 Solutions

189. Using the Normal Form Theorem 4.16 for n = 2, let h(e, x, y) =G(µ{u :
H2(e, x, y,u) = 0}). If the code of g is e, then h(e, x, y) = g (x, y). Using the
recursive function g̃ in the hint, e = (g̃ (x))0, and x = (g̃ (x))1, thus the function
H(z, y) = h((z)0, (z)1, y) works.

190. Observe that if the partial recursive function f does not depend on x,
then f (y) = H(e, y) for the constant e = f̃ (0).

Let g (x, y) = H(H(x, x), y) = H(g̃ (x), y). By the above, there is a constant e
such that H(e, x) = h(g̃ (x)) with the function h given in the problem. Then
H(H(e,e), y) = H(g̃ (e), y) on one hand, and H(e,e) = h(g̃ (e)) on the other.
Thus m = g̃ (e) works.

191. The proof is analogous to Solution 112. Suppose on the contrary that
U :ωn+1 → ω is total recursive and universal for total recursive functions.
Then U (x1, x1, . . . , xn)+1 is total recursive, hence for some index i we have

U (i , x1, . . . , xn) =U (x1, x1, . . . , xn)+1.

Letting x1 = i yields to a contradiction.

192. The existence of universal functions is clear from Theorem 4.16: Un(e,~x) =
G(µ{u : Hn(e,~x,u) = 0}) is universal. The proof that they form a coherent fam-
ily is indicated in Problem 184. Fix the values of ~x and consider g as an
m-variable function g~x (~y). Then g~x can be obtained by using the composi-
tion

g~x = g ( f1(~y), . . . , fn(~y),~y),

where fi (~y) takes the value xi for all ~y . The code for fi (~y) is a recursive func-
tion of xi by Problem 183 (actually, one has to compose that unary function
with the projection function U m

1 to make it an m-variable function). Thus
the code for g~x can be created by a recursive function from the code of g and
from all xi .

193. If g has index i , then g (y, x) is the function f (i , x, y) =U2(i , y, x). This f
is a partial recursive function of three variables, thus it has an index, say e:
f (i , x, y) =U3(e, i , x, y). By the s-m-n theorem U3(e, i , x, y) =U2(S1

2(e, i ), x, y),
thus g (y, x) has index S1

2(e, i ). As e is a fixed number (does not depend on i ),
this is a recursive function of i .

194. Clearly g ′ = g ·0, that is, we need ϕr (i )(x) =ϕi (x)·0. Let f (i , x) =ϕi (x)·0,
and let e be its index: f (i , x) = U2(e, i , x). By the s-m-n theorem this is
U1(S1

1(e, i ), x). Finally, set r (i ) = S1
1(e, i ).

195. ϕi (x)+ϕ j (x) as a three-variable partial recursion function has some
index e. Then, by applying the s-m-n theorem we get a recursive function S
so that

ϕi (x)+ϕ j (x) =ϕS(e,i , j )(x).

Set r (i , j ) = S(e, i , j ).
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196. By the s-m-n theorem we have

ϕi (ϕ j (x)) =U 3(e, i , j ,k) =ϕS(e,i , j )(x),

thus c(i , j ) = S(e, i , j ) works.

197. Let i1, i2 be the index of f1, f2, respectively. The recursive function

r (i ) =
{

i1 if i ∈ A,
i2 otherwise

works.

198. This is the s-m-n theorem in disguise. Each partial recursive g (x, y)
is of the form U2(e, x, y) for a fixed e. By the s-m-n theorem U3(e, x, y) =
U1(S1

1(e, x), y), and the recursive function g̃ (x) = S1
1(e, x) works.

199. h(x, y) =ϕ f (x)(y) is partial recursive, thus it has an index e. Then using
the s-m-n theorem

h(x, y) =ϕ f (x)(y) =U2(e, x, y) =ϕS(e,x)(y),

and f (x) = S(e, x) is total recursive.

200. h( j , x, y) = ϕϕ j (x)(y) is partial recursive, let e be its index. Using the
s-m-n theorem

h( j , x, y) =U3(e, j , x, y) =ϕS(e, j ,x)(y),

and, using the s-m-n theorem again, let F ( j ) be the recursive function with
ϕF ( j )(x) = S(e, j , x).

201. The function g (x, y) = x is partial recursive, thus by Problem 198 g (x, y) =
ϕg̃ (x)(y) for some recursive function g̃ . Then ϕg̃ (x)(y) = x for all x.

202. The graph of the partial recursive function U 1(i , x) is {〈i , x, y〉 ∈ ω3 :
ϕi (x) = y }. By Kleene’s Normal Form Theorem 4.16, there is an e ∈ ω such
that

U1(i , x) =G(µ{u : H2(e, i , x,u) = 0}),

where G and H2 are recursive. The function H below works:

H(i , x, y,u) =


0 if y =G(u) and H2(e, i , x,u) = 0 and
(∀v<u) H2(e, i , x,v) 6= 0,

1 otherwise.

203. By Problem 202 there is a four-variable recursive relation H such that
ϕi (x) = y iff H(i , x, y,u) holds for some u ∈ω. Let

d(i , y) = min{u : H(i , (u)0, y, (u)1) = 0}.
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It is clear that y ∈ dom(d(i , ·)) iff y ∈ ran(ϕi ). Also, let

R(i ,u) =
{

u if H(i , (u)0, (u)1, (u)2) = 0,
min{v : H(i , (v)0, (v)1, (v)2) = 0} otherwise,

and r (i ,u) = (R(i ,u))0. It is clear that r (i , ·) is total if dom(ϕi ) is not empty,
and ran(r (i , ·)) = dom(ϕi ).

The existence of the functions h follows from Problem 198.

204. (a) The function g (x) =ϕx (x)+1 does not take the same value as ϕi if
i ∈ dom(ϕi ).

(b) The function g (x) = 1 .−ϕx (x) works as well.
(c) For all k ∈ dom( f ) we have f (k) = f (g (min{l : g (l ) ≥ k)), and the func-

tion on the right hand side is partial recursive and total.

205. Let A be the domain of ϕx (x)+1. It is infinite, as it contains the index of
every (total) recursive function, and recursively enumerable by Problem 169.
The function f enumerates A in increasing order. This f cannot be recursive
by Problem 204.

206. The domain of ϕx (x)+1 is such a set. If it were recursive, then the
function f defined in Problem 205 would be recursive.

207. (a) Let g (n) =ϕn(n)+1. This g is partial recursive. If f is total recursive,
then f = ϕi for some index i , hence g (i ) is defined and we have g (i ) =
ϕi (i )+1 >ϕi (i ) = f (i ).

(b) g (n) =ϕ(n)0 (n)+1 works as for each i there are infinitely many n such
that (n)0 = i .

208. If f is partial recursive, then dom( f ) is recursively enumerable (Prob-
lem 169). The domain is infinite, thus the recursive enumeration function h
can be chosen to be injective (Problem 153(c)). Define

H(i ) =µ{u : (∀ j ≤ i ) (u ≥ h( j )) }.

This is a recursive function, and clearly H(i ) = max{h(0), . . . ,h(i )}. Let g (i ) =
f (H(i ))+1. As H(i ) ∈ dom( f ), this is total, consequently recursive. To show
that g (i ) > f (i ) for infinitely many values, it suffices to check that H (i ) = h(i )
infinitely often.

As dom( f ) = ran(h) is infinite, the maximum of {h(0), . . . ,h(i )} must jump
infinitely often. When it jumps, the newly added value must be the new
maximum, as required.

209. Take an enumeration g0, g1, . . . of the recursive functions (there are
countably many of them). Then

f (n) = max{g0(n), g1(n), . . . , gn(n)}+1

is as desired.
Such an f cannot be recursive, as in this case f +1 would be recursive and

clearly f cannot dominate f +1.
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210. Let f be such a function. Applying Problem 208 one gets a recursive
function g which takes a larger value than f infinitely often. Clearly f could
not dominate g .

211. By Problem 204(a) there is a partial recursive f which cannot be ex-
tended to a total recursive function. By Theorem 4.16 there are recursive
functions H(x,u) and G(u) such that

f (x) =G(µ{u : H(x,u) = 0}).

Let g (x) =µ{u : H (x,u) = 0}. This is partial recursive, and f (x) =G(g (x)). We
claim that no recursive function dominates g (x). Suppose by contradiction
that h dominates g . By changing the value of h at finitely many places
it remains total recursive thus we may assume that g (x) ≤ h(x) for all x ∈
dom(g ) = dom( f ). Now

g̃ (x) =µ{u : u ≥ h(x) or H(x,u) = 0}

is recursive (for each x there is a u satisfying the recursive condition), and
g̃ (x) = g (x) when x ∈ dom(g ). Thus G(g̃ (x)) is recursive and extends f (x) =
G( f (x)), the required contradiction.

212. Let f be total recursive with ran( f ) = A and write

h(i , x) = 1+µ{u : (∀k<i ) (u ≥ϕ f (k)(x)}.

Then g (x) = h(x, x) is total and dominates all ϕi (x) for i ∈ A.

213. Similarly to Solution 211 fix the partial recursive f and use Theorem 4.16
to write it as

f (x) =G(µ{u : H(x,u) = 0})

with recursive G and H . The relation R will be defined as

(x,u) ∈ R iff u = 0 or
(

H(x,u) = 0 ∧ (∀v<u) H(x,v) 6= 0
)

.

It is clear that R is recursive (as H(x,u) is), and for each x ∈ω either one or
two u satisfies (x,u) ∈ R. If g (x) = max{u : (x,u) ∈ R} is recursive, then so is
G(g (x)) which takes the same value as f for all x ∈ dom( f ). Thus g cannot be
recursive when f is not the restriction of a total recursive function (Problem
204(a)).

214. Problem 175 states that the set of code pairs 〈α(σ),α(w)〉 where the word
w is in the language generated by the regular expression σ is recursive.

215. Assume, by way of contradiction, that there is a recursive f such that

f (x) =
{

1 if ϕx (x) =↓
0 otherwise.
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Let

ρ(x) =
{ ↑ if ϕx (x) =↓

0 otherwise.

Then ρ is partial recursive as ρ(x) =µ{u : u + f (x) = 0}. Thus ρ =ϕz for some
z, but then

ρ(z) =
{ ↑ if ϕz (z) =↓

0 otherwise,

which is a contradiction.

216. As K is the domain of the partial recursive function ϕx (x), it is enumer-
able by Problem 169.

217. By Problem 169 A is the domain of a partial recursive function h(x). Let
g (x, y) = h(x), by Problem 198 there is a recursive g̃ (x) such that h(x) =
g (x, y) = ϕg̃ (x)(y) independently of the value of y . Thus x ∈ dom(h) iff
ϕg̃ (x)(g̃ (x)) =↓.

218. Suppose there exists a recursive function f with ran( f ) = {i : ϕi is total}.
Then g (x) = ϕ f (x)(x)+ 1 is total recursive, hence for some k ∈ ω we have
g =ϕ f (k). But then ϕ f (k)(k) = g (k) =ϕ f (k)(k)+1, a contradiction.

219. In this problem the set A contains indices of two-variable functions.
Questions about one-variable functions can be transformed using the s-m-n
theorem. For an index i of a one-variable function let g (i , x,u) = 0 ·ϕi (x).
This function has an index e

g (i , x,u) =U3(e, i , x,u) =U2(S(e, i ), x,u) =ϕS(e,i )(x,u)

by the s-m-n theorem for some recursive function S. The unary ϕi (x) is total
if and only if S(e, i ) ∈ A. If A were recursive, then so would be the set of unary
total recursive functions, contradicting Problem 218.

220. (a) Let h be a recursive function with ϕg (ϕx (x)(z) =ϕh(x)(z), see Problem
198. Let i be an index of h, and m = h(i ). Then h(i ) =ϕi (i ), thus ϕg (m) =ϕm ,
as required.

(b) If g is partial recursive, then it may happen that g (m) =↑, and then
ϕg (m) is not defined. In this case, however, ϕm has empty domain.

221. Let f be in as Problem 201, that is ϕ f (i )(x) ≡ i is the constant i func-
tion. By the fixed point theorem there is m such that ϕ f (m)(x) = ϕm(x) =
ϕ f (m)(x) ≡ m.

222. For g (x, y) = x + y there is a recursive h so that g (x, y) =ϕh(x)(y). Apply
the fixed point theorem to h to get i ∈ω with ϕi (y) =ϕh(i )(y) = i + y .

223. Recall that ϕi (x) and ϕi (x, y) abbreviate the universal functions U1(i , x)
and U2(i , x, y). Using the s-m-n theorem one can find a recursive function
h(i , x) such that for all x

U1(ϕi (ϕx (i , x)), z) =U1(h(i , x), z).

174



12.4 Recursion Theory

Let j be the index of h: h(i , x) =ϕ j (i , x), and let m(i ) = h(i , j ) =ϕ j (i , j ). The
above equation with x = j gives

ϕϕi (m(i )) ≡ϕm(i ).

224. (a) Using the idea of Solution 223 let h be such that ϕh(x) = ϕ f (h(x),x)

returning a fixed point of ϕ f (i ,x). By the Fixed point theorem 4.19 there is j
such that ϕ j =ϕg (h( j ), j ). Finally, put i = h( j ).

(b) Take constant functions f and g giving indices to different functions.
(c) If the recursive function f (x) takes all values, then for every recursive h

there is a recursive h′ such that h(x) = f (h′(x)). Similarly to Solution 220, let
h(x) be such that ϕh(x) =ϕg (ϕx (x)), and h′(x) be such that h(x) = f (h′(x)). Let
m be an index of h′, then h(x) = f (ϕm(x)) and ϕ f (ϕm (x)) =ϕg (ϕx (x)). Choosing
i =ϕm(m) gives ϕ f (i ) =ϕg (i ).

225. If f has a finite set of fixed points, then there exists a partial recursive g
which is different from ϕi for any i ∈ Fix( f ). Let h be the recursive function
such that

ϕh(x) =
{

g if x ∈ Fix( f ),
ϕ f (x) otherwise.

This h does not have any fixed point, contradicting Theorem 4.19.

226. Suppose by contradiction that A and ωàA are the fixed point sets of the
f and g , respectively. In this case the recursive function h with the property

ϕh(x) =
{

ϕg (x) if x ∈ A
ϕ f (x) otherwise.

has no fixed point, a contradiction.

227. Fix( f ) ⊇ A is true, but equality does not necessarily hold. If Fix( f ) = A,
then, by Problem 226, ωà A cannot be a set of fixed points of any recursive
function. Thus, the statement must fail either for A or for ωà A.

228. Following the hint g (n, x, y) is partial recursive, and by the s-m-n the-
orem there is a recursive h such that ϕh(n)(x, y) = g (n, x, y). This ϕh(n)(x, y)
satisfies the following equations:

ϕh(n)(0, y) = y +1

ϕh(n)(x +1,0) = ϕn(x,1)

ϕh(n)(x +1, y +1) = ϕn(x,ϕn(x +1, y))

By the fixed point theorem 4.19 there is an m such that ϕm =ϕh(m). Therefore
ϕm is the Ackermann function. Thus, the Ackermann function is partial
recursive, and since it is total, it is total recursive as well (see Problem 170).

229. For z = 1 and z = 2 the value of B(x, y, z) can be obtained by induction
of y .
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To show that B is recursive, apply the trick of Solution 228. Write

α(x, z) =


0 if z = 0,
1 if z = 1,
x otherwise,

and consider the partial recursive function g (n, x, y, z) defined as

g (n, x, y, z) =


x + y if z = 0,
α(x, z .− 1) if y = 0 and z > 0,
ϕn(x,ϕn(x, y .− 1, z), z .− 1) if y > 0 and z > 0.

By the s-m-n theorem there is a recursive h such that ϕh(n)(x, y, z) = g (n, x, y, z),
and by the fixed point theorem 4.19 there is an m such that ϕm =ϕh(m). Now
ϕm satisfies the defining equations of B(x, y, z), thus B is partial recursive. It
is easy to see that B is a total function, hence it is recursive by Problem 170.

230. Let A ⊂ ω be proper non-empty and pick i ∈ A and j ∉ A. If A is
recursive then so is the function

g (x) =
{

i if x ∈ A,
j if x ∉ A.

By the fixed point theorem Problem (220) there is m with ϕm =ϕg (m). Thus,
if A is an index property then m ∈ A ⇔ g (m) ∈ A. On the other hand

m ∈ A ⇒ g (m) = j ∉ A,

m ∉ A ⇒ g (m) = i ∈ A,

contradiction.

231. As the sets are proper index properties, they are undecidable (not recur-
sive) by Rice’s theorem 4.21.

(a) A is the domain of the partial recursive function g (n) =ϕn(0), hence it
is recursively enumerable (see Problem 169).

(b) The complement of B is recursively enumerable by Problem 203(b).
Therefore B cannot be recursively enumerable, because that would imply
the decidability of B .

(d) The complement of D is recursively enumerable as D is the domain of
the partial recursive function f (n) =ϕn(0). Therefore D cannot be recursively
enumerable, because that would imply that D is decidable.

(c), (e), (f) The complement of the set is recursively enumerable, but the
set is not recursive, thus is cannot be recursively enumerable.

232. Such a set is a non-trivial index property, thus undecidable by Rice’s
theorem. Finite sets are decidable.

233. The idea is that the identically zero function will have a single W -index.
We achieve this by explicitly letting W (0, x) to be zero for all x, and for all
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other indices we increase the value of the function somewhere. As all non-
zero functions take a non-zero value somewhere (or not defined somewhere),
all partial recursive functions will have an index. Thus let W (0, x) = 0, and
for i = 〈 j , y〉 ≥ 1 let

W (i , x) =
{

ϕ j (x) if x 6= y,
ϕ j (x)+1 if x = y.

234. Let A be a recursively enumerable but not recursive set A. Let h be a
total recursive function such that ran(h) = A. Observe that the sequence

1

2h(0)
,

1

2h(0)
+ 1

2h(1)
,

1

2h(0)
+ 1

2h(1)
+ 1

2h(2)
, . . .

converges to the real number represented by χA , i.e. the n-th binary digit of
the limit point is χA(n). By choice χA is not recursive.

It only remains to show that the sequence above can be represented in the
form f (n)/g (n). But this is easy as

1

2h(0)
+ . . .+ 1

2h(n)
=

∑
i≤n

∏
j 6=i 2h(i )∏

j≤n 2h( j )

and both the enumerator and the denominator are recursive.

235. No. For total recursive f and g write a(n) = f (n)
g (n) and suppose |a(n)−

α| < 1
n . If α is rational, then d(n) is recursive, so suppose α is irrational.

For a real number x let {x} = x − [x] denote its fractional part. The relation
m
n < {m ·a(n)} < 1− m

n is total recursive and for a fixed m it holds for every
large enough n. Let

k(m) =µ
(
n : m/n < {m ·a(n)} < 1−m/n

)
.

Then [m ·α] = [m ·a(k(m))], and the n-th decimal digit of α is

d(n) = rem([10n ·α],10) = rem([10n ·a(k(10n))],10),

which is total recursive.

236. As the characteristic function of ω (i.e. the constant 1) is recursive,
the only if part is clear. Suppose A and ≺ are recursive such that 〈A,≺〉 is
isomorphic to 〈α,<〉. We need to find a recursiveC on ω such that 〈A,≺〉 and
〈ω,C〉 are isomorphic. Define g :ω→ A by

g (0) =µ{x : χA(x) = 1}

g (n +1) =µ{x : χA(x) = 1 and g (n) < x}

As A is infinite, g is a well defined, recursive bijection. For x, y ∈ω write

xC y if and only if g (x) ≺ g (y)

ThenC is recursive, and 〈ω,C〉 and 〈A,≺〉 are isomorphic.
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237. (a) Define ≺ on ω such that n ≺ 0 for all n > 0 and n ≺ m for all 0 < n <
m ∈ω. Then 〈ω,≺〉 is isomorphic to 〈ω+1,<〉. As for ω+ω write

xC y ⇔


x is odd and y is even, or
x and y are both odd and x < y , or
x and y are both even and x < y .

Then 〈ω,C〉 is isomorphic to 〈ω+ω,<〉. The relations ≺ and C are clearly
recursive.

(b) Let A = {pk : k ∈ω, p is a prime}. Define ≺ on A by pk ≺ q` iff p < q
or p = q and k < `. Then the mapping pk

n 7→ ω ·n +k is an isomorphism
between 〈A,≺〉 and 〈ω2,<〉. (Here pn is the n-th prime). By Problems 107 and
104 both A and ≺ are recursive (in fact, primitive recursive).

(c) Each ordinal α < ωω can be expressed as ωn · an + ·· ·+ω · a1 + a0 for
suitable a0, . . . , an ∈ω with an > 0. Recall that 〈an , . . . , a0〉 denotes both the
sequence itself and the code of this sequence (as an element of ω). Let

A = {〈an , . . . , a0〉 : n ∈ω, an > 0} ⊆ω

Define ≺ on A by 〈an , . . . , a0〉 ≺ 〈bm , . . . ,b0〉 if and only if

• n < m or

• n = m and ∃k ≤ n so that ai = bi for i > k and ak < bk .
The mapping

〈an , . . . , a0〉 7→ ωn ·an +·· ·+ω ·a1 +a0

is an isomorphism between 〈A,≺〉 and 〈ωω,<〉.
By Problem 126 the set of sequence codes is recursive. Comparison rela-

tions are also recursive (Problem 104), therefore the set A of sequence codes
such that the first element of the corresponding sequence is non-zero is
recursive as well. The relation ≺ can easily be defined using the recursive
functions Len and Elem.

238. (a) Let A ⊂ω be a recursive set and let ≺ be a recursive linear ordering
on A such that 〈A,≺〉 is isomorphic to 〈α,<〉. If β<α, then β is isomorphic
to an initial segment of α. Thus there is an initial segment of 〈A,≺〉 that
is isomorphic to 〈β,<〉. Let this initial segment be 〈B ,≺B 〉. We need that
B and ≺B are recursive. As B = {a ∈ A : a ≺ d} for some fixed d ∈ A, and
thus χB (x) = χA(x) ·χ≺(x,d), B is recursive. Similar argument shows ≺B is
recursive as well.

(b) Let A,B ⊂ ω be recursive sets with recursive well-orderings ≺A , ≺B ,
such that 〈A,≺A〉 ∼= 〈α,<〉 and 〈B ,≺B 〉 ∼= 〈β,<〉. The ordinal α ·β is the order
type of β×α with the lexicographic ordering.

By Problem 126 the set of sequence codes is recursive. Write

C = {〈a,b〉 : a ∈ A, b ∈ B} ⊆ω

Then C is recursive as x ∈ C if and only if x is a sequence code, Len(x) =
2, and Elem(x,0) ∈ A and Elem(x,1) ∈ B . Define the ordering ≺ on C by
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x ≺ y iff x, y ∈ C and Elem(x,0) < Elem(y,0), or Elem(x,0) = Elem(y,0) and
Elem(x,1) <Elem(y,1).

(c) Follows from (a), (b) and α+1 <α ·2.

(d) By (a) the set of all recursive ordinals forms an initial segment of the
class of ordinals. This initial segment must be countable as there are count-
ably many recursive relations only. Thus, there must be a least non-recursive
ordinal which is countable. By (c), ωC K

1 is a limit ordinal. An ordinal α is
recursive if and only if α<ωC K

1 .

239. (a) The statement is false. As ωC K
1 is countable, there is a countable

sequence of ordinals αi < ωC K
1 such that supi∈ωαi = ωC K

1 . Each αi is a
recursive ordinal (as αi <ωC K

1 ), while ωC K
1 is not recursive.

(b) The statement is true, because the sequence is uniformly recursive. We
show first that

∑
i∈ω(Ai ,<i ) is a recursive well-order. By Problem 126 the set

of sequence codes is recursive. Write

A = {〈n,m〉 : ϕ f (n)(m) = 1} ⊆ω

and put 〈n,m〉 ≺ 〈n′,m′〉 if and only if n < n′ or n = n′ and m <n m′. Then
〈A,≺〉 is a recursive well-ordering. If α is the order type of 〈A,≺〉, then αi ≤α

for all i ∈ω. As supαi ≤α, by Problem 238(b), supαi is a recursive ordinal.

240. To apply an inductive argument it is enough to prove that if α is a
recursive ordinal, then so is αω. Assume A and ≺ are recursive and 〈A,≺〉∼=
〈α,<〉.

By Problem 126 the set of sequence codes is recursive: let us write Code(x)
if x is a sequence code. For each n ∈ω define the set An ⊂ω by

An = {x ∈ω : Code(x),Len(x) = n, (∀i<n)Elem(x, i ) ∈ A}

The ordering ≺n on An is given by x ≺n y if and only if x, y ∈ An and ∃k < n so
thatElem(x, i ) =Elem(y, i ) for k < i < n andElem(x,k) <Elem(y,k). It is clear
that both An and ≺n are recursive. What is more, the construction is uniform
in n, thus there are recursive f and g such that ϕ f (n) is the characteristic
function of An , and ϕg (n) is the characteristic function of ≺n .

Each 〈An ,≺n〉 is isomorphic to 〈αn ,<〉, hence Problem 239 concludes that
αω is a recursive ordinal.

12.5 PROPOSITIONAL CALCULUS

241. (a)
∧

i 6= j
¬(A1,i ∧ A1, j ).

(b)
∨

i 6= j 6=k
(A2,i ∧ A2, j ∧ A2,k ).

(c)
5∧

j=1

3∨
i=1

A j ,i .

(d) ¬( 11∧
j=1

10∨
i=1

(A j ,i ) ∧
10∧

k=1

∧
i 6= j

¬(Ai ,k ∧ A j ,k )
)
.
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242. (a)
∧

v∈V

( 4∨
c=1

(Av,c ) ∧ ∧
i 6= j

¬(Av,i ∧ Av, j )
)
.

(b)
∧

u 6=v∈V

(
E(u,v) → (

4∧
c=1

¬(Au,c ∧ Av,c ))
)
.

243.
∨

v∈V

∧
w∈V −{v}

(
Av,w ∨ ∨

z∈V −{v,w}
(Av,z ∧ Az,w )

)
.

244. (a)
[ ∧

g∈G

( ∨
b∈B

(Ag ,b) ∧ ∧
i 6= j∈B

¬(Ag ,i ∧ Ag , j )
)] ∧[ ∧

b∈B

( ∨
g∈G

(Ag ,b) ∧ ∧
i 6= j∈G

¬(Ab,i ∧ Ab, j )
)]

.

(b)
∧

H⊆G

∧
F∈[B ]<|H |

¬AH ,F , where AH ,F = ∧
h∈H

∧
f ∉F

¬Ah, f .

245. An n-ary Boolean function is defined by giving all 2n values the op-
eration assumes on the possible combination of the arguments. For a 0-1
number ε write

xε =
{

x if ε= 1,
¬x if ε= 0.

Every function f : {0,1}n → {0,1} (provided it is not the constant 0 function)
can be represented by a full disjunctive normal form

f (x1, . . . , xn) = ∨
f (ε1,...,εn )=1

xε1
1 ∧ . . . ∧ xεn

n .

One way to express the constant 0 function using ∧ and ¬ is x ∧¬x. Similarly,
every Boolean function f (provided it is not the constant 1 function) can be
represented by a full conjunctive normal form

f (x1, . . . , xn) = ∧
f (ε1,...,εn )=0

x1−ε1
1 ∨ . . . ∨ x1−εn

n .

Remark. A set F of Boolean functions is functionally complete if all
Boolean functions can be obtained from elements of F by taking compo-
sitions. Therefore {∧,¬} and {∨,¬} are functionally complete.

Remark. Problem 245 can be generalized to a broader class of structures:
A finite algebra A is called primal if every n-ary function f : An → A for
every n ≥ 1 is representable by a term of A, i.e. there is a term p(x1, . . . , xn)
such that f (a1, . . . , an) = pA(a1, . . . , an) for all a1, . . . , an ∈ A. We proved in
this exercise that the 2-element Boolean algebra is primal. (In fact, the
2-element Boolean algebra is the only primal Boolean algebra). Other
primal algebras exist, for instance 〈Zp ,+, ·,−,0,1〉 for a prime number p.

246. The number of Boolean functions on n variables is 22n
. Let Fn(k) be

the number of Boolean functions on n variables that can be expressed using
at most k logical operators (∧, ∨ or ¬).

Fn(k) ≤ (k2)k ·3k ·kn ·k · 1

k !
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Treating ¬ as a binary operation, every logical operation has two inputs (the
output of two other operations) hence the first term (k2)k . 3k is the number
of possible operations. The number of choices for the input is kn , the number
of outputs is k. The final 1

k ! is to avoid over-counting isomorphic expressions.
Basic algebra shows

Fn(k) ≤ 2k logk+O(k+n logk)

We are seeking for a k such that Fn(k) ≥ 22n
, i.e. 2k logk+O(k+n logk) ≥ 22n

. Such
k satisfies k =O(2n).

A specific example which requires exponential length expression using
only ∧, ∨ and ¬ is the n-ary Boolean function which takes value 1 if and only
if an odd number of its arguments are equal to 1 (Johan Håstad). Interestingly,
if one can use the logical operator ↔ then the same function has a succinct
expression

(· · · ((x1 ↔ x2) ↔ x3) ↔···xn−1) ↔ xn .

247. Mimic the disjunctive normal form construction in Problem 245. First
check that for each a,b ∈ {0,1,2} the unary functions

Ha,b(x) =
{

b if x = a,
0 otherwise

can be expressed as compositions. Given an n-tuple ~a ∈ {0,1,2}n and b ∈
{0,1,2} the function

G~a,b(~x) = min{ Hai ,b(xi ) : 1 ≤ i ≤ n }

takes zero everywhere except at ~x = ~a, where it takes b. (This function
corresponds to the conjunction xε1

1 ∧ . . . ∧ xεn
n .) Given any ternary function

f , the composition

max{G~a, f (~a)(~x) :~a ∈ {0,1,2}n }

takes the same value as f .

248. (a) As f1(x, y) = x ∧ y and f2(x) =¬x the result follows from Problem
245.

(b) It is enough to express x ∧ y using f1 and f2. But x ∧ y = x(1− y)+ x
(mod 2) = f1(x, f2(y)).

(c) Observe that the following class K of Boolean functions is closed under
composition, and both f1 and f2 are members of K .

K = {
f : f (0, . . . ,0) = 0

}
.

As 1−x does not belong to K , it cannot be expressed using f1 and f2.

249. (a) From the function F (x, y) = ¬(x ∧ y) all other Boolean functions
can be obtained by composition. To see this, by Problem 245, it is enough to
express x ∧ y and ¬x using F . This can be done as follows.

x ∧ y = F
(
F (x, y),F (x, y)

)
,
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¬x = F (x, x).

Out of the sixteen binary Boolean functions exactly two of them are function-
ally complete: F (x, y) =¬(x ∧ y) and G(x, y) =¬(x ∨ y).

Remark. F (x, y) is usually denoted by x|y and called the Sheffer stroke.

(b) There are only countably many functions which can be obtained by
composition from a single (or even from countably many) functions, but the
cardinality of the set of real functions is strictly greater than countable.

250. For each a < k let χa(x) be the characteristic function of the single-
element set {a}:

χa(x) =
{

1 if x = a,
0 otherwise,

and write ca(x) for the constant function ca(x) = a. Any function f can be
represented as

f (x1, . . . , xn) = ∑
a1,...,an<k

c f (a1,...,an )(x1) ·χa1 (x1) · . . . ·χan (xn).

Note that the only properties of + and · used were x +0 = 0+x = x, x ·0 = 0
and x ·1 = x.

251. The binary (and unary) functions fi , j (i , j < k; i 6= j ) can be merged
into a single function with four variables as follows. Let G(x1, x2, x3, x4) be
the k-valued function

G(x, x, x, x) = x +1 (mod k),

and

G(x, x, x +1, x + i ) = ci (x) for i < k,

G(x, x, x +2, x + i ) = χi (x) for i < k.

Finally, for each i 6= j put

G(i , j , x, y) = fi , j (x, y).

In order to prove that functions fi , j can be recovered from G it is enough to
show that constant functions i , j can be recovered. But using the notation
F (x) =G(x, x, x, x) we have i =G(x, x,F (x),F i (x)).

To complete the proof observe that all of the constant functions and char-
acteristic functions are encoded in G in the form G(x, x,F (x),F i (x)) and
G(x, x,F F (x),F i (x)), and one can merge k(k −1) ≥ 2 additional functions
into G .

252. Denote max{x, y}+1 (mod k) by F (x, y). Define the following sequence
of functions (all additions are mod k):

x +1 = F (x, x),
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max{x, y} = F (x, y)+ (k −1), (add +1 (k −1) times)

k −1 = max{x, x +1, x +2, . . . , x + (k −1)},

i = (k −1)+ (i +1),

(k −1)χi (x) = max{x + j : j 6= k −1− i }+1

χi (x) = max{(k −1)χ j (x) : j 6= i }+1,

(k −1)−x = max{max{(k −1)χ j (x), j }+ (k − j ) : j < k },

min{x, y} = (k −1)−max{(k −1)−x, (k −1)− y}.

Applying Problem 250 with min and max playing the role of · and +, respec-
tively, completes the proof.

253. There are homomorphisms f :A1 → A2 and g :A2 → A1 which are iden-
tical on G . Therefore the compositions f ◦ g and g ◦ f are also identical on G
and since each homomorphism is uniquely determined by its values on the
set of generators we get f ◦ g = id and g ◦ f = id.

254. We treat partitions of A as equivalence relations ϑ⊆ A2 (i.e a and b are
in the same partition if and only if 〈a,b〉 ∈ϑ). ϑ is a congruence if whenever
〈ai ,bi 〉 ∈ϑ (i < n) and f is a fundamental n-ary operation, we have〈

f A(a0, . . . , an1 ), f A(b0, . . . ,bn1 )
〉 ∈ϑ.

The smallest and largest congruences are respectively ∆ = {〈a, a〉 : a ∈ A}
(each element forms a single block of the partition), and ∇= A2 (there is only
one block containing all elements). Greatest lower bound of ϑ1 and ϑ2 is
ϑ1 ∧ϑ2 =ϑ1 ∩ϑ2, while their smallest upper bound is the transitive closure
of the relation ϑ1 ∪ϑ2

ϑ1 ∨ϑ2 =ϑ1 ∪ (ϑ1 ◦ϑ2)∪ (ϑ1 ◦ϑ2 ◦ϑ1)∪ (ϑ1 ◦ϑ2 ◦ϑ1 ◦ϑ2)∪ . . .

255. In the figure below points of the same bubble belong to the same
partition.

∆ ϑ1 ϑ2 ϑ3 ∇

The lattice of congruences is figured below.

∆

ϑ1

ϑ2

∇

ϑ3
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256. Let t (x, y,u,v) be a 4-place function symbol interpreted in the algebra
A= 〈X , tA〉 as

tA(a,b,c,d) =
{

c if (a,b) ∈ϑ

d otherwise.

Then ϑ is a congruence of A. On the other hand, if ∼ is a congruence and a,
b are elements such that a ∼ b but (a,b) ∉ϑ, then

c = tA(a, a,c,d) ∼ tA(a,b,c,d) = d

for any c and d , thus ∼ is ∇.

257. Let A be the collection of finite subsets of Σ, this is the set of voters. Take
an ultrafilter U on A representing “majority”, and consider the evaluation
f :V → {>,⊥} defined by what the majority voted for: for a variable v ∈V let
f (v) => if {a ∈ A : fa(v) =>} ∈U , otherwise let fa(v) =⊥. By induction on
the complexity of ϕ this extends to every formula:

f (ϕ) => ⇐⇒ {a ∈ A : fa(ϕ) =>} ∈U .

The formula ϕ ∈ Σ will evaluate to > iff the set Xϕ = {a ∈ A : fa(ϕ) = >} is
in U . By the assumption the evaluation fa makes true every formula in a,
so Aϕ = {a ∈ A : ϕ ∈ a} ⊆ Xϕ. Consequently we are done if U can be chosen
so that Aϕ ∈U for every ϕ ∈ Σ. To finish the proof observe that the family
{Aϕ : ϕ ∈Σ} has the finite intersection property, thus there is an ultrafilter U
over A that contains each Aϕ (see Problems 7, 29).

258. Solution 1. The ultrafilter construction in Solution 257 works here as
well. For a finite subset a of Σ, let fa be the evaluation for which ϕ( fa) = 0 for
all ϕ ∈ a. Fix the ultrafilter U , and let f (v) = i if Ui = { a ∈ A : fa(v) = i } ∈U .
As the sets Ui form a k-partition of A, exactly one of them is an element of U
(Problem 31), thus this definition is sound. From here proceed as before.

Solution 2. Use the Compactness Theorem 5.8 for propositional formulas.
For each v ∈ V and i < k let Av,i be a propositional variable which is true
if and only if the value of v is i . The propositional formulas ¬(Av,i ∧ Av, j )
and (Av,0 ∨ ·· · ∨ Av,k−1) ensure that for each v exactly one of Av,i is true.
For each k-valued logical function ϕ(vα1 , . . . ,vαn ) there is a corresponding
propositional formula which is true if and only if ϕ evaluates to zero using
the values coded in the variables Av,i . This set of propositional formulas is
satisfiable if and only if Σ is satisfiable. By assumption, every finite subset is
satisfiable, thus the compactness theorem gives the claim of this problem.

259. Consider the elements of the field as logical values, and the polynomials
as k-valued logical formulas. Apply the compactness theorem for k-valued
logic (Problem 258).

260. (a) Consider the following system of polynomial equations:

(x0 −1)−x2
1 = 0,
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(x0 −2)−x2
2 = 0,

...

Each finite sub-system is solvable: A solution for the first k equations is
x0 = k and xi =

p
k − i for 1 ≤ i ≤ k. However, the whole system does not

have any solutions: For if x0 = s then for n > s the equations (x0 −n)−x2
n = 0

could not be solved in R.

(b) Same as (a) but replace x2
i by the sum of four squares, and remark that

every natural number can be written as the sum of four squares.

(c) Consider the system which contains the equation (z − c)zc −1 = 0 for
each c ∈C. Each of its finite sub-systems can be solved: if (z −d)zd −1 = 0
does not belong to the finite sub-system, then z = d and zc = (d − c)−1 are
the solutions. Nevertheless, the whole system cannot be solved, because for
each z = c the equation (z − c)zc −1 = 0 cannot be satisfied.

Remark. The last example has continuum many equations and variables.
There is no such an example with countably many polynomial equations
only, see Problems 656 and 680.

261. We know that ΣÍϕ iff Σ∪ {¬ϕ} is not satisfiable. So if Σ′ 6Íϕ then each
finite subset of Σ∪ {¬ϕ} is satisfiable, contradicting Theorem 5.8.

262. (a) For a set Γ of formulas write UΓ for the open set

U Γ = {e ∈ X : for some ϕ ∈ Γ we have e(ϕ) =>}, Uϕ =U{ϕ}.

It is straightforward that UΓ =⋃
ϕ∈ΓUϕ, therefore it is enough to check that

{Uϕ } forms a basis of a topology. It is so as Uϕ∧¬ϕ =; and Uϕ∨¬ϕ = X , finally
Uϕ∩Uψ =Uϕ∧ψ. As X −Uϕ =U¬ϕ, this basis contains clopen sets only.

(b) Since X has a clopen basis, we may use the following description of
compactness of a topological space: If {Fα : α<β} is a family of basic closed
sets having the FIP, then

⋂
α<β Fα 6= ;. A set Γ of formulas is satisfiable if and

only if
⋂

γ∈ΓUγ is not empty.
Let Γ be a set of formulas such that all finite Γ′ ⊆ Γ are satisfiable. Then the

system {Uϕ : ϕ ∈ Γ} has the FIP, because for a finite Γ′ we have⋂
γ∈Γ′

Uγ =U∧
Γ′ 6= ;.

If X is compact, then it follows that
⋂

γ∈ΓUγ 6= ;, hence Γ is satisfiable.
For the other direction let {Fα : α<β} be an FIP family of basic closed sets.

For each Fα there is a corresponding formula γα such that Fα =Uγα . Note
that every finite subset of Γ= {γα : α<β} is satisfiable because

Uγα1
∩ . . .∩Uγαn

6= ; by FIP.

By the compactness theorem Γ is satisfiable, consequently⋂
Fα = ⋂

γ∈Γ
Uγ 6= ;.
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(c) X is Hausdorff: let x and y be distinct evaluations and v ∈V such that
x(v) => and y(v) =⊥. Then x ∈Uv and y ∈U¬v are disjoint neighborhoods.
X is regular: Pick a closed set A and a point x ∈ X − A. For some set Φ of
formulas we have A =⋂

ϕ∈ΦUϕ, and there must exist ϕ ∈Φ such that a ∉Uϕ.
Then a ∈U¬ϕ and A ⊆Uϕ.

(d) If |V | ≤ ℵ0, then each point x ∈ X has a countable neighborhood-base:
{Uϕ : x(ϕ) =>}. Since |F | = |V | · ℵ0 we have that {Uϕ : ϕ ∈ F } is a countable
base if and only if |V | ≤ ℵ0. If |V | > ℵ0, then X does not have a countable
base: each such base avoids infinitely many v ∈V , hence the open sets Uv are
not generated. By Urysohn’s metrization theorem (M2+regular is metrizable)
it follows that X is metrizable if and only if |V | ≤ ℵ0. If V is countable, then X
is separable.

(e) As the underlying set of X and V 2 = V {>,⊥} is the same, it is enough to
prove that the identity map id : V 2 → X and its inverse is continuous. To see
that id is continuous, we shall prove that (the inverse image of) each basic
open set Uϕ of X is open in V 2. Write ϕ in disjunctive normal form

ϕ≡∨
i

∧
j

v
εi j

i j .

For v ∈V denote by πv :V 2 → 2 the v-th projection, and define Wi j =π−1
vi j

(εi j ).
Then

Uϕ =⋃
i

⋂
j

Wi j ,

which is open in V 2.
To see that id−1 is continuous, we shall prove that each basic open set

W =∏
v∈V Wv of V 2 is open in X . Write

ϕ= ∧
v:Wv={1}

v∧ ∧
v:Wv={0}

¬v.

Then Uϕ =W .

263. Suppose the propositional variables in ϕ are A1, . . . Am and B1, . . . ,Bn

where Ai does not occur in ψ while all B j occur in ψ. If n = 0 then either
ψ is a tautology, or ¬ϕ must be a tautology, thus either > or ⊥ works as the
interpolant formula ϑ. Assume therefore that n > 0 and use induction on
m. If m = 0 then ϑ=ϕ works. Otherwise denote ϕ as ϕ(A1, . . . , Am ,B1, . . .Bn),
and let

ϕ0 =ϕ(B1, A2, . . . , Am ,B1, . . . ,Bn),

ϕ1 =ϕ(¬B1, A2, . . . , Am ,B1, . . . ,Bn).

Now ϕ0 →ψ and ϕ1 →ψ are tautologies, hence so are the formulas (ϕ1 →
ψ) ∧ (ϕ0 →ψ) and (ϕ0 ∨ϕ1) →ψ. By induction there exists some interpolant
ϑ between ϕ0 ∨ϕ1 and ψ for which (ϕ0 ∨ϕ1) →ϑ and ϑ→ψ are tautologies.
But ϕ→ϕ0 ∨ϕ1 is also a tautology, so we are done.
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Remark. If > and ⊥ were not allowed as interpolants, then the tautology
(A ∧¬A) → (B ∨¬B) could not have interpolant.

264. (F /≡,≤) is a partial ordering: [ϕ] ≤ [ϕ] is trivial. If [ϕ] ≤ [ψ] and [ψ] ≤
[ϕ], then f (ϕ) = f (ψ) for all f , hence [ϕ] = [ψ]. Finally, suppose [ϕ] ≤ [ψ] and
[ψ] ≤ [µ]. Then we have f (ϕ) ≤ f (ψ) ≤ f (µ) for all f , in particular f (ϕ) ≤ f (µ),
therefore [ϕ] ≤ [µ].

(F /≡,≤) is a distributive lattice: the least upper bound of [ϕ] and [ψ] is
[ϕ∨ψ], while their greatest lower bound is [ϕ∧ψ].

265. Solution 1 (Along the lines of Problem 242). Let Av,e be propositional
variables for each vertex v and possible color e. Let Γ be the set of proposi-
tional formulas which expresses the fact that every vertex has exactly one
color, and connected vertices have different colors. Γ is satisfiable if and only
if G can be colored by n colors.

By the compactness theorem, Γ is satisfiable if and only if all finite subsets
of Γ are satisfiable. If G ′ is a finite subgraph of G then the corresponding
set Γ′ is a finite subset of Γ. Moreover all finite subsets of Γ are contained in
some Γ′ (simply take the subgraph spanned by vertices mentioned in that
subset). Thus all finite subgraphs of G are n-colorable if and only if all finite
subsets of Γ are satisfiable, and we are done.

Solution 2 (Along the lines of the proof of compactness theorem). For all j ∈
[V (G)]<ω fix a coloring c j of the subgraph spanned by j . We wish to choose
an ultrafilter U on [V (G)]<ω such that the function c :V (G) → n defined below
becomes a coloring of G .

c(v) = k if and only if
{

j ∈ [V (G)]<ω : c j (v) = k
} ∈U .

Note that
⋃∗

k<n{ j ∈ [V (G)]<ω : c j (v) = k
}

is a partition of [V (G)]<ω and exactly
one member of this partition belongs to U (Problem 31), therefore c is well
defined. To ensure that c is defined on all vertices, we need for all v ∈V (G)
that { j ∈ [V (G)]<ω : v ∈ j } ∈U . For j ∈ [V (G)]<ω write ĵ = {k ∈ [V (G)]<ω : j ⊆
k}. Observe that the set system E = { ĵ : j ∈ [V (G)]<ω} has the FIP: j1∪. . .∪ jn ∈
ĵ1 ∩ . . .∩ ĵn . Therefore there is an ultrafilter U extending E (Problems 29 and
28) and clearly v̂= { j ∈ [V (G)]<ω : v ∈ j } ∈U .

Remark. Problem 626 points toward a more general approach (and in fact
the original proof of Erdős and deBruijn).

266. Let G = 〈V ,E〉 be a graph, all of its finite subgraphs are colorable by k
colors. Put

H= {〈V ,F 〉 : E ⊆ F and each finite subgraph of 〈V ,F 〉
can be colored by k colors

}
.

For two elements H1 = 〈V ,F1〉 and H2 = 〈V ,F2〉 of H we say H1 ≤ H2 if
F1 ⊆ F2. We claim that the partial order 〈H,≤〉 satisfies the assumption
of Zorn’s lemma: If {〈V ,Fi 〉 : i ∈ I } is a linearly ordered subset of H, then
H = 〈V ,

⋃
i∈I Fi 〉 belongs to H. For if not, then there would exists a finite
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subgraph of H which cannot be colored by k colors. This finite subgraph
must be a subgraph of some 〈V ,Fi 〉 in the chain; a contradiction. Therefore,
by Zorn’s lemma, there is a maximal element H = 〈V ,F 〉 of H.

To see that non-adjacency of H is an equivalence relation, suppose by
way of contradiction that 〈a,b〉,〈b,c〉 ∉ F while 〈a,c〉 ∈ F . By maximality of
H there are finite subgraphs H1 and H2 such that H1 +〈a,b〉 (a and b are
vertices of H1 and we add the edge 〈a,b〉) and H2 +〈b,c〉 are not k-colorable.
We claim then H1 ∪H2 +〈a,c〉 is not k-colorable: If γ were a k-coloring, then
γ(a) = γ(b) and γ(b) = γ(c) would follow, since otherwise γ would be a k-
coloring of H1 +〈a,b〉 and H2 +〈b,c〉. But then γ(a) = γ(c) would hold which
is impossible. Consequently some finite subgraph of H cannot be colored by
k colors, which is a contradiction.

Equivalence classes of non-adjacency provide a coloring of H . To complete
the proof it is enough to show that there are at most k equivalence classes. If
a subgraph of H contains a vertex from each equivalence class, then it also
contains a complete graph K`, where ` is the number of equivalence classes.
As Kk+1 is not k-colorable, we get that `≤ k.

267. Straightforward consequence of the Erdős–deBruijn theorem (Problems
265 or 266).

268. Partition the plane into blocks of 3×3 unit-diagonal squares, the interior
of each square is colored by one of the 3 ·3 colors, accordingly. As for the
second part, by Problem 265 we have to find finitely many points on the
plane so that their distance graph cannot be colored with three colors. This
can be done as pictured below (each edge has unit length).

Remark. The Hadwiger–Nelson problem asks for the minimum number
of colors required to color the plane so that any two points at distance
1 are colored differently. This problem narrows down the answer to one
of the numbers 4 ≤ n ≤ 9. The correct value is known to be one of 5, 6 or
7. In higher dimensions it is only known that this chromatic number is
exponential: it is between 1.2n and 3n .

269. Let Ae,c be propositional variables for each edge e and possible color
c ∈ {0,1}. Let Γ be the set of propositional formulas which expresses the
fact that every edge has exactly one color, and there are no homogeneous
induced subgraphs of size k:

Γ= {
(Ae,0 ∧ ¬Ae,1) ∨ (Ae,1 ∧¬Ae,0) : e ∈ E ,

¬ ∧
i<`

Aei ,c : ei ∈ E ,c ∈ {0,1}, e1, . . . ,e` are edges

in an induced subgraph of size k
}
.
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Γ is satisfiable if and only if G can be colored by two colors having no homo-
geneous subgraph of size k <ω

By the compactness theorem, Γ is satisfiable if and only if all finite subsets
of Γ are satisfiable. If G ′ is a finite induced subgraph of G then the corre-
sponding set Γ′ is a finite subset of Γ. Moreover all finite subsets of Γ are
contained in some Γ′ (take the subgraph spanned by vertices mentioned
in that subset). Thus all finite subgraphs of G can be colored by two colors
having no homogeneous subgraph of size k <ω if and only if all finite subsets
of Γ is satisfiable; and we are done.

270. By Hall’s theorem G and B cannot be finite. Let G = {g1, g2, . . .} and
let B = {b0,b1, . . .} two infinite sets (observe, there is no g0). For every i > 0
connect bi to gi , and connect b0 to every gi .

271. Let N (X ) denote the set of neighbors of X . For each g ∈ G and b ∈ B
choose a propositional variable Ag ,b . There is a match between G and B iff
the following formula set is satisfiable:

for each g ∈G exactly one of {Ag ,b : b ∈ N (g ) } is true;

for each b ∈ B exactly one of {Ag ,b : g ∈ N (b) } is true.

As N (g ) and N (b) are finite sets, these statements can be expressed as propo-
sitional formulas. By compactness it suffices to show that every finite subset
is satisfiable. Thus let G ′ and B ′ be the vertex sets mentioned in this finite
subset, G ′′ =G ′∪N (B ′) and B ′′ = B ′∪N (G ′). The combinatorial lemma which
ensures that the formula set is satisfiable can be worded as

Lemma. Let (G ′′,B ′′) be a (finite) bipartite graph, G ′ ⊆G ′′, B ′ ⊆ B ′′. Suppose
that for all A ⊆ G ′ and for all A ⊆ B ′ we have |A| ≤ |N (A)|. Then there is a
matching (independent set of edges) which covers G ′∪B ′.

A proof similar to that of Hall’s theorem works. If |A| < |N (A)| for all relevant
subsets, then leave out any edge (g ,b) and apply induction. If |A| = |N (A)|
for some A, then the (A, N (A)) pair satisfies the conditions of Hall’s theorem,
thus it has a perfect matching. Deleting these vertices the remaining graph
also satisfies the same conditions.

272. (a) Each vertex v with maximal out-degree is a king. For, let ui (i < n)
be those vertices that are reachable from v in one step and suppose w cannot
be reached from v by a directed path of length at most two. Then there must
be edges directed from w to all the ui ’s and to v, meaning that the out-degree
of w is greater than that of v; a contradiction.

(b) The set of vertices is ω and an edge is directed from i to j if and only if
j < i .

273. Call a tournament an all-kings tournament if every vertex is a king.
For a vertex x we denote by d+(x) and d−(x) the out-degree and in-degree
of x. For a subset X of vertices denote respectively by Γ+(X ) and Γ−(X )
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the set out-neighbors and the set of in-neighbors of elements of X . Thus
d+(x) = |Γ+({x})|.

(a) We prove by induction on n that if there exists an all-kings tournament
on n vertices (n ≥ 4), then there is such a tournament on n +1 vertices, as
well. Let G be an all-kings tournament on n ≥ 4 vertices. Pick x ∈ G with
d+(x) ≥ d−(x). As n ≥ 4 we have d+(x) ≥ 2. Add a new vertex y to the graph
G . Draw an edge from y to x, from y to vertices in Γ−(x), and from vertices
in Γ+(x) to y .

If there is no edge from Γ+(x) to Γ−(x), then this graph is an all-kings
tournament. Otherwise, let Z ⊂ Γ−(x) be the non-empty set of vertices that
can be reached from some vertex in Γ+(x). As d−(x)−|Z | < d+(x), there must
be w ∈ Γ+(x) so that for every z → v with z ∈ Z and v ∈ Γ−(x)àZ there exists
a 2-path from v to z in G à {w}. Then reverse all edges between Z and w . The
resulting graph is an all-kings graph.

To complete the proof we only need to show one all-kings tournament. To
construct one all-kings tournament having 5 vertices is straightforward.

(b) The set of vertices is Z and for i < j we direct an edge from i towards
j if and only if |i − j | is odd. That is, edges to the right correspond to odd
distances and edges to the left to even distances.

274. For a subset X of vertices denote the set of in-neighbors of the elements
of X by N (X ).
Solution 1. Let Av be a propositional variable for each vertex v. The tourna-
ment has a king if and only if the following formula set is satisfiable:

¬(Au ∧ Av) for all u 6= v,

Au ∨∨
{Av : v ∈ N (u)} ∨∨

{Aw : w ∈ N (N (u))} for all vertex u.

(We have used that N (X ) is finite when X is finite.) The first line says that at
most one Au is true (the king); the second line says that u can be reached
in one or two steps from the king. By problem 272 every finite subset is
satisfiable, thus it is also satisfiable.

Solution 2. Let u be a vertex with the smallest |N (u)|. We claim that u is a king.
Indeed, if v ∉ N (u) then uv is a directed path of length 1. If v ∈ N (u), then
there must be a w ∈ N (v) which is not in N (u); and then uwv is a directed
path of length 2.

275. Consider the tournament on three vertices without sinks or sources and
adjoin a new vertex from which all the other three vertices can be reached by
a directed edge. The resulting tournament has a source (the new vertex) but
does not have any sink.

As for the second part, define the tournament T on ω so that an edge is
directed from i to j if j < i . Then 0 is a sink in T , but there are no sources.

276. Perform Step 1 until applicable, then Step 2 until applicable, finally Step
3, until it can be applied. Step 1 is not applicable if each negation symbol
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is just ahead of the propositional variable. Step 2 disregards repeated appli-
cations of negation; finally Step 3 ends only if the formula is conjunctions
of disjunctions of propositional variables, or negation of propositional vari-
ables. That the process halts for each formula is straightforward for Steps 1
and 2. For Step 3 define the “norm” ‖ϕ‖ of propositional formulas as follows.
The norm of variables and their negations is 1, and in general

‖ϕ∨ψ‖ = ‖ϕ‖2 · ‖ψ‖2,

‖ϕ∧ψ‖ = ‖ϕ‖+‖ψ‖.

After applying Step 3 the norm decreases proving that Step 3 halts as well:

‖ψ∨ (ϑ0 ∧ϑ1)‖ = ‖ψ‖2 · (‖ϑ0‖+‖ϑ1‖)2 >
> ‖ψ‖2‖ϑ0‖2 +‖ψ‖2‖ϑ1‖2 = ‖(ψ∨ϑ0) ∧ (ψ∨ϑ1)‖.

As for the second statement: each step preserves this property, thus the
claim follows by induction.

277. If C ∪ {c} is satisfiable, then so is C. For the other direction let c =
R(c0,c1,`) and suppose C is satisfiable, i.e. the evaluation f :V → {>,⊥} gives
at least one true literal in each member of C. Then some literal from c0 is
true, and some from c1 are true. Since at most one of ` and ¬` can be true,
there still remains a true literal in c.

278. The set of clauses is
{
{¬A,¬B ,C }, {¬A,B ,¬C }, {A,¬B ,¬C }, {A,B ,C }

}
.

279. The conjunctive normal form of the negation of the formula is

(¬A ∨ B) ∧ (¬C ∨ A) ∧C ∧¬B.

A possible derivation tree is

ä

A

C¬C ∨ A

¬A

¬B¬A ∨ B

280. The conjunctive normal form of the negation of the formula is

(¬A ∨¬B ∨C ) ∧ (¬A ∨¬B ∨ D) ∧ (¬A ∨ B) ∧ A ∧ (¬C ∨¬D).

Using resolution we can derive the empty clause ä as shown:

ä

D

B¬B ∨ D

¬A ∨ ¬B ∨ DA

¬D

¬C ∨ ¬DC

¬B ∨ C

A¬A ∨ ¬B ∨ C

B

A¬A ∨ B
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Consequently the original formula is a tautology.

281. Suppose ci ⊆ c ′i ⊆ ci ∪ {¬`} for i = 0,1, and let c2 = R(c0,c1,k), c ′2 =
R(c ′0,c ′1,k). Then

c2 ⊆ c ′2 ⊆ c2 ∪ {¬`}.

If c0 is the one-element clause {`}, then k must be the same as `, and c2 =
c1 à {¬`}. Choosing c ′2 = c ′1 we have

c2 ⊆ c ′2 ⊆ c2 ∪ {¬`}.

Similarly, if c1 is {`}, then k is ¬`, c2 = c0 à {¬`}, and c ′2 = c ′0 gives

c2 ⊆ c ′2 ⊆ c2 ∪ {¬`}.

It follows by induction that for every clause c derivable from C ∪ {`} there
exists a clause c ′ derivable from C such that c ⊆ c ′ ⊆ c ∪ {`}.

282. Clearly, cannot both {v} and {¬v} belong to C. If {v} ∉ C then by maxi-
mality the empty clause ä can be derived from C∪ {v}. Then by Problem 281,
either C `R ä or C `R {¬v}.

283. If C is satisfiable, then by Problem 277, C 0R ä. In the other direction
suppose C 0R ä. By Zorn’s lemma, C can be assumed to be maximal. By
Problem 282 either {v} ∈ C or {¬v} ∈ C for each propositional variable v. Define
the evaluation f by stipulating f (v) => if {v} ∈ C. We claim that each clause
c = {`1, . . . ,`k } ∈ C has at least one true literal. If not, then f (`i ) = ⊥ for
each i , which means {¬`i } ∈ C. Using k resolvents all literals from c can be
eliminated, meaning C `R ä, a contradiction.

284. (i)⇒(ii) follows from Problem 277. For the reverse implication let
c = {`1, . . . ,`k }, and assume C 0R c ′ for subsets of c. Adding the k one-
element clauses {¬`i } to C we get C∗. If C∗ `R ä, then by repeated application
of the Deduction lemma (Problem 281) one gets C `R c ′ for some c ′ ⊆ c, con-
tradicting the assumption. Thus C∗ 0R ä, and by Solution 283 there is an
evaluation which satisfies all clauses in C∗. This shows that (ii) does not hold
either.

285. Let us denote the propositions in the premises as A =balloonists,
B =carrying umbrellas, C =dancing on tight ropes, D =eating penny-buns,
E =fat, F =liable to giddiness, G =looking ridiculous, H =may lunch in pub-
lic, J =old, K =pigs, L =treated with respect, M =wise. One has to take
“young” to be the negation of “old”. Each premise translates to s single clause:
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(1) (¬C ∧¬D) → J ⇒ C ∨ D ∨ J ,
(2) (K ∧ F ) → L ⇒ ¬K ∨¬F ∨ L,
(3) (M ∧ A) → B ⇒ ¬M ∨¬A ∨ B ,
(4) (G ∧ D) →¬H ⇒ ¬G ∨¬D ∨¬H ,
(5) (¬J ∧ A) → F ⇒ J ∨¬A ∨ F ,
(6) (E ∧G ∧C ) → H ⇒ ¬E ∨¬G ∨¬C ∨ H ,
(7) (M ∧ F ) →¬C ⇒ ¬M ∨¬F ∨¬C ,
(8) (K ∧ B) →G ⇒ ¬K ∨¬B ∨G ,
(9) (¬C ∧ L) → E ⇒ C ∨¬L ∨ E .

Using resolution the required ¬M ∨ J ∨¬K ∨¬A can be derived as follows:

Consequently, (K ∧ M ∧ A) → J , that is, “no wise young pigs go up in bal-
loons” follows from the set of premises.

286. (a) The two clauses are {`,`} and {¬`,¬`}. Each resolution step elimi-
nates at most two literals from the union, thus every clause of the derivation
will contain at least two literals.

(b) It used that if c ′ ⊆ c ∪ {¬`}, then c ′ ⊆ (c à {¬`})∪ {¬`}, which is not true
for multisets.

287. (a)

A ` A,B

A ` A ∨ B
`∨

; ` ¬A, A ∨ B
`¬

; ` ¬A ∨ (A ∨ B)
`∨
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(b)
B , A ` A, B B , A ` A, B

B , A ` A ∧ B
`∧

A ` ¬B , A ∧ B
`¬

A ` ¬B ∨ (A ∧ B)
`∨

; ` ¬A, ¬B ∨ (A ∧ B)
`¬

; ` ¬A ∨ (¬B ∨ (A ∧ B))
`¬

(c)

¬A ∨ (¬B ∨C ), ¬A ` ¬A, C

¬A ∨ (¬B ∨C ), ¬A ` ¬A ∨C
`∨

B , ¬A ` ¬A, C

¬A ` ¬B , ¬A ∨C
`¬ ¬B ` ¬B , ¬A ∨C

A, B , C ` C

B , C ` ¬A, C
`¬

B , C ` ¬A ∨C
`∨

C ` ¬B , ¬A ∨C
`¬

¬B ∨C ` ¬B , ¬A ∨C
∨`

¬A ∨ (¬B ∨C ) ` ¬B , ¬A ∨C
∨`

¬A ∨ (¬B ∨C ), B ` ¬A ∨C
¬`

¬A ∨ (¬B ∨C ), ¬A ∨ B ` ¬A ∨C
∨`

¬A ∨ B ` ¬(¬A ∨ (¬B ∨C )), (¬A ∨C ))
`¬

¬A ∨ B ` ¬(¬A ∨ (¬B ∨C )) ∨ (¬A ∨C ))
`∨

; ` ¬(¬A ∨ B), ¬(¬A ∨ (¬B ∨C )) ∨ (¬A ∨C ))
`¬

; ` ¬(¬A ∨ B) ∨¬(¬A ∨ (¬B ∨C )) ∨ (¬A ∨C ))
`∨

288. Consider a derivation, which is a tree of sequents, where every node
of the tree is either an axiom or is formed using one of the inference rules.
;`ϕ is derived if this sequent is the root of the tree. Let Γ= {ϑ1, . . . ,ϑk } and
∆= {ψ1, . . . ,ψn}. Interpret the sequent Γ`∆ as the formula

∧
Γ→∨

∆, that
is,

>∧ϑ1 ∧ ·· · ∧ϑk → ⊥∨ψ1 ∨ ·· · ∨ψn .

Then every axiom Γ,ϕ`ϕ,∆ is a tautology, and the rules of inferences trans-
form tautologies into tautologies. Therefore, if ;`ϕ is derived, then ϕ must
be a tautology.

On the other hand, consider a tautology ϕ. We decompose ϕ step by
step and build the “reverse” derivation tree (known as the reduction tree) as
follows. Start with the sequent ;`ϕ and in every step apply the inverse of
one of the inference rules. For example, from ϕ∧ψ` ϑ we make ϕ,ψ` ϑ

(we applied the inverse of ∧`), or from ϕ∨ψ` ϑ we get to sequents ϕ` ϑ

and ψ`ϑ, etc. So, by a series of steps, the right side of ` can be processed
until it includes only propositional letters and then the same is done for the
left side.

The leaves of the tree we obtained contain only propositional letters. As
each derivation rule preserves tautologies, the leaves should be axioms, that
is, the propositional letters on the right side of ` should appear on the left
sides as well. Therefore the tree we constructed is a Gentzen-style deduction
of ;`ϕ.

289. Suppose the evaluation f satisfies Σ. By induction on the length of the
derivation Σ`ϕ check that f (ϕ) =>.
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If ϕ appears in the derivation as an element of Σ, or as an axiom, then
f (ϕ) => by assumption. If ϕ is a conclusion of MP, then Σ`ψ and Σ`ψ→ϕ

have shorter proofs, thus f (ψ) => and f (ψ→ϕ) => by induction. It gives
f (ϕ) =>, as required.

290. Suppose Σ Í ϕ. By the Compactness Theorem 5.10 there are finitely
many elements {ϕ1, . . . ,ϕk } of Σ such that {ϕ1, . . . ,ϕk } Íϕ. By definition of Í,
the formula

ϕ1 →
(
ϕ2 → (· · ·→ (ϕk →ϕ) · · · ))

is a tautology (for every evaluation f , if all ϕi evaluates to >, then f (ϕ) =>).
Using this tautology as an axiom, ϕi as an element of Γ, k instances of MP
derives ϕ. If Σ is empty (or k = 0), then ϕ is a tautology, thus it is an axiom,
and then derivable from the empty set.

291. (⇐) If Σ`ψ→ϕ then by monotonicity of ` we have Σ,ψ`ψ→ϕ, and
then by MP we get Σ,ψ`ϕ.

(⇒) Since ϕ is a member of a derivation it is either (i) an axiom, or (ii) a
member of Σ, or (iii) same as ψ, or (iv) the conclusion of an MP.

(i) and (ii) In this case Σ ` ϕ. Using Ax1 we can derive ψ → ϕ from Σ as
follows.

1. ϕ (given)

2. ϕ→ (ψ→ϕ) (axiom)

3. ψ→ϕ (MP:1,2)

(iii) ϕ→ϕ is just an instance of Ax2.

(iv) Since ϕ is a conclusion of MP, there is ϑ so that both ϑ and ϑ→ϕ occur
previously in the proof, and so the inductive hypothesis gives Σ`ψ→ϑ and
Σ`ψ→ (ϑ→ϕ). From here the derivation can be finished as

1. ψ→ϑ (given)

2. ψ→ (ϑ→ϕ) (given)

3. (ψ→ (ϑ→ϕ)) → ((ψ→ϑ) → (ψ→ϕ)) (axiom)

4. (ψ→ϑ) → (ψ→ϕ) (MP:2,3)

5. ψ→ϕ (MP:1,4)

292. (⇒) By the deduction lemma (Problem 291) we have Σ`¬ϕ→⊥. Then
apply MP to Ax4 to derive ϕ from Σ.

(⇐) By assumption we have Σ ` ϕ. Use Ax5 and MP to get Σ ` ¬ϕ →⊥.
From here the deduction lemma yields Σ,¬ϕ`⊥.

293. If both ϕ and ¬ϕ is in Σ, then Ax5 and two applications of MP derives
⊥, contradicting Σ0⊥.

Suppose ¬ϕ ∉Σ. By maximality, Σ,¬ϕ`⊥. From here Problem 292 gives
Σ`ϕ, which implies ϕ ∈Σ.
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294. The claim is true for propositional variables by definition. Suppose it
is true for ϕ and check for ¬ϕ. By Problem 293 exactly one of ϕ and ¬ϕ is in
Σ, and exactly one of ¬ϕ and ¬¬ϕ is in Σ. Thus ϕ ∈Σ if and only if ¬¬ϕ ∈Σ,
which implies the claim for ¬ϕ.

Next, suppose the claim for ϕ and ψ. If either ϕ or ψ is in Σ, then using one
of the axioms Ax6 or Ax7 we get ϕ∨ψ ∈Σ. If neither ϕ nor ψ is in Σ, then 293
gives ¬ϕ ∈Σ and ¬ψ ∈Σ, thus axiom Ax8 and two applications of MP yields
¬(ϕ∨ψ) ∈Σ. this, together with fΣ(ϕ∨ψ) =⊥ finishes the induction.

Axioms for other connectives can be generated similarly. For example, the
axioms for ∧ could be

Ax9 ϕ→ (ψ→ (ϕ∧ψ)

Ax10 ¬ϕ→¬(ϕ∧ψ)

Ax11 ¬ψ→¬(ϕ∧ψ)

295. If Σ is satisfiable, then Σ0⊥ by Problem 289. If Σ0⊥, then extend Σ to
a maximal consistent set. The evaluation fΣ satisfies Σ by Problem 294.

296. Immediate from weak completeness and Problem 292.

297. (a)

1. ψ→ϑ (given)

2. (ψ→ϑ) → (ϕ→ (ψ→ϑ)) (Ax1)

3. ϕ→ (ψ→ϑ) (MP: 1,2)

4. (ϕ→ (ψ→ϑ)) → ((ϕ→ψ) → (ϕ→ϑ)) (Ax3)

5. (ϕ→ψ) → (ϕ→ϑ) (MP: 3,4)

6. ϕ→ψ (given)

7. ϕ→ϑ (MP: 5,6)

(b)

1. ¬ϕ (given)

2. ¬ϕ→ (¬ϕ∨ψ) (Ax6)

3. ¬ϕ∨ψ (MP: 1,2)

4. ϕ→ψ (same as 3, shorthand)

5. ϕ (given)

6. ψ (MP: 4,5)

(c) If ϕ occurs in the proof sequence, then Ax1 and MP gives ψ→ϕ. These
steps are put on a single line below. X is the formula ϕ→ (ψ→ϑ), and Y is
(ϕ→ψ) → (ϕ→ϑ).

1. ϕ→ (ψ→ϑ) = X (given)

2. X → ((ϕ→ψ) → (ϕ→ϑ)) (Ax3)

3. ψ→ X (Ax1 and 1)

4. ψ→ (X → Y ) (Ax1 and 2)

5. (ψ→ (X → Y )) → ((ψ→ X ) → (ψ→ Y )) (Ax3)
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6. (ψ→ X ) → (ψ→ Y ) (MP: 4,5)

7. ψ→ Y (MP: 3,6)

8. (ψ→ (ϕ→ψ)) → (ψ→ (ϕ→ϑ)) (Ax3 and 7)

9. ψ→ (ϕ→ψ) (Ax1)

10. ψ→ (ϕ→ϑ) (MP: 8,9)

(d) Derivation similar to part (a) is not repeated here.

1. ¬¬ϕ→ (¬¬ϕ∨⊥) (Ax6)

2. ¬¬ϕ→ (¬ϕ→⊥) (same as 1, shorthand)

3. (¬ϕ→⊥) →ϕ (Ax4)

4. ¬¬ϕ→ϕ (part (a): 2,3)

298. Go through the steps which led to the completeness. There is no change
in the syntactic deduction lemma (Problem 291) which gives axioms Ax1, Ax2,
and Ax3.

The next step is the equivalence of weak and strong completeness, Problem
292. As ⊥ is not available, consistency should be defined differently. One
possibility is to fix an arbitrary formula (or propositional variable) Φ, and use
¬(Φ→Φ) in place of ⊥. The needed axiom schemes are

Ax∗4 (¬ϕ→¬(Φ→Φ)) →ϕ,

Ax∗5 ϕ→ (¬ϕ→¬(Φ→Φ)).

Define Σ to be consistent if Σ0¬(Φ→Φ). Problem 293 goes through without
changes. Finally the evaluation fΣ works for ¬ as before, and for → the
following axioms suffice:

Ax∗6 ¬ϕ→ (ϕ→ψ),

Ax∗7 ψ→ (ϕ→ψ),

Ax∗8 ϕ→ (¬ψ→¬(ϕ→ψ)).

299. Solution 1. Using completeness, `ϕ↔ψ if and only if ϕ and ψ takes
the same value for every evaluation. Then Φ and Ψ also takes the same value
for every evaluation, thus `Φ↔Ψ by completeness again.

Solution 2. A direct “synthetic” proof can go by induction on the complexity
of Φ (and by the deduction lemma, Problem 291). Using the connectives ¬
and ∨ only, the following derivations should be provided à là Problem 297:

(a) ϕ↔ψ ` (¬ϕ) ↔ (¬ψ),

(b) ϕ1 ↔ψ1, ϕ2 ↔ψ2 ` (ϕ1 ∨ψ1) ↔ (ϕ2 ∨ψ2).

300. (a) Suppose ϕ and ϕ → ψ are all–1 formulas (ϕ ≡ 1 and ¬ϕ ∨ ψ ≡ 1).
Then ¬ϕ is all–0, thus we have to guarantee that 0 ∨ ψ ≡ 1 implies ψ ≡ 1.
Therefore the ∨ table should satisfy 0 ∨ 1 = 1, 0 ∨ 0 6= 1 and 0 ∨∗ 6= 1. Nothing
changes if ¬∗= 1. Note that independent of what ¬ is we need ∨ to satisfy
¬1 ∨ψ≡ 1 if and only if ψ≡ 1.
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(b) The truth table of the first three axioms with the first (second) definition
of ¬:

ϕ ψ ϕ→ψ ϕ∨ϕ→ϕ ϕ→ϕ∨ψ ϕ∨ψ→ψ∨ϕ

0 0 1 (1) 1 (1) 1 (1) 1 (1)
0 ∗ 1 (1) 1 (1) 1 (1) ∗ (1)
0 1 1 (1) 1 (1) 1 (1) 1 (1)
∗ 0 ∗ (1) ∗ (1) ∗ (1) ∗ (1)
∗ ∗ ∗ (1) ∗ (1) ∗ (1) ∗ (1)
∗ 1 1 (1) ∗ (1) 1 (1) 1 (1)
1 0 0 (0) 1 (1) 1 (1) 1 (1)
1 ∗ ∗ (∗) 1 (1) 1 (1) 1 (1)
1 1 1 (1) 1 (1) 1 (1) 1 (1)

With none of the two definitions of ¬ can the value of the fourth axiom be 0:

(ϕ→ψ) → (ϑ∨ϕ→ϑ∨ψ) = 0 ⇔


ϕ→ψ= 1,

(ϑ∨ϕ→ϑ∨ψ) = 0 ⇔


ϑ∨ϕ= 1,

ϑ∨ψ= 0 ⇔
{

ϑ= 0,
ψ= 0.

By ϑ= 0 and ϑ∨ϕ= 1 we get ϕ= 1; impossible as ϕ→ψ should be 1.
With the first definition of ¬, the fourth axiom can be either 1 or ∗, shown

by ϕ=ψ=ϑ= 1 and ϕ=ψ=ϑ=∗, but it cannot take the value ∗ using the
second definition of ¬:

(ϕ→ψ) → (ϑ∨ϕ→ϑ∨ψ) =∗⇔


ϕ→ψ= 1,

(ϑ∨ϕ→ϑ∨ψ) =∗⇔
{

ϑ∨ϕ= 1,
ϑ∨ψ=∗.

Here none of ϑ and ψ can be 1, thus ϕ should be 1, but then ϕ→ψ cannot
be equal to 1.

(c) Definition of ¬ is the first one, and the ∨ table is as follows:

x 0 0 0 ∗ ∗ ∗ 1 1 1
y 0 ∗ 1 0 ∗ 1 0 ∗ 1

x ∨ y 0 0 1 0 0 1 1 1 1

301. The effect of ¬ is given by ¬0 = 1, ¬∗ = ∗ and ¬1 = 0. Consider the
following ∨-tables.

x 0 0 0 ∗ ∗ ∗ 1 1 1
y 0 ∗ 1 0 ∗ 1 0 ∗ 1

A x ∨ y 0 0 1 0 0 1 1 1 1
B x ∨ y 0 ∗ 1 ∗ 1 1 1 1 1
C x ∨ y 0 0 1 1 0 1 1 1 1

In each case (i.e. when ∨ is defined according to row A, B or C) MP derives
from all–1 formulas only all–1 formulas (see Problem 300(a)). In case A only
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the second axiom is not all–1 (∗→∗∨ 0 = 0), in case B only the first axiom
is not all–1 (∗ ∨ ∗→ ∗ = ∗) and in case C only the third axiom is not all–1
(∗∨ 0 → 0 ∨∗= 0).

302. (a) As a subformula has a smaller code than the formula itself, the
characteristic function of the propositional formula codes can be defined by
a straightforward course-of-value recursion.

(b) For example, instances of the first axiom scheme ϕ→ (ψ→ϕ) are the
formulas of the form ¬ϕ∨ (¬ψ∨ϕ). Now i ∈ω is the code of such formula if
and only if

• i is a formula code, and

• there are formula codes j < i and k < i such that i = 〈
3, 〈2, j 〉, 〈3,〈2,k〉, j 〉〉.

(c) This is just the set of triplets 〈i ,〈3,〈2, i 〉 j 〉, j 〉 where i , j ∈ω are formula
codes.

303. Define G by course-of-value recursion.

304. If the variable vi occurs in ϕ, then i < α(ϕ). Thus ϕ is a tautology if
fa(ϕ) = > for a < α(ϕ) where fa is defined as fa(vi ) = > if the i -th binary
digit of a is 1. As the exponential function is recursive and checking whether
ϕ evaluates to > is recursive by Problem 303, we are done.

305. x codes a derivation of y if all elements of x are formula codes, y is the
last element of x, and every element of x is

• an element of Σ, or

• an instance of an axiom scheme, or

• the conclusion of a MP with premises appearing earlier.

By the assumption and by Problem 302 all of the conditions are recursive.

306. (a) Σ`ϕ iff there is a derivation from Σ ending with ϕ. By Problem 305
checking whether x is a derivation of y is recursive. Thus the function

g (u) =
{

(u)1 if (u)0 is a derivation from Σ of (u)1,
α(¬⊥) otherwise

enumerates formulas derivable from Σ.

(b) Suppose F enumerates Σ. The ternary relation “x is a derivation of y
from the first n elements of Σ” is recursive, which can be used to enumerate
all consequences of Σ.

307. Let A ⊆ω be a recursively enumerable but not recursive set (see Prob-
lem 216), and assume that the recursive function g enumerates it. The i -th
formula in Σ is vk ∨ vk ∨ ·· · ∨ vk ((i +1) times) where k = g (i ). This Σ is recur-
sive as g is a recursive function, and Σ` vk if and only if k ∈ A. Consequently
the consequences of Σ is not a recursive set.
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12.6 FIRST-ORDER LOGIC

308. Each variable symbol is a term, from here the lower bound follows. Let
E0 be the set of variable and constant symbols and for k ∈ω put

Ek+1 = Ek ∪ { f (t1, . . . , tn) : f ∈ τ and t1, . . . , tn ∈ Ek }.

By induction |Ek | ≤ |τ| ·ω and E(τ) =⋃
{Ek : k ∈ω}.

309. Exactly the same way as in Problem 308.

310. By induction on the complexity of the formula ϕ. The only case that
might need clarification is when ϕ is of the form ∃xψ. Suppose e0 and e1

agree on the free variables of ∃xψ, and pick a ∈ A arbitrarily. As V (∃xψ) =
V (∃xψ)à {x}, for each y ∈ V (ψ) we have e0(x/a)(y) = e1(x/a)(y). Applying
the inductive hypothesis to ψ and the evaluations e0(x/a), e1(x/a) we get

AÍψ[e0(x/a)] if and only if AÍψ[e1(x/a)].

Thus AÍ∃xψ[e0] iff AÍ∃xψ[e1].

311. A Í ∀xϕ[e] exactly if for all a ∈ A, A Í ϕ[e(x/a)]. Thus if A Í ϕ, then
AÍ∀xϕ. The converse direction follows from the fact that e occurs among
the evaluations e(x/a) with the choice a = e(x).

312. Take ϕ≡∃y(x = y) and t ≡ y +1 Then Íϕ, on the other hand 6Íϕ[x/t ].

313. (a) If the substitution ϕ[x/t ] is admissible, then, by the Substitution
Lemma 6.7, AÍ (ϕ[x/t ])[e] if and only if AÍϕ[e(x/tA[e])], therefore the task
is to give examples for AÍ (ϕ[x/t ])[e] and A 6Í (ϕ[x/t ])[e].

For the first one let ϕ≡ x = x, t ≡ y , then ϕ[x/t ] ≡ y = y , and both are true
in any structure for any evaluation. Similarly, the second formula can be
ϕ≡ x 6= x with the same term. Then ϕ[x/t ] ≡ y 6= y , and both formulas are
false.

(b) In the examples below the type is τ= 〈0,1,+〉 where 0 and 1 and con-
stant symbols, + is a binary function symbol. The universe of the structure A
is the set ω of natural numbers, the interpretation of 0 and 1 is zero and one
respectively, and the interpretation of + is the usual addition.

Take ϕ≡∃y(x = y) and t ≡ y +1. The substitution ϕ[x/t ] is not admissible.
Note that ϕ[x/t ] ≡∃y(y +1 = y).

• With e(y) = 0 we have A 6Í (ϕ[x/t ])[e] (as A 6Í ∃y(y +1 = y)[e]) yet A Í
ϕ[e(x/tA[e])] (as AÍ∃y(1 = y)).

• Let B be the same as A except for the interpretation of + as a +B b = a,
and let e(y) = 1. Then B Í (ϕ[x/t ])[e] (as B Í ∃y(y + 1 = y)[e]) and
BÍϕ[e(x/tA[e])] (as BÍ∃y(1 = y)).

Let now ϕ≡∀y(x 6= y) and t ≡ y +1. The substitution ϕ[x/k] is not admis-
sible, and ϕ[x/t ] ≡∀y(y +1 6= y).
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• Let e(y) = 0. Then we have AÍ (ϕ[x/t ])[e] (as AÍ∀y(y +1 6= y)[e]) yet
A 6Íϕ[e(x/tA[e])] (as A 6Í ∀y(1 6= y)).

As for the last possibility, write ψ≡ϕ∧ (z 6= z). Then whatever B and e are
we have B 6Í (ψ[x/t ])[e] and B 6Íψ[e(x/tA[e])].

314. Γ=;, A is any model with at least two elements and ϕ is the formula
x = y .

315. 1. ΓÍϕ→ψ and Γ∪ {ϕ} Íψ. Take ϕ≡ψ≡∀x(x = x).

2. Γ 6Í ϕ → ψ and Γ∪ {ϕ} Í ψ. Put Γ = {∀xR(x) → ∀xP (x)}, ϕ ≡ R(x) and
ψ≡∀xP (x).

3. ΓÍϕ→ψ and Γ∪ {ϕ} 6Íψ is impossible by monotonicity of Í and modus
ponens. For if Γ Í ϕ → ψ, then Γ,ϕ Í ϕ → ψ, and also Γ,ϕ Í ϕ, thus
Γ,ϕÍψ.

4. Γ 6Íϕ→ψ and Γ∪ {ϕ} 6Íψ. Put ϕ≡∀x∀y(x = y) and ψ≡∃x∃y(x = y).

316. In general no, but Í and ∗Í are equivalent for closed formulas. Clearly
Γ ∗Í ϕ implies Γ Í ϕ. To see that the converse direction does not hold, let
Γ= {∀x R(x) →∀x P (x), R(x)} and ϕ≡∀x P (x).

317. (a) IfΓÍϕ and ϕ ∉ Γ, thenΓ∪{ϕ} would be a proper consistent extension
of Γ, contradicting maximality.

(b) If ΓÍϕ∨ψ but neither ΓÍϕ nor ΓÍψ holds, then one of Γ∪ {ϕ} or
Γ∪{ψ} would be a proper consistent extension of Γ, contradicting maximality.

(c) As ϕ is closed, ϕ ∉ Γ iff Γ 6Íϕ. Then there is a model AÍ Γ∪ {¬ϕ}, thus
Γ∪ {¬ϕ} is consistent. As Γ is maximal we must have ¬ϕ ∈ Γ.

318. If A is a model of Γ, then Γ⊆ Th(A), thus it suffices to show that Th(A) is
maximal consistent. If ϕ ∉ Th(A), thenA 6Íϕ, and then by Problem 311, A 6Í ϕ̄,
thusAÍ¬ϕ̄ as ϕ̄ is closed. If Th(A)∪{ϕ} were consistent, sayBÍ Th(A)∪{ϕ},
then BÍ ϕ̄ and BÍ¬ϕ̄, a contradiction.

319. No such a closed formula exists. Suppose A has at least two elements,
Γ= Th(A) (which is maximal consistent by Problem 318), and let ϕ be x=y .
Neither AÍ x=y (as A has at least two elements), nor AÍ¬(x=y) (as each
element of A is equal to itself). See also Problem 314.

320. (a) For each n-variable function symbol f ∈ τ add a new relation symbol
r f (x1, . . . , xn , z) with the intended meaning that z = f (x1, . . . , xn). Add the
following formulas to Γ:

∀x1 . . .∀xn∃z r f (x1, . . . , xn , z),

∀x1 . . .∀xn∀z1∀z2
(
r f (x1, . . . , xn , z1) ∧ r f (x1, . . . , xn , z2) → z1 = z2

)
For each term t (~x) ∈ E (τ) create a formula ϕt (~x, z) expressing that its value is
z by induction on the complexity of t :

• if t is the variable symbol x, then ϕt (x, z) ≡ x=z,
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• if t the constant symbol c ∈ τ, then ϕt (z) ≡ c=z,

• if t is f (t1, . . . , tn), then ϕt (~x, z) is

∀z1 . . .∀zn
(
ϕt1 (~x, z1) ∧ ·· · ∧ϕtn (~x, zn) → r f (z1, . . . , zn , z)

)
.

Rewrite the formulas in Γ by replacing every atomic formula t1 = t2 by

∀z1∀z2
(
ϕt1 (~x, z1) ∧ϕt2 (~x, z2) → z1 = z2

)
,

and every atomic formula r (t1, . . . , tn) with r ∈ τ by

∀z1 . . .∀zn
(
ϕt1 (~x, z1) ∧ ·· · ∧ϕtn (~x, zn) → r (z1, . . . , zn)

)
.

It is clear that every model of Γ can be turned to a model of the new formula
set and the other way around.

(b) Suppose no function symbol occurs in Γ. Add a new binary relation ≈
to τ, and add the following formulas to Γ:

x ≈ x, x ≈ y → y ≈ x, x ≈ y ∧ y ≈ z → x ≈ z,∧
1≤i≤n

xi ≈ x ′
i → (r (~x) ↔ r (~x ′)) for all r ∈ τ.

The first line says that ≈ is an equivalence relation; the second line that each
relation is compatible with it. Finally replace each equality symbol in Γ by ≈.
Factoring a model of the new formula set preserves validity and makes ≡ to
be the real equality relation.

321. Let ϕn express the fact that it is not true that the structure has exactly n
elements:

ϕn ≡ ¬∃x1 . . .∃xn∀y
( ∧

i 6= j
xi 6= x j ∧ ∨

i
y = xi

)
Clearly 6Íϕn as there are structures having exactly n elements. On the other
hand there must be some n for which both AÍϕn and BÍϕn .

322. (a) For each r ∈R let fr be a unary function symbol and set

f Ar (q) =
{

r if q ∈RàZ,
q if q ∈Z.

Additionally, let s and p be unary function symbols such that sA(r ) = r +1
and pA(r ) = r −1.

(b) Let fr (r ∈R) be as above and set dA(r ) = r +2, hA(r ) = r −2, and

gA(x, y) =


π if x and y have different parity,
0 if x and y are even,
1 if x and y are odd.
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323. The intersection of all substructures containing X is a substructure (as
it is not empty) which contains X ; this is the generated substructure.

Let X0 = X ∪ {cA : c is a constant symbol in τ}, and for n ∈ω put

Xn+1 = Xn ∪ { f A[Xn] : f ∈ τ is a function symbol},

where f A[Xn] is the image of Xn under the function f A. Then B =⋃
n∈ω Xn

is the ground set of a substructure which contains X . (Actually this is the
generated substructure.) Each Xi has cardinality ≤ |X | · |τ|, thus |B | ≤ω · |X | ·
|τ|.

324. (a) Let A be any structure with empty type. Every non-empty subset of
A is the universe of a substructure.

(b) The two substructures in Problem 322 (b).

325. Straightforward induction on the complexity of the formulas using that
tB[e] = tA[e] for all terms t (again by induction on the complexity of t ).

326. Yes. For a non-empty subset X ⊆ A let F (X ) = ⋂
{B ∈ F : X ⊆ B}. By

assumption (a), X ⊆ F (X ) ∈ F , and it is clear that X ⊆ Y implies F (X ) ⊆
F (Y ).

We claim that F (X ) = ⋃
{F (N ) : N ∈ [X ]<ω} for non-empty subsets of A.

This is clear when X is finite; otherwise prove if by induction on the cardinal-
ity of X . If |X | = κ, then write X as {xα : α< κ}, and let X �α= {xβ : β<α}. By
condition (b),

⋃
{F (X �α) : α< κ} is in F , thus it is equal to F (X ). Using the

induction hypothesis, F (X �α) is the union of F (N ) as N runs over the finite
subsets of X �α. As any finite subset of X is a subset of X �α for some α< κ,
we get the claim for X .

For each N ∈ [A]<ω and b ∈F (N ) define the |N |-variable function fN ,b as

fN ,b(x1, . . . , xn) =
{

b if N = {x1, . . . , xn},
x1 otherwise.

With these functions the universe of the substructure generated by X ⊆ A is
X ∪⋃

{F (N ) : N ∈ [X ]<ω} =F (X ) ∈F , and for X ∈F , F (X ) = X .

327. Solution 1. Note that every automorphism preserves the interpretation
of all the constant symbols. Thus if all elements of the ground set are named
by some constant (with interpretation of that element), then this structure
has only one automorphism, the identity. This solution has been excluded
by requiring the type to be finite.

(a) The structure has ground set the natural numbers, a single constant
symbol denoting zero, and a unary function symbol f for the x 7→ x + 1
function. Any automorphism preserves zero, and then f (0), f ( f (0)), etc.

(b) Let the ground set be the real numbers R. In the type have constant
symbols denoting 0 and 1, and function symbols for addition, multiplication
and division. (The latter one is not a function, but extend division to be a
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function by saying that x/0 = x.) Any automorphism preserves the rational
numbers. To extend it to the reals, add the ordering (a binary relation).
Solution 2. Any well-ordered structure (the signature consists of a single
binary relation symbol) has trivial automorphism only.

328. A is a graph if the edges are undirected, and there are no loops. These
properties can be expressed as

E(x, y) → E(y, x) it is undirected, and

¬E(x, x) there are no loops.

329. (a) Every vertex has at least three different neighbors, but not more:

∀x∃y1∃y2∃y3
(
y1 6= y2 ∧ y2 6= y3 ∧ y3 6= y1 ∧
E(x, y1) ∧ E(x, y2) ∧ E(x, y3) ∧
∀z (E(x, z) → (z = y1 ∨ z = y2 ∨ z = y3)

)
.

(b) Some vertex is connected to all others: ∃x∀y (x=y ∨ E (x, y)), and neigh-
bors of x are not connected: ∀x∀y1∀y2(E(x, y1) ∧ E(x, y2) →¬E(y1, y2) ).

(c) ∀x1∀x2∀x3¬(E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x1) ).
(d) The graph has no edges, as x1 and x3 can be the same vertex.

330. (a) Γ= {ϕk : k ∈ω} where for each k ∈ω, ϕk is the formula

¬∃x1 · · ·∃xk
( ∧

i 6= j
xi 6= x j ∧ ∧

i<k
E(xi , xi+1) ∧ E(xk , x1)

)
(b) ¬∃x1 · · ·∃x16

(∧
i 6= j xi 6= x j ∧ ∧15

i=1 E(xi , xi+1)
)

(c) A graph is bipartite iff it does not contain cycles of odd length, thus
Γ= {

ϕk : k is odd
}

suffices, where ϕk is from part (a).

331. For every x there is a y which is connected to every vertex x is connected
to, and a new one:

∀x∃y
(∀u(E(x,u) → E(y,u)) ∧ ∃v (E(y,v) ∧¬E(x,v) )

)
.

Such a graph must be infinite as there can be no maximal degree vertex. To
construct such a graph take vertices vi , wi for i ∈ω, and edges 〈vi , w j 〉 where
i ≤ j .

332. (x · y) · z = x · (y · z), x ·e = x, e · x = x, x · x−1 = e, x−1 · x = e.

333. (a) The formula ∃x1 . . .∃xn
∨

i 6= j xi 6=x j is true in a structure if it has at
least n elements. Let Γ be an infinite set of such formulas.

(b) For n ≥ 1 define the term xn by induction as x1 ≡ x, and xn+1 ≡ (xn) · x.
The formula set is {∀x(xn=e → x=e) : n ≥ 1}.

Remark. The notation xn is only a shorthand for a certain term which
depends on what the number n is.
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(c) Torsion-free was handled in (b). Abelian: ∀x∀y (x · y = y · x). Divisible:
for every n ≥ 2 add ∀x∃y (yn = x). No single (or finitely many) formula can
express divisibility, see Problem 705.

(d) If p is a prime then the formula ∀x (xp = e) works, as in this case the
order of x divides p, and for x 6= e the order is not 1.

334. The shifts form the centralizer of π, thus the formula x ·π=π · x works.

335. (x < y ∧ y < z → x < z), (x < y) →¬(y < x), (x < y) ∨ (x = y) ∨ (y < x).

336. (a) ∀x∀y∃z
(
x ≤ z ∧ y ≤ z ∧ ∀w((x ≤ w ∧ y ≤ w) → z ≤ w)

)
.

(b) ∀x∀y∃z
(
z ≤ x ∧ z ≤ y ∧ ∀w((w ≤ x ∧ w ≤ y) → w ≤ z)

)
.

(c) ∃x∃y∀z
(
(z ≤ x → z = x) ∧ (y ≤ z → y = z)

)
.

337. Use the formula ∀x(ϕleft(x) ∨ϕright(x) ), where ϕleft(x) is

∃y (y ≤ x ∧ y 6= x) ∧
∀y

(
(y ≤ x ∧ y 6= x) →∃z(z 6= y ∧ z 6= x ∧ y ≤ z ∧ z ≤ x)

) ∧
∃y

(
(x ≤ y ∧ x 6= y) ∧ ∀z((x ≤ z ∧ z ≤ y) → (x = z ∨ y = z))

)
.

ϕright(x) is analogous. The formula is simpler when using < instead of ≤.
Such an ordering does exist: take

∑
η{0,1}, that is, replace each rational

number by two consecutive points. However, this side cannot be the same
for all points in the ordering. To see this, suppose, seeking a contradiction,
that each point has an immediate right successor but on the left side there
are elements arbitrarily close. Let x be arbitrary and y be the closest to x on
the right hand side. Then x is on the left hand side of y , hence, as there must
be elements arbitrary close to y on the left hand side, there must exist some
x < z < y which contradicts the choice of y .

338. ∃x(∃y(y < x ∧ ∃x(x < y ∧ ∃y(y < x ∧ . . .)))).

339. (a) For n ≥ 0 let π(n) denote the term ((((0+1)+1)+ . . .)+1 (n times,
bracketed from left to right); for negative n ∈Z let π(n) =−π(−n). Similarly,
xn denotes the term x · · ·x (n times). Put

Γ= {∃x
(
π(an)xn +·· ·+π(a0) = 0

)
: n ≥ 1, ai ∈Z, an 6= 0

}
.

(b) 1+1 = 0
(c) For every prime p write 1+·· ·+1 6= 0 using p ones.
(d) Γ= {∀x1 · · ·∀xn(x2

1 + . . .+x2
n 6= −1) : n ≥ 1}. A field satisfies Γ if and only

if an ordering can be defined on the field which has properties similar to
that of the real numbers. Such fields are called formally real, and must be of
characteristic zero.

(e) A field is algebraically closed if every polynomial with coefficients from
the field has a root. This can be expressed by the following formula set:

Γ= {∀an · · ·∀a0∃x
(
an 6= 0 → an xn +·· ·+a0 = 0

)
: n ≥ 1

}
.

(f) If (d) also holds, the field is called real closed.

Γ= {∀an · · ·∀a0∃x
(
an 6= 0 → an xn +·· ·+a0 = 0

)
: n ≥ 1, n is odd

}
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340. (a) x ≈ x, (x ≈ y) → (y ≈ x), (x ≈ y ∧ y ≈ z) → (x ≈ z). For an
n-variable function symbol f and relation symbol r add∧

i
xi ≈ yi → f (x1, . . . , xn) ≈ f (y1, . . . , yn), and∧

i
xi ≈ y j → (r (x1, . . . , xn) ↔ r (y1, . . . , yn).

(b) Suppose first that there is a modelAÍ Γ and an evaluation e overA such
that A 6Íϕ[e]. Interpret ≈ as the equality relation on A. Then A≈ Í Γ≈∪∆,
and with the same evaluation e, A≈ 6Íϕ≈.

For the other direction let A≈ Í Γ≈∪∆. Define A as the factor A≈/≈. Since
the formulas in ∆ are true in A≈, this is a sound definition. Let e≈ be an
evaluation over A≈, and e(x) = e≈(x)/≈ be the corresponding evaluation over
A. It is easy to check by induction on the complexity of formulas that for
every τ-type formula ϕ, A≈ Íϕ≈[e≈] if and only if AÍϕ[e]. Thus AÍ Γ, and
if A≈ 6Íϕ≈[e≈] for some e≈, then A 6Íϕ[e], giving the inverse implication.

341. Solution 1. We will construct formulas ϕk (x, y) by induction which
express that x ≥ y +2k and use the only additional variable symbol z. Let
ϕ0(x, y) ≡ y < x, and suppose ϕk (x, y) has already been defined. Then put

ϕk+1(x, y) =∃z
(∃y(y = z ∧ ϕk (x, y)) ∧ ∃x(x = z ∧ ϕk (x, y))

)
.

Solution 2. Similarly to Solution 338,

∃z(x < z ∧ z < y ∧ ∃x(z < x ∧ x < y ∧ ∃z(. . .))).

342. Formulas (a)–(c) hold in A, (d) does not.
(a) This formula says that in the binary representation of x no digit is 1,

and x = 0 is such a number.
(b) According to this formula the u-th digit of z must be 1 if and only if the

u-th digit of either x or y is 1. Take z to be the “bitwise or” of x and y .
(c) ∀v(v ∈ u → v ∈ x) holds if the binary representation of u can be got

from that of x after changing some of the 1’s to 0. y is the number which
has 1 in exactly these positions. As there are finitely many such u, there is a
required y .

(d) The formula says that x is not zero (has 1 at some position), and if x
has a 1 at the y-th position, then it also has a 1 at the v-th position, where v is
bigger than y . Clearly no such an x exists.

343. For each x there are finitely many u such that u ∈A x. For each such
u take the smallest v such that AÍϕ[u,v], if such a v exists. Let us say the
collections of such v’s is the set {v1, . . . ,vn}. Then let y be the natural number
whose binary digits up to max{vi } are 1. This y fulfills the requirements.

344. (a) ϕa(n) ≡ (1+1 ≤ n) ∧ ∀x( x ≤ 1 ∨ n ≤ x ∨ ¬∃z(x · z = n)).
(b) ϕb(n) ≡ (n ≥ 1) ∧ ∀x

(∃z(x · z = n) ∧ϕa(x) → x = 1+1
)
.

(c) ϕc (n) ≡ (n ≥ 1) ∧ ∃y ∀x
(
ϕa(x) ∧∃z(x · z = n) → x = y

)
.

(d) ϕd (n) ≡ ∃x1 . . .∃x9
(
n = x1 · x1 · x1 +·· ·+x9 · x9 · x9

)
.
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Remark. Waring’s theorem states that every natural number can be writ-
ten as the sum of nine perfect cubes. Thus A Í ϕd [a] for each natural
number a ∈ω.

345. The twin prime conjecture states that there are infinitely many primes
p such that p +2 is also prime. The formula ϕa(n) from Solution 344 is true
for prime numbers only. The property “there are infinitely many” can be
expressed by referring to unboundedness:

∀n∃p(n ≤ p ∧ ϕa(p) ∧ϕa(p +1+1)).

346. (a) The formula x +x = x is satisfied by 0 only.
(b) Only 1 satisfies x 6= 0 ∧ ∀y (y 6= 0 → x | y).
(c) By (a) and (b) 0 and 1 can be used in our formulas as shorthands for

the unique elements determined by formulas ϕ0 and ϕ1. Express the least
common multiple of two positive numbers using the divisibility relation as
follows:

lcm(x,u,v) ≡ u | x ∧ v | x ∧∀y((u | y ∧ v | y) → x | y).

For a,b ≥ 1 AÍ lcm[c, a,b] iff c is the least common multiple of a and b.
Note that b and b +1 are always coprime, thus b(b +1) is their lcm. There-

fore ϕ3(a,b) can be the formula

(a = 0 ∧ b = 0) ∨ (b 6= 0 ∧ ∃u(lcm(u,b,b +1) ∧ u = a +b).

347. Observe that (1+ az)(1+ bz) = 1+ z2(1+ ab) if and only if z = 0 or
z = a +b. Also, z = 0 iff ∀u(z ·u = z), so the following formula works:

z 6= 0 ∧ S(x · z) ·S(y · z) = S(z · z ·S(x · y)) ∨
z = 0 ∧∀z ′(S(x · z ′) ·S(y · z ′) = S(z ′ · z ′ ·S(x · y)) → z ′ = 0

)
.

348. (a) z + z = z iff z = 0, thus x 6= 0 ∧ x +1 6= 0 ∧ 0+1 6= x works.
(b) |x| is a prime if |x| > 1 and if y is a divisor of x and |y | > 1, then x is a

divisor of y :

ϕ2(x) ≡ |x| > 1 ∧ ∀y
(|y | > 1 ∧ y | x → x | y

)
.

(c) |u| is a power of the prime |x| if u 6= 0 and all prime divisors of u are
divisors of x (allowing |u| = 1):

ϕ3(x,u) ≡ u 6= 0 ∧ ϕ2(x) ∧ ∀z (z |u ∧ ϕ2(z) → z ÷x).

(d) Note that for a prime p, pn has exactly 2n +2 divisors: ±1, ±p, . . . , ±pn .
Thus the formula expressing that u is a power of the prime |x| and u has
exactly 6 divisors will do:

ϕ4(x,u) ≡ ϕ3(x,u) ∧∃y1 . . . y6(
∧

i
yi |u ∧ ∧

i 6= j
yi 6= y j ∧∀y(y |u →∨

i
y = yi )).
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349. The map π : i 7→ −i is an automorphism of the structure A = 〈Z,+, |〉,
thus AÍϕ[a] iff AÍϕ[−a]. As a consequence, no formula distinguishes 1
and −1.

350. (a) Following the hint, let lcm(z, x, y) be the formula

lcm(z, x, y) ≡ x | z ∧ y | z ∧∀u ((x |u ∧ y |u) → z |u).

If none of a and b is zero, then AÍψ[c, a,b] iff c or −c is lcm(a,b).
For an integer i > 1, lcm(i , i + 1) = ±i (i + 1) and lcm(i , i − 1) = i (i − 1).

Observe that

±i (i +1)± i (i −1) =
{ ±2i 2

±2i

If |i | > 1 then the four values are all different, thus for |i | > 1 the following
formula is satisfied by j =±i 2 only:

ϕ1(i , j ) ≡ ∃x∃y
(
lcm(x, i , i +1) ∧ lcm(y, i , i −1) ∧
∧ j + j = x + y ∧ j 6= i ∧ i + j 6= 0

)
.

When |i | ≤ 1 simply check what j is.

(b) The problem is to choose between i 2 and −i 2. Suppose |x| > 1. Then
|x| +1 and |x| −1 both divide x2 −1, while |x| +1 does not divide −x2 −1.
(Otherwise we would have (|x|+1)|(|x|+1)2−x2−1, hence |x|+1|2|x|, which
implies x = 0 or |x| = 1). Thus the positive square j of |i | > 1 can be singled
out by

ϕ2(i , j ) ≡ ϕ1(i , j ) ∧ i +1 | j −1 ∧ i −1 | j −1.

(c) An integer is non-negative iff it is the sum of four squares, thus ϕ3(i )
can be

ϕ3(i ) ≡ ∃u∃v∃w∃y
(
ϕ2(u) ∧ ·· · ∧ϕ2(y) ∧ i = u +v+w + y

)
.

351. We make use of the following abbreviation. If ϑ(x) is a formula with one
free variable symbol, then (∀x ∈ϑ)ϕ abbreviates ∀x(ϑ(x) →ϕ), and similarly
for ∃. Let ϑ(x) be R(x) ∧ 0 ≤ x ∧ 0 6= x.

The required formula is ϕ( f ) below, where f is a free variable.

F ( f ) → (∀x ∈ R)(∀ε ∈ϑ)(∃δ ∈ϑ)(
(∀y ∈ R)(|x − y | ≤ δ→|H( f , x)−H( f , y)| ≤ ε)

)
Here |a −b| ≤ c is, for example, the abbreviation of the formula(

(a −b ≤ 0) →−(a −b) ≤ c
)∧ (

(0 ≤ a −b) → (a −b) ≤ c
)

352. There is no such λ. Let A = 〈λ,cξ〉 with cA
ξ

= ξ for ξ < λ and B =
〈λ∪ {a},cξ〉, where a ∉λ is arbitrary. That is, B is obtained from A by adding
a new element to its universe. Then A,BÍ Γ, |A| = |B| =λ and A 6∼=B.

208



12.6 First-Order Logic

353. (a) Two structures of empty type are isomorphic iff they have the same
cardinality. Hence the number of countable τ-structures is

∑
α≤ωα = ω

countable.
(b) Let the only unary relation symbol in the language be R. A= 〈A,RA〉

and B = 〈B ,RB〉 are isomorphic iff |RA| = |RB|, and |A àRA| = |B àRB|.
Hence, there are countably many countable τ-structures.

(c) Each of Rε1
1 ∩·· ·∩Rεn

n can be chosen countably many ways (here εi ∈
{0,1} and R1 = R, R0 = AàR). Thus the answer is countable in this case, too.

354. We can assume that the universe of our structure A is κ. n-ary relations
and functions of A are respectively subsets of κn and κn+1. The number of
such subsets is 2κ. Therefore the number of non-isomorphic τ-structures of
cardinality κ is at most |t | ·2κ = 2κ.

Let τ consists of λ many constant symbols {ci : i < λ}. For X ⊆ λ write
ΓX = {ci = c j : i , j ∈ X }∪ {ci 6= c j : i ∈ X , j ∉ X }. For distinct X ,Y ⊆ λ no
A Í ΓX and B Í ΓY can be isomorphic. For each X ⊆ λ there is a two-
element model AX Í ΓX , therefore the number of non-isomorphic countable
τ-structures is at least 2λ.

355. By Problem 354 there can be no more than 2κ non-isomorphic struc-
tures. Suppose τ contains a binary relation ≤, and consider only those struc-
tures where ≤A is a κ-type well-ordering of the ground set A. If two such
structures are isomorphic, then the isomorphism is unique, as it preserves
the well-ordering. Add another unary relation symbol R to the type. Inter-
preting R as different subsets (relative to the ordering), one gets 2κ pairwise
non-isomorphic structures.

Remark. Only one binary relation symbol is enough, see Problem 364, and
also Problem 356 (b).

356. (a) There are continuum many. The idea is that from the structure
one can recover an infinite subset X ⊆ω uniquely, and there are continuum
many such subsets. The structure will contain a single element with f (a) = a.
For each i ∈ X add i +1 new elements ai

0, ai
1, . . . , ai

i so that f (ai
i ) = a, and

f (ai
j ) = ai

j+1 otherwise.

(b) Such a structure can be considered as a directed graph where each
vertex has out-degree at most one, and f (v) = v iff the out-degree is zero (v is
a sink). We will consider only connected graphs with a single sink. Suppose
we have κ many pairwise non-isomorphic such graphs of cardinality < κ

arranged as 〈Gα : α < κ〉. It is easy to construct 2κ many non-isomorphic
graphs of cardinality κ. For a subset X ⊆ κ of size κ let a be the sink of the
graph GX , and for every α ∈ X add an edge from the sink of a copy of Gα to a.
For different subsets X these graphs are different: removing a from GX the
connected components of the remaining graph are copies of Gα, thus one
can recover the subset X from GX .

It remained to show that for each κ there is a graph sequence 〈Gα〉. It is
clear if κ ≤ 2λ for some λ < κ. Otherwise there is an increasing sequence
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of cardinals λξ < κ converging to κ, and the union of the non-isomorphic
graphs for λξ works.

357. The similarity type contains exactly one unary relation symbol R , and Γ

expresses that in any model having more than three elements the relation R
is full. Γ can be the single formula

∃x1∃x2∃x3∃x4
( ∧

i 6= j
xi 6= x j

) → ∀xR(x).

In a model A having three elements, we have |RA| ≤ 3, thus there are exactly
four non-isomorphic models of Γ on three elements.

358. For a natural number n ≥ 1 let p(n) be the smallest prime number larger
or equal than n (e.g. p(3) = 3, p(4) = 5). Let the formula ϕn express that if
there are at least n distinct elements, then there are at least p(n) distinct
elements: (∃x1 · · ·∃xn

∧
i 6= j

xi 6= x j
) −→ (∃x1 · · ·∃xp(n)

∧
i 6= j

xi 6= x j
)

Then Γ= {ϕn : n ∈ω} works.

359. Let the similarity type contain a single unary relation symbol R and let
Γ be the (infinite) set of formulas expressing that R and its complement are
infinite. Each countable models of Γ are isomorphic, while for A Í Γ with
|A| =ω1 we can have |RA| =ω or |RA| =ω1, leading to two non-isomorphic
models.

360. The formula ϕn below says that there is a cycle of length n:

ϕn ≡ ∃x1 · · ·∃xn
( ∧

i 6= j
xi 6= x j ∧

n−1∧
i=1

E(xi , xi+1) ∧ E(xn , x1)
)
.

The degree of x is three if

ψ(x) ≡ ∃y1∃y2∃y3
( ∧

i 6= j
yi 6= y j ∧ ∧

i
E(x, yi ) ∧ ∀z(E(x, z) →∨

i
z = yi )

)
.

Then

Γ= {∀x ψ(x), ¬ϕn : n ≥ 3
}
.

Let G be the countable 3-regular, cycle free, connected graph. G is an
infinite tree with degrees three: such a graph is unique. Any countable model
of Γ is the disjoint union of copies of G . There are countably many non-
isomorphic countable models of Γ. If AÍ Γ is an uncountable model, then
A is the disjoint union of |A| many copies of G , hence there is exactly one
model of Γ of cardinality κ>ω. (Cf. Problem 632).
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361. E is an equivalence relation:

∀xE(x, x) reflexive,

∀x∀y(E(x, y) → E(y, x)) symmetric,

∀x∀y∀z(E(x, y) ∧ E(y, z) → E(x, z)) transitive.

E has at least n equivalence classes; each equivalence class has at least n
members:

ϕn ≡ ∃x1 · · ·∃xn
∧
i 6= j

¬E(xi , x j ),

ψn ≡ ∀x∃y1 · · ·∃yn
( ∧

i 6= j
yi 6= y j ∧∧

i
E(x, y j )

)
.

Then Γ= {E is equivalence }∪ {ϕn ,ψn : n ≥ 2}.

For a model AÍ Γ let nA
λ

denote the number of equivalence classes having

cardinality λ. Two models A, B of Γ are isomorphic if and only if nA
λ
= nB

λ
for

all cardinals λ≥ω (as in this case there is a bijection between the equivalence
classes of the same cardinality).

(a) In the countable case nA
ω =ω and nA

λ
= 0 for any λ>ω. Therefore, up

to isomorphism, there is a unique countable model of Γ.
(b) In this case either λ=ω or λ=ω1, and nλ can be n ∈ω, ω, or ω1. Thus

there are countable different models.
(c) The possibilities for λ are ω, ω1, ω2, and, as above, there are countably

many models.
(d) In this case there are countably many possible λ, and each can take

countably many possibilities. The number of non-isomorphic models is 2ω.

362. Let the relation symbols be Ri . For a τ-type model A and~ε ∈ {0,1}k

write RA
~ε

for
⋂

i εi RA
i where εi RA

i means RA
i for εi = 1 and its complement

for εi = 0. For and integer s > 0 the models A and B are s-close, if

min{s, |RA
~ε |} = min{s, |RB

~ε |} for all~ε ∈ {0,1}k .

The vectors ~a ∈ An and ~b ∈ B n are similar, if for every atomic formula ψ,
AÍϕ[~a] iff BÍ [~b]. Observe that if A and B are s-close, ~a and~b are similar
and n < s, then for any a′ ∈ A one can find a b′ ∈ B such that 〈~a, a′〉 and
〈~b,b′〉 are similar. The weight of a formula ϕ ∈ F (τ) is the number of its free
variables plus the number of quantifiers in it; this is clearly smaller than the
length. The following lemma can be proved by induction on the complexity
of ϕ.

Lemma. Suppose A and B are s-close, the weight of ϕ(x1, . . . , xn) is less than
s, and 〈a1, . . . , an〉 ∈ An and 〈b1. . . . ,bn〉 ∈ B n are similar. Then A Í ϕ[~a] iff
BÍϕ[~b].

Indeed, the lemma clearly holds for atomic formulas, and the only non-
trivial step is to check it for ϕ(~x) ≡ ∃y ψ(~x, y). This, however, follows from
the remark above on extension of similar sequences.
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For any τ-type structure A there is a B which is s-close to A and has at
most s ·2k elements: for each~ε pick elements from RA

~ε
and stop when either

there are no more elements, or s elements have been picked. According to
the Lemma, if ϕ has length < s, then AÍϕ iff BÍϕ, as was claimed in the
problem.

Remark. The followed method is a special case of the Ehrenfeucht-Fraïssé
game, see Problem 520.

363. From the solution of Problem 362 it follows that if the structures A

and B are s-close for every s ∈ ω, then formulas true in A are the same
as formulas true in B. For two relation symbols P and R this means that
if in the two structures the four–four disjoint sets defined by P (x) ∧ R(x),
¬P (x) ∧ R(x), P (x) ∧ ¬R(x), ¬P (x) ∧ ¬R(x) have pairwise the same finite
number of elements, or both are infinite, then A and B satisfy the same set
of formulas.

By assumption Γ has a unique model of size ω1. In this case exactly one of
the four sets must be infinite, as otherwise choosing one infinite set to have
cardinality ω1, and the other to be countable would give two non-isomorphic
models of size ω1. Thus three of the above sets have a fixed finite number
of elements, and the fourth one is infinite. But then a countable model of Γ
must have the same structure, thus it is unique.

The reverse implication is not true, see also Problem 359. There is a
unique countable model when all four sets are infinite, but there are 15
non-isomorphic models of size ω1 (at least one partition must be of size ω1).

364. Solution 1. Each ordering is a binary relation and the number of binary
relations on κ is 2(κ2) = 2κ. Therefore there cannot exist more than 2κ linear
orderings on κ. (See also Problem 354).

Take κ as a well-ordered set of ordinals, and replace each α< κ by a copy of
either ω or ω∗ (the reverse order of ω. From this ordered set one can recover
the places where ω and ω∗ was used. Put two elements into a group if one is
an immediate successor of the other one. Elements in a group form a subset
isomorphic to either ω or ω∗ – in which case it was the replaced sequence –,
or ω∗+ω, in which case a replacement by ω∗ was followed by another one
by ω (but we don’t know where it was split). Consequently no two of these
orderings are isomorphic, giving 2κ many different orderings.

Solution 2. For a subset X ⊆ κ consider the linear ordering that results from
replacing every α ∈ X with a copy of ω∗+ω (the order type of the integers).
See also Problem 368.

365. We show first, by a back and forth argument, that any two countable
dense orderings without endpoints are isomorphic. Let (P,<) and (Q,<) be
two such orderings and fix enumerations P = {pn : n ∈ω} and Q = {qn : n ∈ω}.
We construct, by induction on n, an increasing sequence fn of finite order-
preserving functions such that (?)

pn ∈ dom( fn) and qn ∈ ran( fn). (?)
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Set f0 =; and suppose fk has already been defined for each k < n.

(Forth) If pn ∈ dom( fn−1) then we let h = fn−1, otherwise using that Q is
dense and that | fn−1| is finite, one can find an element q ∈Q such that the
finite suborderings (dom( fn−1)∪ {pn},<) and (ran( fn−1)∪ {q},<) are isomor-
phic. Then, set h = fn−1 ∪ {〈pn , q〉}.

(Back) If qn ∈ ran(h) then put fn = h, else using denseness of P there
exists an element p ∈ P such that (dom(h)∪ {p},<) and (ran(h)∪ {qn},<) are
isomorphic. Let fn = h ∪ {〈p, qn〉}.

Obviously (?) remains true for fn . Letting f =⋃
n∈ω fn we get an isomor-

phism f between P and Q.
It can be proved similarly that any countable dense ordering is isomorphic

to one the following:

{0}, Q∩ (0,1), Q∩ [0,1), Q∩ (0,1], Q∩ [0,1].

Remark. The proof technique used here is called back and forth method.
Similar arguments will be used many times later on in Chapter 8, see also
Definition 8.14.

366. It is not hard to see that the following coloring works:

c(x) =
{

p if x = r
pn , where p is a prime and p, r are coprime,

0 otherwise.

As for the isomorphism, suppose the colorings c,d :Q→ω are such that
between any two rationals all colors occur. Enumerate Q as {qi : i ∈ ω}.
Similarly to Problem 365 we build an isomorphism f = ⋃

n∈ω fn between
(Q,<,c) and (Q,<,d) such that the increasing sequence fn of finite order-
preserving functions satisfies (?) below for each n.

qn ∈ dom( fn)∩ ran( fn), c(x) = d( fn(x)) for all x ∈ dom( fn). (?)

Let f0 =; and suppose fk has already been defined for each k < n.
(Forth) If qn ∈ dom( fn−1) then we let h = fn−1, otherwise using that Q is

dense, that | fn−1| is finite and that between any two rationals all colors occur,
one can find an element q ∈Q such that the finite suborderings (dom( fn−1)∪
{qn},<) and (ran( fn−1)∪ {q},<) are isomorphic and d(q) = c(qn). Then, set
h = fn−1 ∪ {〈qn , q〉}.

(Back) If qn ∈ ran(h) then put fn = h, else using denseness of Q and that
between any two rationals all colors occur, there exists an element p ∈Q such
that (dom(h)∪ {p},<) and (ran(h)∪ {qn},<) are isomorphic and c(p) = d(qn).
Let fn = h ∪ {〈p, qn〉}.

Obviously (?) remains true for fn .

367. Let (P,<) be the countable ordered set. Enumerate P as {pn : n ∈ ω}.
The required order-preserving embedding can be created using the forth
step of Solution 365.
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368. Similarly to Solution 364 one can construct continuum many different
linear orders on ω by replacing every i ∈ω either by ω or by ω∗.

The problem is that these orderings are not discrete: some elements might
not have immediate predecessors. To solve this problem, replace each point
with a copy of ω∗+ω. After the replacement the ordering will be discrete. As
an isomorphism must map an ω∗+ω group to another one, it also gives an
isomorphism between the underlying orderings, thus not two of them are
isomorphic.

369. Consider the orderings κ×Q and κ∗×Q (each point in the first ordering
is replaced by a copy of the second one). Both are dense without endpoints,
and they are not isomorphic: the first contains an increasing sequence of
type κ, while every increasing sequence in the second one is countable.

In general, for a subset A ⊆ κ let D(A) be the ordering
∑

α<κ D(A,α), where

D(A,α) =
{

(ω1 +ω∗
1 )×Q if α ∉ A

(ω1 +1+ω∗
1 )×Q otherwise.

Each D(A) is a dense ordering without endpoints of cardinality κ. We claim
that for different subsets A and B the orderings D(A) and D(B) are not iso-
morphic.

Define a ∼ b if the interval [a,b] contains countably many elements. In
D(A)/∼ there are two types of equivalence classes: those of size ω1 corre-
sponding to elements of κ (ω∗

1 ×Q from α and ω1 ×Q from α+1 are in the
same class), and those of size ω corresponding to 1×Q when α ∈ A. The first
type of classes are well ordered in type κ, thus are isomorphic to κ, and from
the second type classes one can recover the subset A. Consequently D(A)
and D(B) cannot be isomorphic.

370. The order ω1 ×Q+ {a}+Q works. The element a ∈ A is distinguished by
the property that for every b < a the interval (b, a) has cardinality ω1 (no other
element has this property), thus a cannot be moved by an order-preserving
permutation.

371. Endpoints have no weight as they do not belong to any open interval. If
a is an internal point, then there is an open interval with a ∈ (x, y), and a can
be separated from any other point by an open interval. (Choose the other
point as an endpoint of such an interval.) Thus the weight of a is at least 1
and as each non-empty set of cardinalities must have a least element, the
weight must exist.

372. The intersection of finitely many open intervals containing a is an open
interval containing a.

373. As every open interval of the reals contains infinitely many points, thus
no point has weight one. Thus the weight of each point is infinite, and since
Q is dense in R, the weight of each point of R is ω.
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374. Solution 1. Take all functions f :ω1 →Z and order them lexicographi-
cally: f < g if f (α) < g (α) and f (β) = g (β) for all β<α. In this ordering the
intersection of countably many open intervals contains an open interval,
thus no weight is ω.

Solution 2. Any σ-saturated, dense ordering (e.g. a non-trivial ultrapower of
the rationals) is suitable by Problems 641 and 681.

375. All points of the rationals have countable weight, hence the ordering
κ×Q is as required.

376. The top element of the linear ordering ω+ω∗ bounds all increasing
sequences, still the first ω block does not have a least upper bound.

377. Consider the set of countable subsets of an uncountable set, ordered by
inclusion. As the union of countably many countable sets is itself countable,
it follows that all countable increasing chains have an upper bound. Still,
there is no maximal countable subset (therefore the conclusion of Zorn’s
lemma 1.3 does not hold).

378. Using Zorn’s lemma it does follow. Let A ⊆ P be totally ordered, and let
S be the set of increasing sequences with elements from A ordered by s ≺ s′

if s′ is an extension of s. If C ⊆ S is a chain, then ∪C is a sequence extending
all elements of C , thus the assumption of Zorn’s lemma holds, consequently
there is a maximal sequence s ∈ S. Now for every a ∈ A there is an element sα
such that sα < a, as otherwise extending s by this a the sequence s′ = s_a ∈ S,
s ≺ s′, contradicting the maximality of s.

By assumption the maximal s has an upper bound in P , every element of A
is bounded by some element of s, thus A is bounded as well. If Zorn’s lemma
– or equivalently, the axiom of choice – fails, then there might exist an infinite,
unbounded set of reals, such that each of its well-ordered subset is finite,
thus bounded.

379. That finite partial orderings can be extended to total orderings can be
done by a fairly easy inductive argument, so we concentrate on the infinite
case. Let (P,≤) be a partial order and consider

Q = {
(X ,≤X ) : X ⊂ P, and ≤X is a linear order extending ≤ }

For (X ,≤X ), (Y ,≤Y ) in Q define (X ,≤X ) ≺ (Y ,≤Y ) if X ⊂ Y and ≤Y �(X ×
X ) =≤X . Then (Q,≺) is a partial ordering that satisfies the conditions of
Zorn’s lemma, thus it has a maximal element. That maximal element must
be a total order (P,≤P ) extending (P,≤).

380. Every propositional tautology evaluates to > for every value of the
propositional variables. As the evaluation is fixed, the subformulas which
replace the propositional variables evaluate to the same value at every place
they are inserted.
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381. Using (u)i < u, namely that the elements of a sequence are smaller than
the (code of the) sequence, all properties can be defined by a lengthy, but
otherwise trivial course-of-values recursion. As an example, the recursive
definition of the relation R ⊂ω in (f) which consists of (the codes of) those
triplets 〈α(ϕ),α(x),α(t )〉 where the substitution ϕ[x/t ] is admissible, can go
as follows. The triplet 〈u, x, t〉 is in R iff

• u is a formula code, x is a variable code, t is a term code;

• if u is an atomic formula, then yes;

• if u is a negation of u′ (then u′ < u), the result is yes if 〈u′, x, t〉 ∈ R,
otherwise it is no;

• if u is an “or” of u′ and u′′, then both 〈u′, x, t〉 ∈ R and 〈u′′, x, t〉 ∈ R are
required;

• if u is the code of the formula ∃yψ, then

– if α(y) = x then yes;

– if α(y) does not occur in t , then yes;

– otherwise no.
We used that the relation “x occurs t” for codes of variables and terms is
recursive.

382. The problem is that there is no control over the function which assigns
the arity ni to the i -th function symbol. Checking whether α( fi (x0)) is a
code of a valid term one can recover the set {i ∈ω : ni = 1}. If this set is not
recursive, the code of (valid) τ-type terms cannot be recursive either.

383. By primitive recursion. Let f (0) =α(π0), and

f (n +1) =α(πn +1) = 〈4,α(+),α(πn),α(1)〉
= 〈4,α(+), f (n),α(1)〉.

where α(π0), α(+), and α(1) are fixed natural numbers.

384. By a brute force method. ϕ is a tautology iff there is a propositional
formula ψ such that ϕ is the result of replacing propositional variables by
certain subformulas of ϕ. Using a reasonable coding of propositional formu-
las the code of ψ will be smaller than the code of ϕ (when the propositional
variables have small codes). Suppose we have a sequence s of subformulas
of ϕ defining the first-order formulas the propositional variables are to be
replaced with. The function which, given the code of a propositional formula
and the sequence s returns the code of the replaced first-order formula, is
clearly recursive. The possible values of the replacement sequence s can be
bounded by a recursive function of the code of ϕ, see Problem 142.

Thus deciding whether ϕ is a tautology can be done by using bounded
quantifiers: Check every propositional formula with code <α(ϕ) whether it
is a tautology or not (this is recursive by Problem 304); if yes, then for each
sequence s (bounded by a recursive function) check if using this replacement
for the propositional tautology gives ϕ or not.
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385. Similarly to “justified computations” (Definition 4.15) let the (code of
the) sequence u = 〈d0, . . . ,dn−1〉 be a justified evaluation, if each di is a triplet
of a formula, evaluation, and true/false expressing that the formula under
the evaluation is true or not. As the structure is finite, the condition that such
a triplet is always justified by earlier triplets in the sequence is a recursive
relation. A Í ϕ if for all evaluations e of variables in ϕ (recoverable by a
recursive function) the shortest justified evaluation, ending with a triplet
with α(ϕ) and α(e) as the first two elements, has α(>) as the last element.
This is a recursive relation as such a justified evaluation always exists.

12.7 FUNDAMENTAL THEOREMS

386. Every propositional tautology has a derivation using MP and instances
of Ax1–Ax8. Replacing propositional variables with first-order formulas the
sequence becomes a valid first-order derivation.

387. By induction on the length of the derivation, as both MP and G preserves
this property.

388. The (⇐) part is straightforward. In reference to Solution 291 it is enough
to prove ψ→ ϕ `ψ→ (∀xϕ) for closed ψ. But this is immediate applying
first G and then Ax9.

389. (⇒) Apply G repeatedly until all necessary universal quantifiers appear
in the front.
(⇐) Apply Ax11 repeatedly for the obviously admissible substitution ϕ[xi /xi ]
to get rid of the universal quantifiers at the beginning of the formula.

390. Use the tautology (¬A → B) → (¬B → A) where A ≡ϕ[x/t ] and B ≡∃¬ϕ

and Ax10 for ¬ϕ to get
` (¬∃¬ϕ) →ϕ[x/t ].

391. (a) follows from the maximality of Σ.
(b) We cannot have both ϕ and ¬ϕ in Σ, otherwise (by propositional logic)

⊥ would be derivable from Σ (even if ϕ is not closed). If ϕ is not in Σ, then by
maximality Σ,ϕ`⊥. Using that ϕ is closed, the deduction theorem 7.1 gives
Σ`ϕ→⊥, from where Σ`¬ϕ by propositional logic, and then ¬ϕ ∈ Σ by
maximality.

(c) can be proved similarly.

392. Let Γ be the union, and suppose by contradiction that Γ `⊥. Take a
derivation ϕ1, . . . ,ϕn of ⊥ from Γ. By definition of a union there is a smallest
α< κ such that all ϕi ∈ Γα. But then the sequence ϕ1, . . . ,ϕn is a derivation
of ⊥ from Γα too, contradicting the consistency of Γα.

393. Enumerate the formulas of F (τ) as {ϕα : α < κ}. Define by induction
an increasing chain of s-consistent theories Γα. Let Γ0 be the given the-
ory. Suppose Γβ has already been defined for all β < α. If α is a limit, let
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Γα =⋃
{Γβ : β<α}. By Problem 392, Γα is s-consistent. If α is successor, say

α=β+1, then let Γα = Γβ∪ {ϕβ} if it is s-consistent, and Γα = Γβ otherwise.
By induction, Γα is s-consistent.

Put Γ = ⋃
{Γα : α < κ}. It is s-consistent and maximal: if ϕβ ∉ Γ, then

Γβ∪ {ϕβ} is not s-consistent, so neither is Γ∪ {ϕβ}.

394. (a) Consider the derivation:

1. y = y (axiom Ex1)

2. (y = y) →∃x(x = x) (axiom Ax10)

3. ∃x(x = x) (MP)

Therefore the formula ∃x(x = x) is derivable from Γ. As Γ is Henkin, there
must be a constant c ∈ τ with Γ` c = c.

(b) Let t be the term f (~c) and ϕ(x) be the atomic formula x=t . It suffices
to show that ∃x(t=x) can be derived from Γ which is shown by

1. x = x (axiom Ex1)

2. ∀x(x = x) (G)

3. ∀x(x = x) → (x = x)[x/t ] (Ax11)

4. ϕ[x/t ] (same as t = t )

5. ϕ[x/t ] →∃xϕ (Ax10)

6. ∃x(t = x) (MP: 5,4)

395. If c = d for distinct constants is in Γ, then it cannot be satisfied in the
model defined on the set of constant symbols.

396. (a) We need to check that A is not empty, and that A is closed under
f B for each function symbol f ∈ τ. As BÍ∃x(x = x), there must be at least
one constant symbol in τ. For showing that A is closed for f B take elements
c1, . . . ,cn ∈ A. We have BÍ ∃y f (c1, . . . ,cn) = y , thus BÍ f (c1, . . . ,cn) = c for
some constant symbol c, and then f B(c1, . . . ,cn) ∈ A, as required.

(b) Assume ψ is closed and proceed by induction on the complexity of
ψ. For atomic and quantifier-free formulas the statement holds as A is a
substructure. The induction step is trivial for ∨ and ¬. For closed formulas of
the form ∃xϕ(x) we have, by assumption, BÍ∃xϕ(x) iff there is a c ∈ A such
that B Í ϕ[x/c]. By the inductive hypothesis this happens iff A Í ϕ[x/c],
thus iff AÍ∃xϕ(x).

397. By Problem 388 Γ`ϕ and Γ` ϕ̄ are equivalent, thus ϕ can be assumed
to be closed. Work by induction on the complexity of ϕ. Equality-free closed
atomic formulas are of the form r (c1, . . . ,cn), and the claim follows from the
definition of rA.

Using maximality of Γ for ϕ ∨ ψ ∈ Γ we have either ϕ ∈ Γ or ψ ∈ Γ (by
Problem 391). Then, by induction, we get either A Í ϕ or A Íψ, therefore
AÍϕ∨ψ.
A Í ¬ϕ iff A 6Í ϕ, which, by the inductive hypothesis, implies ϕ ∉ Γ. By

maximality of Γ we have then ¬ϕ ∈ Γ.
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Finally, assume ∃xϕ ∈ Γ and let c be the Henkin witness of ∃xϕ. Then
A Í ϕ[c]. For the other direction, if A Í ∃xϕ, then A Í ϕ[x/c] for some
constant symbol c ∈ τ by the Substitution lemma 6.7. As ϕ[x/c] is closed,
the induction hypothesis gives Γ`ϕ[x/c], from where Ax10 gives Γ`∃xϕ as
required.

398. We show that ∼ is reflexive, i.e. Σ` c = c, others are similar. Here is the
derivation:

1. x = x (axiom Ex1)

2. ∀x(x = x) (generalization)

3. ∀x(x = x) → (c = c) (instance of Ax11)

4. c = c (MP: 3,2)

399. (a) F (τ) ⊆ F (τ′), thus every τ-type axiom (and inference rule) is also
a τ′-type axiom (inference rule). If Σ`⊥ in type τ, then the same formula
sequence is a correct τ′-type derivation, thus Σ`⊥ in type τ′.

(b) Suppose D ′ = 〈ϕ′
1, . . . ,ϕ′

n〉 is a τ′-type derivation of ⊥ from Σ⊆ F (τ). We
need to show that then there is a τ-type derivation of ⊥ as well. Each ϕ′

i in D ′

will be replaced by some τ-type formula ϕi such that the sequence ϕ1, . . . ,ϕn

is a valid τ-type derivation of ⊥.

There are only constant symbols in τ′àτ, and only finitely many among
these symbols occur in the derivation D ′. For each of them pick a variable
symbol not occurring in D ′, and replace that constant symbol by the cor-
responding variable symbol. The following facts are clear. (i) Formulas in
F (τ) (in particular, elements of Σ) do not change. (ii) After replacement each
formula will be an element of F (τ); finally (iii) applications of the derivation
rules MP and G remain valid. To finish the proof we only need to check that
(iv) the image of a τ′-type axiom is a τ-type axiom. This is clear for tautologies
and for equality axioms (as the latter ones do not contain constant symbols),
and the axioms Ax12 which will be introduced later. The schemes Ax9, Ax10

and Ax11 were carefully tailored to satisfy this requirement.

For a more general statement see Problem 407.

400. Let ϕ1, . . . ,ϕn be the derivation of ϕ[x/c] from Σ. Choose a variable sym-
bol z which does not occur in the derivation, and replace every occurrence of
c by z. Elements of Σ remain the same, axioms remain axioms (see Problem
399), and applications of MP and G remain correct. The sequence ends with
the formula ϕ[x/z], thus Σ ` ϕ[x/z]. In the formula ϕ[x/z] replacing z by
x is an admissible substitution, thus ∀zϕ[x/z] → ϕ is an instance of Ax11.
Using G, this axiom and MP we have Σ`ϕ, from where another application
of G gives the result.

401. Define c0 ∼ c1 iff Σ` c0 = c1. By Problem 398 this is an equivalence rela-
tion, let c̃ be the equivalence class of c . The ground set is A is the collection of
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equivalence classes – this is not empty by Problem 394(a). The interpretation
of c is cA = c̃; for the other symbols

f A(c̃1, . . . , c̃n) = c̃ iff Σ` f (c1, . . . ,cn) = c,

〈c̃1, . . . , c̃n〉 ∈ rA iff Σ` r (c1, . . . ,cn).

The equality axioms Ex2 and Ex3 ensure that these definitions are sound,
namely they do not depend on the representative elements of the equivalence
classes. By Problem 394(b) f A is defined for all possible arguments.

Next we show that for closed formulas ϕ ∈ Σ iff AÍϕ. By Problem 389 a
formula is in Σ if and only if its universal closure is in Σ, moreover a formula
is true in A just in case its universal closure is true, thus from this it follows
that AÍΣ.

By definition, and by the equality axioms, the required equivalence holds
for atomic formulas. For ¬ϕ it follows from Problem 391(b), for ϕ∨ψ it fol-
lows from Problem 391(c). The remaining case is ∃xϕ(x) where this formula
is closed. Since Σ is Henkin, Σ`∃xϕ implies Σ`ϕ[x/c] for some constant
symbol c ∈ τ. Then AÍϕ[x/c] by induction, therefore AÍ∃xϕ.

Conversely, if AÍ ∃xϕ, then for some evaluation e and constant symbol
c ∈ τ, AÍϕ[e(x/cA)]. Using the Substitution Lemma 6.7 for the term c, we
get AÍ (ϕ[x/c])[e], and since ϕ[x/c] has no free variables, this means AÍ
ϕ[x/c], and then Σ`ϕ[x/c] by induction. From here Ax10 gives Σ`∃xϕ(x)
as required.

402. Let κ= |F (τ)|, C be a set of κ many new constant symbols, and let τ′ =
τ∪C adding these symbols. Clearly, |F (τ′)| = κ, enumerate it as {ϕα : α< κ}.

By Problem 399(b) Σ is τ′-consistent. From this point on work in type τ′.
Problem 393 explained how to extend Σ to a maximal s-consistent theory. We
follow the same method with some extra work which guarantees that at the
end we get a Henkin theory as well. So let Σ0 =Σ, and define the increasing
τ′-consistent theories Σα as follows. For limit α take the union. For α=β+1
distinguish three cases.

Case 1. If Σβ∪ {ϕβ} is not τ′-consistent, then let Σα =Σβ.
Case 2. If Σβ∪ {ϕβ} is τ′-consistent, but either ϕβ is not closed, or it is not

of the form ∃xψβ(x), then Σα =Σβ∪ {ϕβ}.
Case 3. Σβ ∪ {ϕβ} is τ′-consistent, and ϕβ is closed and is of the form

∃xψβ(x). Take a constant symbol cβ ∈C which does not occur in Σβ∪ {ϕβ}.
As this set contains less than κ many new constant symbols, such a cβ exists.
In this case let Σα =Σβ∪ {ψβ[x/cβ]}.

We claim that Σα is τ′-consistent. It is clear in Cases 1 and 2. In Case
3 suppose Σα ` ⊥. As ψβ[x/cβ] is closed, the Syntactic deduction lemma
7.1 and propositional logic gives Σβ ` ¬ψβ[x/cβ]. The constant symbol cβ

does not occur neither in Σβ nor in ψβ, thus we have Σβ `¬ψβ by Problem
400. Now G and Ax12 gives Σβ ` ¬∃xψβ(x), contradicting that Σβ ∪ {ϕβ} is
s-consistent.

The union Σ′ =⋃
{Σα} is maximal syntactically consistent and Henkin.

220



12.7 Fundamental Theorems

403. By Problem 402 the type can be extended by new constant symbols
such that Σ⊆Σ′ ⊂ F (τ′) is a maximal s-consistent Henkin theory. Problem
401 says that Σ′ has a model. The τ-type reduct of this model (drop symbols
which do not occur in τ) is a model of Σ.

404. The derivation is sound because all the axioms Ax1–Ax12 and Ex1–Ex3

are true in every structure.
As for the converse, we may assume that ϕ is closed by Problem 389. Now if

Σ0ϕ then, by the Deduction Lemma 7.1, Σ∪ {¬ϕ} is syntactically consistent.
Therefore, by the first completeness theorem 10.6 it has a model A. But then
AÍΣ and A 6Íϕ, showing Σ 6Íϕ.

405. In Problems 399 and 400. When limiting the available variable symbols
the proof system becomes sensitive to what other (constant, function, rela-
tion) symbols are available for formulas in the derivation Σ`ϕ, but which
appear neither in Σ, nor in ϕ. See also Problem 407.

406. Check that during the proof of the completeness theorem we used the
equality axioms Ex1–Ex3 only when the equality symbol appeared in one of
the formulas in Γ or in ϕ. The only exception is Problem 394(a) when the
existence of a constant symbol was proved. Here one can use > instead of
x = x.

407. (a) Not necessarily. Let c, d , and e be constant symbols in τ′ and
suppose τ contains c and d only. Let ϕ be the formula c = d , and Γ = {c =
e,e = d}. Then Γ`ϕ, but this derivation needs to refer to e.

(b) If Γ⊂ F (τ), then there is a derivation of ϕ from Γ that uses τ-formulas
and axioms only. For we have ΣÍϕ for τ-structures, thus by Gödel’s second
completeness theorem we have Σ`ϕ in type τ.

Remark. This general property of Hilbert-type derivation follows easily
from the completeness theorem. The special case discussed in Problem
399 was needed in the proof of the theorem, thus had to be established
before. The approach used there (replacing formulas in a τ′ derivation by
formulas from F (τ)) works in general, but the details are quite messy.

408. Apply the following rules until they are applicable, where Q is any of
the quantifiers ∃ and ∀:

(Qxϕ) ∧ψ ⇒ Qx ′(ϕ[x/x ′] ∧ψ)
}

where x ′ does not occur in ϕ, ψ,
(Qxϕ) ∨ψ ⇒ Qx ′(ϕ[x/x ′] ∨ψ)

¬(∃xϕ) ⇒ ∀x¬ϕ,

¬(∀xϕ) ⇒ ∃x¬ϕ.

In each step Íϕ↔ϕ∗, thus all formulas are equivalent to the original one. If
the procedure halts, the last formula is in prenex form. In each step the total
depth of the quantifiers decreases, thus the procedure must halt after finitely
many steps.
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409. (⇒) Suppose A Í Σ. Take a well-ordering ≺ of the universe A, and
define, for all ~a ∈ An ,

f Aψ (~a) =
{

min≺{b ∈ A :AÍϕ[b,~a] } if this set is non-empty,
min≺ A otherwise.

If AÍ∃yϕ(y,~x) then f Aψ always takes a value which satisfies ϕ.
(⇐) The τ-type reduct of any model of Σ∗ is a model of Σ as the function

f Aψ provides the element required by the existential quantifier.

410. Given the formula set Γ, make the following transformations which do
not change whether the set has a model or not.

1. Convert every element of Γ into prenex normal form (Problem 408).

2. From the front of each formula delete all universal quantifiers (see Prob-
lem 311).

3. If some of the formulas starts with an existential quantifier as ψ≡∃yϕ(y,~x),
then expand the type with the Skolem function fψ and replace ψ by
ϕ[y/ fψ(~x)] (Problem 409). Continue at Step 2.

When Step 3 is not more applicable, the new formula set Γ∗ contains no
quantifies, and has a model if and only if the original set does. Actually, if
AÍ Γ, then the ground set of a model of Γ∗ can be chosen to be A, and the
interpretation of the Skolem functions as in Problem 409.

411. (a) If there are no constant symbols then the free term-structure is empty.
(b) If there are no functions symbols in τ, then |M| equals the cardinality

of constant symbols. If there is at least one function symbol, then |M| is
ω · |Cτ∪Fτ|.

(c) By induction on the complexity of the term t .
(d) There are two constant symbols c and d in τ, and Γ contains the formula

c = d .

412. Let AÍ Γ be a model, M be the Herbrand structure of signature τ, and
for an n-place relation symbol r ∈ τ and variable-free terms t1, . . . , tn ∈ K (τ) =
M define

〈t1, . . . , tn〉 ∈ rM iff AÍ r (t1, . . . , tn).

We claim first that for each ϕ ∈ F (τ) which contains no variables, quantifiers
or equality symbols, A Í ϕ if and only if M Í ϕ. This holds for atomic
formulas by definition, and easily follows for ¬ϕ and ϕ1 ∨ϕ2.

Let ϕ ∈ Γ and eM be an evaluation over M, that is, eM(xi ) = ti is a variable-
free term. MÍϕ[eM] iff MÍ (ϕ[x1/t1, . . . xn/tn]) by the substitution lemma
6.7. Let eA be the evaluation over A where e(xi ) = tAi . As A Í ϕ[eA] by
assumption, A Í (ϕ[x1/t1, . . . , xn/tn]) by the substitution lemma again. As
ϕ[x/1/t1, . . . , xn/tn] is closed, contains no quantifiers or equality symbols,
this implies MÍϕ[x1/t1, . . . , xn/tn], as required.

As for why both conditions are needed, observe first that in the presence
of equality we might have AÍ c = d for distinct constant symbols c and d .
However, in the Herbrand structure cM and dM are always different.
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Secondly, let τ contain the unary function symbol f , constant symbol c,
and binary relation R ; and Γ be the theory which says that R(x, y) →¬R(y, x),
R(c, f k (c)), for all k ≥ 1, and ∃x R(x,c). The Herbrand universe consists of
the terms c, f (c), f 2(c), . . . , and none of them can satisfy R(x,c).

413. As suggested by the hint, replace the equality symbol by the binary
relation symbol ≈ to get the formula set Γ≈, and put the equality axioms Ex1,
Ex2, Ex3 written for ≈ into ∆. By Problem 340, Γ has a model iff Γ≈∪∆ has
one; and the factor or a model of Γ≈∪∆ is a model of Γ.

Use the procedure in Problem 410 of adding Skolem functions to the type to
get the formula set Γ∗ from Γ≈∪∆ so that Γ∗ has neither equality symbol, nor
quantifiers and the τ∪{≈}-type reduct of any model of Γ∗ is a model of Γ≈∪∆.
Observe that the number of Skolem functions is at most max(ω, |τ|), which
upper bounds the cardinality of the similarity type of Γ∗. Apply Problem 412
which claims that Γ∗ has a Herbrand model. The cardinality of the Herbrand
structure is at most max(ω, |τ|) by Problem 411(b), from where the claim
follows.

To get the universe of a model of the original formula set Γ, the Herbrand
structure should be factored by (the interpretation of) the relation ≈.

414. This follows from Problem 412.

415. Use the procedure outlined in Problem 413 to get rid of the equality
symbol and quantifiers. Add a constant symbol to τ if it has none. Convert
the remaining formulas to conjunctive normal form (Problem 276).

The only point which adds potentially infinitely many formulas is the one
which adds the equality axioms for each function and relation symbol in τ. If
Σ is finite, then it suffices to handle only those symbols which appear in Σ,
thus keeping the formula set finite.

416. If C has a model, then by Problem 414 it has a Herbrand model M. Let
the propositional variable r (t1, . . . , tn) be true if this formula holds in M. As
MÍ C, each clause in Co must contain a true literal.

To see the converse, if Co is satisfiable, then define the interpretation of
the relation r ∈ τ on the Herbrand structure M as 〈t1, . . . , tn〉 ∈ rM iff the
propositional variable r (t1, . . . , tn) is true. As this truth assignment satisfies
every clause in Co , for clause c ∈ C and every evaluation e over M some literal
in c[e] will be true in M. Thus M is a model of C as was required.

417. By the completeness theorem 10.14 we have ΣÍϕ iff Σ`ϕ. ` has the
compactness property: there is a finite Γ⊂Σ with Γ`ϕ, hence ΓÍϕ again
by the completeness theorem.

418. Apply the compactness theorem with ϕ≡⊥.

419. Let ϕn be the formula which is true if there are at least n different
elements:

ϕn ≡ ∃x1 . . .∃xn
∧

1≤i< j≤n
xi 6= x j .
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By assumption, every finite subset of ∆=Σ∪ {ϕn : n ≥ 2} has a model, thus ∆
has a model, which must be infinite.

420. To show that there is a model of Σ of size at least κ add κ many new
constant symbols to τ, and consider the theory ∆=Σ∪ {cα 6= cβ : α<β< κ}.
Any infinite model A of Σ can be turned into a model of a finite subset of ∆:
interpret the finitely many new constant symbols as different elements of A.
By the compactness theorem ∆ has a model, which must have cardinality at
least κ.

421. Add ω1 many constant symbols to the type τ, and take the formula set
∆ = Γ∪ {cβ < cα : α < β <ω1}. As Γ has an infinite model, it can be made a
model for every finite subset of ∆ (as it requires the ordering for finitely many
of the new constant symbols, the rest can be interpreted arbitrarily). A model
of ∆ works.

422. Suppose the claim to be false. Let ci be new constant symbols for i ∈ω,
and consider ∆=Σ∪ {ci+1 E ci : i ∈ω}. As each finite subset of ∆ has a model,
so has ∆, but in that model A the subset {cAi : i ∈ ω} has no EA-minimal
element.

423. Suppose by contradiction that Σ has models of arbitrary large diameter.
Add two constant symbols c1,c2 to τ, and let ϕn be the formula which says
that there is no path of length ≤ n between c1 and c2. Every finite subset of
∆=Σ∪ {C (c1,c2)}∪ {ϕn : n ∈ω} has a model, thus ∆ has a model, too. In that
model C (c1,c2) holds, but there is no path of any length between c1 and c2.

424. Add countably new constants ci to the language, and add the formulas
to Γ which say that ci R ci+1 and ¬(ci R c j ) for i +1 < j . We need to check
that every finite subset of the extended set has a model.

By assumption, there is a model of Γ, where Sn = R0 ∪R1 ∪·· ·∪Rn is not
transitive. Treat R as the set of the edges of a directed graph: there is a
directed edge from a to b if (a,b) ∈ R. Then (a,b) ∈ Sn if there is a directed
path of length at most n from a to b. If Sn is not transitive, then there must
be two points, a and b, such that the shortest path from a to b has length
n. If not, then any two points connected by a directed path are connected
by such a path shorter than n, thus Sn would be transitive. Let a = a0, a1,
. . . , an = b be the points on this path, then there is a directed edge from ai

to ai+1, but no edge goes from ai to any later a j (as in this case there would
be a shorter path connecting a and b). It means that a0, . . . , an satisfy the
requirements required from the constants c0, . . . , cn , providing the required
consistency.

425. (i)⇒(ii) Let S = R0 ∪·· ·∪Rn . Define by induction the formula ϕk (x, y)
as follows. ϕ0(x, y) ≡ x=y , and ϕk+1(x, y) ≡ ∃zk+1(R(x, zk+1) ∧ ϕk (zk+1, y)).
Write

ϕ(x, y) ≡ ϕ0(x, y) ∨ϕ1(x, y) ∨ ·· · ∨ϕn(x, y).
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Then AÍϕ[a,b] iff 〈a,b〉 ∈ SA.
(ii)⇒(i) By way of contradiction suppose ϕ(x, y) is the transitive closure

of R in every model of Γ, but there is no n such that R0 ∪·· ·∪Rn is always
transitive. It means that for each n ∈ ω there is a model An Í Γ and a pair
〈an ,bn〉 such that A Í ϕ[an ,bn] but 〈an ,bn〉 ∉ R0 ∪ ·· ·∪Rn (interpreted in
An), that is, An 6Íϕ j [an ,bn] for all j ≤ n. Consequently every finite subset of

Γ∪ {ϕ(c1,c2),¬ϕ j (c1,c2) : j ∈ω}

has a model, and then by compactness, this theory has a model B. As
BÍ¬ϕ j (c1,c2) there is no directed RB-path from cB1 to cB2 , thus cB2 is not
in the transitive closure of cB1 . However, BÍϕ(c1,c2), a contradiction.

426. By way of contradiction assume that for all n ∈ ω there is a model
An and an ∈ An such that An Í ¬ϕn[an]. But the assumption gives that
An Í¬ϕ j [an] for all j < n as well. It means that every finite subset of

Γ∪ {¬ϕi (c) : i <ω}

has a model. By compactness, this set also has a model B, however in this
model cB does not satisfy any of the formulas ϕ j .

427. Using the hint, let ∆′ = {δ ∈∆ : ΓÍ δ}. First, ΓÍ∆′ is clear. To show that
∆′ Í Γ pick any model BÍ∆′ and define

∆′′ = {¬δ ∈∆ :BÍ¬δ}.

If we can find any A Í Γ∪∆′′ then we are done: condition (?) applied to
A and B gives B Í Γ (as every element of ∆ true in A is also true in B),
consequently every model of ∆′ also satisfies Γ, i.e., ∆′ Í Γ.

Thus it suffices to show that Γ∪∆′′ is consistent. Suppose not, then the
compactness theorem and the deduction lemma says that there are finitely
many ¬δi ∈∆′′ such that

ΓÍ¬(¬δ1 ∧ ·· · ∧¬δn).

By assumption on ∆, δ ≡ ∨
i δi ∈ ∆, and Γ Í δ, thus δ ∈ ∆′, and then B Í δ.

But this contradicts the fact that BÍ¬δi for all i .

428. The similarity type τ will consist of a constant symbol c and unary
relation symbols Ri for i <ω. The formula set Γ says that no four different Ri

is true for c:

Γ= {¬∃x
(
Ri1 (x) ∧ Ri2 (x) ∧ Ri3 (x) ∧ Ri4 (x)

)
: i1 < i2 < i3 < i4 <ω

}
and for i <ω set Γi = Γ∪ {Ri (c)}.

429. (a) Assume Robinson’s consistency theorem and suppose ϕÍψ. Let ϕ̄
and ψ̄ be the universal closure of ϕ and ψ, respectively. If the conditions in
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Robinson’s theorem does not hold for the theories Γ1 = {ϕ̄} and Γ2 = {¬ψ̄},
then there is a closed ϑ ∈ F (τ1 ∩τ2) such that Γ1 Íϑ and Γ2 Í¬ϑ. But in this
case we would have ϕÍϑ and ϑÍψ providing the required interpolant. If the
condition in Robinson’s theorem holds, then Γ1 ∪Γ2 = {ϕ̄,¬ψ̄} is consistent,
contradicting the assumption that ϕÍψ.

(b) Assume Craig’s interpolation theorem, and let Γ1 ⊂ F (τ1), Γ2 ⊂ F (τ2). If
Γ1∪Γ2 has no model, then by the compactness theorem 7.10 there are finitely
many formulas ϕ0, . . . ,ϕn−1 ∈ Γ1 and ψ0, . . . ,ψk−1 ∈ Γ2 such that {ϕi ,ψ j :
i < n, j < k} is inconsistent. Note that the inconsistency means

∧
i<n ϕ̄i Í

¬∧
j<k ψ̄ j for the closure of the formulas. By Craig’s theorem there is an

interpolant formula ϑ ∈ F (τ1∩τ2) for them. But then ϑ is a formula such that
Γ1 Íϑ and Γ2 Í¬ϑ.

430. Any formula ψ ∈ F (τ2) is of the form ψ≡ψ′[~x/~c] where ψ′ ∈ F (τ) and~c
are constant symbols from τ2àτ. (ϕ may contain additional free variables.) If
ϕÍψ, then ϕ`ψ by completeness theorem (the derivation is in type τ1∪τ2).
As the constant symbols~c do not occur in ϕ, Problem 400 gives ϕ`∀~xψ′(~x).
As this formula is in F (τ), and clearly implies ψ′[~x/~c], this is the interpolant.

431. No, even Γi ∪Γ2∪Γ3 need not be consistent. Let τ contain three constant
symbols, and Γi consist of two formulas: a formula which says that there are
exactly two elements in the structure, and either c1 6= c2, or c2 6= c3, or c3 6= c1,
respectively. The union of any two theories is consistent, but Γ1 ∪Γ2 ∪Γ3 is
not.

432. Let I = {1} and J = {2, . . . ,n}. If ΓJ = ⋃
j∈J Γ j were not consistent, then

the condition for the pair (I , J) would not hold, simply choose ϕ≡>. Then
apply Robinson’s consistency theorem for Γ1 and ΓJ .

433. According to the hint, Σ(P )∪Σ(P ′) Í P (~c) ↔ P ′(~c). By the compactness
we may assume that Σ(P ) consists of finitely many closed formulas only,
and then by the deduction lemma 6.9 Σ(P ),P (~c) Í Σ(P ′),P ′(~c). By Craig’s
interpolation theorem there is a ϑ(~x) ∈ F (τ) such that ϑ(~c) is an interpolant:

Σ(P ),P (~c) Íϑ(~c),

ϑ(~c) ÍΣ(P ′),P ′(~c).

From there the deduction lemma gives Σ(P ) Íϑ(~c) ↔ P (~c). As the constant
symbols~c do not occur in Σ(P ), this shows that ϑ defines P explicitly.

434. By assumption there is ϑ(~x) ∈ τ such that AÍ ϑ(~x) ↔ P (~x). As f is an
automorphism with respect to symbols in τ, f preserves ϑ. But then, by the
equivalence of ϑ and P , f should preserve P as well.

435. Let π be an automorphism of A. By induction on the complexity of
the formulas, for every evaluation e over A, AÍϕ[e] iff AÍϕ[π◦e]. Thus if
A Í ϕ[~a,~p] then A Í ϕ[π(~a),π(~p)]. By assumption π(~p) = ~p, thus π(~a) ∈ X
for all ~a ∈ X . As pi is an automorphism (and thus one-to-one), we must have
π(X ) = X .

226



12.7 Fundamental Theorems

436. Create a transcendence basis T of C over the field of rationals Q such
that it has both a real number r ∈ T and a complex number z ∈ T . Take the
permutation of T which swaps r and z. This permutation extends uniquely
to an automorphism of Q(T ) which extends to an automorphism of C. This
automorphism does not keep the real line fixed, hence Problem 435 applies.

437. Every permutation of prime numbers induces an automorphism of A,
and such an automorphism does not preserve addition.

438. The map q 7→ 2q is an automorphism of 〈Q,≤,+〉 which does not pre-
serve {1}, thus Problem 435 applies.

439. Assume, by way of contradiction, that Φ(x) defines the set of even
numbers in A. In particular,

AÍ∀x(Φ(x) ↔¬Φ(S(x)) ). (?)

Let Σ be the set of all formulas true in A. By Problem 420, Σ has a model B
of cardinality ω1, thus there is an element b∗ ∈ B which differs from all of 0,
S(0), S(S(0)), etc. We claim that the function

π(b) =
{

b if b = Sk (0) for some k ≥ 0,
SB(b) otherwise,

is an automorphism of B. Indeed, π preserves the interpretation of 0 and S,
thus we only need to check that it is one-to-one. But this follows easily from
the fact that in B the following formulas are true (as they are true on A):

∀x(S(x) 6= 0),

∀x∀y(S(x) = S(y) → x = y),

∀x(x 6= 0 →∃y(x = S(y)).

Therefore BÍΦ[b] iff BÍΦ[π(b)] for every b ∈ B . But this contradicts (?)
for the choice b = b∗. See also Problem 552.

440. If Φ(x, y, z) defines the addition, that is, AÍΦ[a,b,c] iff a +b = c, then
∃yΦ(y, y, x) defines the even numbers in A = 〈ω,0,≤,S〉. The reasoning of
Solution 439 shows that it is impossible as the function π defined there
preserves the ordering as well.

441. If there is no such a model (not necessarily countable), then the function
f is defined implicitly, thus, by Beth theorem 7.14, it is defined explicitly. But
in the model 〈ω,0,≤,S〉 only the addition satisfies these formulas, so the
addition would be definable in 〈ω,0,≤,S〉 contradicting Problem 440.

So let A be a discrete ordering with different functions f A1 and f A2 satis-
fying the required formulas, namely f A1 (a,b) 6= f A2 (a,b) for some a,b ∈ A.
Take a countable elementary submodel of A generated by {a,b} (in the type
extended by f1 and f2) to get the required countable structure.
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442. x ≤ y iff AÍ∃z(z+x = y). 0 is the only element satisfying x+x = x, and
1 is the successor of 0 in the ordering ≤: x 6= 0 ∧∀y(y = 0 ∨ x ≤ y).

443. The claim follows from the fact that if B is a semantical substructure of
A, and X ⊆ B n is B-definable, then it is also A-definable. This can be seen
as follows. Every symbol in τ′ is definable by some formula from F (τ), and
the ground set of B is also definable, thus for each ϕ(~x) ∈ F (τ′) there is a
ϕ∗(~x) ∈ F (τ) such that

{~b ∈ B n :BÍϕ[~b]} = {~a ∈ An :AÍϕ∗[~a]}.

Such a ϕ∗ can be created by recursion on the complexity of ϕ.

444. Let A = 〈Z,+.·〉. ω is a subset of Z and the interpretation of addition
and multiplication in ω and in Z are the same. Thus it suffices to define
the set of non-negative integers in A. As every such number is the sum of
four squares, and only non-negative integers are of this form, the following
formula defines ω in Z:

ϕ(x) ≡ ∃y1∃y2∃y2∃y4(x = y1 · y1 + y2 · y2 + y3 · y3 + y4 · y4).

445. Since x · y = z iff (w x )y = w z for all w , the following formula defines the
multiplication:

ϕ(x, y, z) ≡ ∀w (e(e(w, x), y) = e(w, z)).

Addition can be defined using multiplication and exponentiation as follows

ψ(x, y, z) ≡ ∀w e(w, x) ·e(w, y) = e(w, z)).

446. According to Problem 442, 0A, 1A and ≤A can be defined by formulas,
so they can be used as if they were present in the type. The function q(x)
defining the square of x can be defined as the only element y which satisfies
sq(y) ∧ sq(y +x +x +1) and no element between y and y +x +x +1 satisfies
sq. Now a ·b = c iff (a +b)2 = a2 +2c +b2. Thus ϕ(x, z, y) can be

q(x + y) = q(x)+q(y)+ z + z

447. (a) The ordinal numbers in A endowed with the ordinal addition and or-
dinal multiplication form a model isomorphic to N. All of them are formula-
definable. For example, x ∈ H is an ordinal, if x is transitive: (∀y ∈x)(∀z∈ y)
(z ∈ x), and the relation ∈ restricted to x is an ordering: (∀y1, y2∈x)(y1=y2 ∨
y1∈ y2 ∨ y2∈ y1). (Transitivity of ∈�x follows from the transitivity of x.) Or-
dinal addition and multiplication is defined by transfinite recursion, which
translates to a defining formula via the transfinite recursion theorem.

(b) By Problem 342 the relation i ∈N j iff the (i + 1)-st digit (counting
from the right) in the binary representation of j is 1, makes a model of the
hereditarily finite sets with ground set ω, the Ackermann model. Thus we
are done if this relation is definable. But i ∈M j iff j = a +2i +2i+1b for some
a < 2i and b which gives the defining formula

ϕ(i , j ) ≡ ∃a∃b(a < f (i ) ∧ j = a + f (i )+ f (i +1) ·b).
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Remark. By Problem 833 the function f (i ) = 2i is definable in N, thus
〈H ,∈〉 can be semantically interpreted in N = 〈ω,+, ·〉. When two struc-
tures can be mutually semantically interpreted in each other, they are
called definitionally equivalent.

448. Treat models of the binary relation symbol ρ as directed graphs: there
is a directed edge from v to w if (v, w) ∈ ρA. Let B be a structure with the
binary function symbol f . We need to create a directed graph A so that from
this graph we can recover the value of the function f B. The structure of such
a graph is depicted on Figure 12.3. There is a single node v with in-degree

v

b1 b2
. . .

. . .
vb1,b2 vb2,b1

Figure 12.3: Recovering a function from a directed graph

zero, thus it can be defined by a formula. Points corresponding to the base
set of the structure B are the out-neighbors of v – again, a definable set. For
any pair of them, say b1 and b2, there is exactly one vertex vb1,b2 which can
be reached from b1 by a path of length two, and directly from b2. The only
outgoing edge from vb1,b2 goes to the point corresponding to the value of the
function f (b1,b2). From this description it is clear that f can be recovered
by a formula: f (b1,b2) = c iff ∀v∀w (ρ(b1, w) ∧ ρ(w,v) ∧ ρ(b2,v) → ρ(v,c)).

449. Similarly to Problem 448 we will define a graph from which the binary
relation ρ can be retrieved by some formula. Such a graph is sketched in
Figure 12.4. Vertex a is the only one which has a single neighbor of degree

a b

...
...

Figure 12.4: Embedding a relation into a graph

one, and b is the only vertex which has two such neighbors, thus they can be
recovered by some formula. Other vertices adjacent to a are called A-vertices,
and similarly for B vertices. Vertices in the middle – the C vertices – are not
adjacent to either a or b; they have degree exactly 2 with one A and one B
neighbor. Every A-vertex and every B-vertex has a unique C -neighbor. All
further edges of the graph go between A and B vertices.

It is clear that there is a single graph formula which, if true, forces the graph
to have the structure described above. The base of the substructure will be
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formed by the A-vertices. Say that the A-vertices u and v are in relation ρ (in
this order), if there is an edge from u to v′, where v′ is the unique B vertex
connected to v through a C -vertex. It is clear that any binary relation can be
encoded this way.

450. Using the transitivity of the semantical definition (Problem 443). N can
be defined in A= 〈ω,e〉 for a binary function e (Problem 445). Any structure
with a single binary function can be defined in a structure with a single binary
relation symbol (Problem 448), and any such structure can be defined in a
graph (Problem 449).

451. Let G be a graph. The lattice will have four levels: the minimal element 0,
all vertices of the graph, all edges of the graph, and the maximal element 1. A
vertex is below an edge if it is adjacent to it.

Using the lattice, vertices of the graph correspond to those lattice elements
which are directly above 0, and two such points are connected by an edge if
their join is not the maximal element 1.

452. By Problem 350(c) the set of non-negative integers in A is definable.
By point (b) of the same problem, the set of perfect squares, denoted by sq,
is also definable. Thus 〈ω,+,sq〉 is semantically definable in A, and then
Problem 446 so is 〈ω,+, ·〉.
453. By Problem 334 the set of shifts is defined by the formula x ◦π= π◦ x.
For j ∈ Z let π j be the shift x 7→ x + j . Then π1 = π, and π j1+ j2 = π j1 ◦π j2 ,
thus both 1 and addition is definable in G . According to the hint we seek for a
definition for the divisibility relation. For a permutation σ of Z, πi ◦σ=σ◦πi

is equivalent to σ(x+i ) =σ(x)+i for all x ∈Z, and then σ(x+ j ) =σ(x)+ j also
holds for each multiple of i . From here it is easy to check that the formula

∀σ (πi ◦σ=σ◦πi →π j ◦σ=σ◦π j )

holds in G if and only if i is a divisor of j . It means that the structure 〈Z,1,+, |〉
is semantically definable in G , and then N is also definable in G by Problem
451.

454. (a) A finite subset of T (x) is realizable in a model A if there is an x
different from the finitely many cAi mentioned in that subset. As Σ has an
infinite model, such an element always exists.

(b) The type T (x) is realized by any element of the structure which differs
from all cAi . Thus A omits T (x) exactly in the case every element of A is an
interpretation of some ci .

455. The ordered structure A realizes T (x, y), if there are two elements
a,b ∈ A with infinitely many elements between them. A will omit T if A
is finite, and A cannot omit T if the cardinality of A is at least ω1. So suppose
A is countable and omits T . Between any two elements there are only finitely
many others, thus every element has an immediate successor and an im-
mediate predecessor, thus the ordering is discrete. There are three discrete
orderings omitting T , namely ω, ω∗ (the reverse of ω), and ω∗+ω.
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456. Let the type τ consist of the constant symbols ci for i < ω, and let
Γ= {ci 6= c j : i 6= j }. Take Bk = 〈ω∪ {ai : i < k},cBk

i 〉, where cBk
i = i and the

ai ’s are new elements. Bk Í Γ, and the type

T (x) ≡ {
x 6= ci : i ∈ω

}
is realized in Bk by exactly k elements.

457. Let τ consists of two disjoint sets C and D of constant symbols, where C
is uncountable and D is countably infinite. Write Σ= {a 6= b : a,b ∈C , a 6= b}
and let T (x) be the type {x 6=d : d ∈ D}. Every model of Σ is uncountable, thus
every model of Σ realizes T (x), as there is always an element which differs
from the interpretation of all constant symbols in C , see Problem 454. It is
straightforward that T (x) is not isolated.

458. The structure A omits the type T (x).

459. (a) A is an ω-model iff A omits the type T (x) = {x 6= πi : i ∈ ω}. We
use Theorem 7.19 to show that Γ has a model omitting T . First, T is a type
as in any model of Γ the interpretations of πi are different. Thus we only
need to check that T is not isolated. To this end suppose ϕ(x) is a formula
such that ΓÍϕ(x) → (x 6=πi ) for all i ∈ω. In this case ω-completeness gives
Γ Í ∀y(ϕ(x) → (x 6= y), that is Γ Í ¬ϕ(x). It means that Γ∪ {∃xϕ(x)} is not
consistent, showing that T is not isolated indeed.

(b) If A Í Γ is an ω-model and A Í ϕ(π0), A Í ϕ(π1), . . ., then surely A 6Í
∃x¬ϕ(x), thus the formula ∃x¬ϕ(x) cannot be a consequence of Γ.

460. Let Γ′ be the set of all closed formulas provable from Γ in the extended
inference system. Clearly Γ′ is syntactically consistent in the traditional sense,
thus it has a model. As Γ′ is ω-complete, by Problem 459 it has an ω-model
as well.

If Γ has an ω-model, then Th(A), the set of formulas true in A, extends
Γ. They are closed for the ω-rule, thus only formulas in Th(A) can be de-
rived from Γ (even using the ω-rule). As ⊥ is not in Th(A), Γ is syntactically
consistent.

461. A syntactically ω-consistent theory is ω-complete, thus by Problem
460 such a theory has an ω-model. All formulas true in that model form a
maximal syntactically ω-consistent set extending the given theory.

462. Let the similarity type τ contain 0, S and a constant symbol c and put
Σ= {πn 6= c : n ∈ω}. With ϕ(x) ≡ x 6= c the ω-rule implies

ϕ(π0), ϕ(π1), ϕ(π2), ϕ(π3), . . .

∀x ϕ(x)

Thus Σ`∀x(x 6= c). But clearly no finite Γ⊂Σ gives Γ`∀x(x 6= c). (Note: Σ
is ω-inconsistent.)

231



12 Solutions

12.8 ELEMENTARY EQUIVALENCE

463. Let j :A→B be an isomorphism and e be an evaluation over A. In this
case j ◦e is an evaluation over B. As j (cA) = cB for each constant symbol,
and j maps f A to f B, an easy induction gives j (tA[e]) = tB[ j ◦e] for each
τ-term t . This means that the equivalence A Í ϕ[e] iff B Í ϕ[ j ◦ e] holds
for atomic formulas, and another induction show it for arbitrary formulas.
Finally, the claim follows from the fact that every evaluation over B is of the
form j ◦e for some evaluation e over A.

464. Let A be infinite. By Problem 420, Th(A) has models of arbitrary large
cardinality (as it has an infinite model A). If A and B are isomorphic, they
must have the same cardinality.

465. Suppose first that the similarity type τ is finite and A has n elements.
Fix an evaluation e over A which assigns different elements to x1, . . . xn . Con-
struct the formula

ϕ ≡ ∃x1 . . .∃xn
(
ψ(~x) ∧∀y

∨
i

y = xi
)

where ψ(~x) is the conjunction of all atomic formulas and their negations
with unnested terms that hold in A under the evaluation e. As A and B

are elementarily equivalent, BÍϕ, thus there are elements b1, . . . ,bn ∈ B in
place of the xi ’s, and the map ai 7→ bi is an isomorphism.

For the general case suppose τ is infinite and for each finite σ⊆ τ fix an
isomorphism fσ :A�σ→B�σ. As A (and thus B) has n elements, there are
finitely many functions between A and B only, say g0, . . . , gk . If A and B

are not isomorphic then g` is not an isomorphism, thus there exists either a
function or a relation symbol which is not mapped properly by g`. Pick one
of these symbols, and let σ be the collection of these violated symbols. As
there are finitely many possible functions, σ is finite. But then fσ cannot be
an isomorphism, a contradiction.

466. Here is a counterexample. The type τ has countably many unary rela-
tions Rn . For n ∈ ω let RA

n = (−∞,−n) and RB
n = (−∞,−n)∪ {1}. Then A =

〈R,RA
n 〉n∈ω and B = 〈R,RB

n 〉n∈ω are not isomorphic because
⋂

n∈ω RA
n = ;

while
⋂

n∈ω RB
n = {1}. But for any finite σ = {R0, . . . ,Rk } it is easy to see that

A�σ and B�σ are isomorphic.

467. (a) There are continuum many subsets of F (τ) (as it is countable), thus
among more than continuum many subsets of F (τ) there must be two equal.

(b) Let a1, a2, . . . be a (countable) sequence of ≥ 2 natural numbers, and
consider the ordering a1+η+a2+η+·· · where η is the order type of rationals.
From this ordering one can recover the sequence a1, a2, . . . by formulas: there
are exactly a1 elements which are smaller than any other element. The first
element of the next block of a2 elements is the smallest element which is
bigger than the first a1 and has an immediate successor. There are exactly
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a2 discrete elements in this block, etc. Consequently orderings created from
different a1, a2, . . . sequences are not elementarily equivalent, and there are
continuum many such sequences.

468. Consider the linear orderings 2+η+3+η+2+·· · and 3+η+2+η+
3+ ·· · , where η is the order type of the rationals. These orderings are not
elementarily equivalent by Solution 467, but clearly can be embedded one to
the other. A modified construction can give continuum many non-equivalent
orderings such that any two of them are mutually embeddable.

469. Let An be the closed interval [1/n,1− 1/n] with the usual ordering. As
they are isomorphic, Problem 463 implies An ≡Am . However

⋃
n An = (0,1)

has no maximal element, thus it is not elementarily equivalent to any An .

470. Not true. Let {Gi : i <ω} be the set of all finite graphs and let G be the
structure which is their disjoint union. The structure H contains a copy of
G and a new vertex v which is connected to every other vertex. The set of
spanned finite subgraphs of G and H coincide (both are the set of all finite
graphs), and G and H are not elementarily equivalent shown by the formula
∃v∀x E(v, x).

471. No. By the Erdős-DeBruijn theorem a graph has chromatic number
k <ω if and only if each of its finite subgraphs can be colored with k colors
and there is a finite subgraph with chromatic number k. Suppose G1 ≡G2

and χ(G1) <χ(G2) = k <ω. There is a finite subgraph H ⊆G2 with χ(H) = k
and a formula ϕ expressing “there are |H | points which induce a subgraph
isomorphic to H”. As H is fixed, this can be expressed with a first-order
formula. Now, G2 Íϕ implies G1 Íϕ and therefore there is a finite subgraph
of G1 isomorphic to H . But then the chromatic number of G1 cannot be less
than χ(H) = k.

472. By induction on the complexity of the formulas using that tA[e] = tB[e]
for all terms t (by definition of the substructure and induction on the terms).

473. Choose τ with no function or constant symbols, and the τ-structure A

which has at least two elements. Let B be a substructure that consists of a
single point of A. If ϕ is the formula ∀y(x = y), then B Í ∃x∀y(x = y) but
A 6Í ∃x∀y(x = y).

The formula ϕ cannot be quantifier-free. Suppose it is, then BÍ ∃xϕ[e]
iff B Í ϕ[e(x/b)] for some b ∈ B . By Problem 472 this is equivalent to A Í
ϕ[e(x/b)] which holds iff AÍ∃xϕ[e].

474. This is just another way of saying that for all evaluations e over B,
BÍϕ[e] iff AÍϕ[e].

475. A proper substructure B of A= 〈Z,≤〉 either has an endpoint (an thus
B is not even elementarily equivalent to A), or contains two consecutive
points a,b ∈ B which are not consecutive in A. If ϕ(x, y) denotes the formula
which expresses that there are no elements between x and y , then we get
BÍϕ[a,b] but A 6Íϕ[a,b].

233



12 Solutions

476. Every property, expressible by a formula, of a node in the elementary
subgraph H is true in H iff it is true in G . As every node has degree 2 in G , the
same must be true in H , thus the only elementary subgraph of G is itself.

477. Let B= 〈ω, ≤〉 and A= 〈ω− {0}, ≤〉. As f (n) = n +1 is an isomorphism
between A and B, the two structures are elementarily equivalent (see Prob-
lem 463). Let ϕ(v) be the formula which expresses that v is the least element.
Then A Í ϕ[v = 1] but B 6Í ϕ[v = 1], consequently A is not an elementary
substructure of B.

478. (a) Problems 472 and 473 imply that for quantifier-free ϕ we have BÍ
∃~xϕ[e] iff AÍ∃~xϕ[e]. Therefore it is enough to give B⊆A such that B is not
an elementary substructure of A. Take, for example, A to be finite with the
empty language, and |B | < |A|.

(b) Let B= 〈ω,<〉, and let A has one more point which is bigger than any
element in B. The truth value of a quantifier-free formula ϕ(~x, y1, . . . , yn)
depends only on the order of the interpretation of the variables. Thus if
BÍ∀~xϕ[e] for an evaluation e over B, then the same formula is true in A.
And B is not an elementary substructure of A as A has a biggest element,
while B has not.

479. Both are true. To check B≺A observe that for an evaluation e over B
we have

BÍϕ[e] ⇔ CÍϕ[e] ⇔ AÍϕ[e].

This also implies A≡B.

480. No finite structure can have a proper elementary substructure (e.g.,
because it can be expressed by a first-order formula that a structure has n
elements for some fixed n ∈ω). Regarding infinite groups: Z∞

2 /H ×Z∞
2 for

any group H . Clearly, Z∞
2 Í ∀x(x + x = 0) while H can be chosen so that

H ×Z∞
2 Í∃x(x +x 6= 0) (e.g. take H =Z3).

481. No. G =⊕
ωZ4 has a subgroup H =⊕

ω{0,2}, but G is not even elemen-
tarily equivalent to H as H Í∀x(x +x = 0), while G Í 3+3 6= 0.

482. (⇒) If B≺A, then AÍ ∃xϕ[~b] iff BÍ (∃xϕ)[~b] iff there is a c ∈ A with
BÍϕ[c,~b] iff AÍϕ[c,~b].

(⇐) We need to show B Í ϕ[~b] ⇔ A Í ϕ[~b] for all ~b ∈ B and formula
ϕ(~v). As B is a substructure of A, this holds for quantifier-free formulas
(see Problem 472). Suppose (inductive hypothesis) that it holds for ϕ and
consider the formula ∃xϕ. (For the other cases the induction is easy.) Then
AÍ (∃xϕ)[~b] implies (by assumption of the theorem) that there is c ∈ B such
that AÍϕ[c,~b]. By the inductive hypothesis this is equivalent to BÍϕ[c,~b],
which is equivalent to BÍ (∃xϕ)[~b]. The reverse implication is immediate.

483. If f is a function symbol and~b ∈ B , then there is an automorphism j
which fixes~b and moves a = f B(~b) to B . As j is an automorphism, j (a) = a,
which implies a ∈ B . Thus B is the ground set of a substructure.
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To prove that B≺A use Theorem 8.3. Take~b ∈ B and formula ϕ(y,~x) and
assume AÍ (∃xϕ)[~b]. We have to find a good x ∈ B . There is an a ∈ A such
that A Í ϕ[a,~b], and, by assumption, there is an automorphism j which
moves a into B while keeping~b fixed. As automorphisms preserve formulas,
we have

AÍϕ[a,~b] ⇔ AÍϕ[ j (a), j (~b)] ⇔ BÍϕ[ j (a),~b].

As j (a) ∈ B , we are done.

484. We use the method of Problem 483. Fix the real numbers a1, . . . , an ∈
(b,c). For any real number r ∈ (a,d) there is an automorphism (order-pre-
serving map) of (a,d) which keeps all ai and moves r into the open interval
(b,c).

485. For each finite subset F ⊆ Q and a ∈ R there is an order-preserving
permutation j :R → R that fixes F pointwise and moves a into Q (such a
permutation can be chosen to be a piecewise linear function). Therefore
Problem 483 applies.

486. Since A is countable, the construction in Problem 365 shows that for
any finite subset F ⊂ B there is an order-preserving permutation of A which
fixes F , and moves a ∈ A into a different element. Thus Problem 483 applies.

Remark. By Problem 370 the same idea does not work for uncountable
structures. The statement, however, is true in general, see Problem 545.

487. The elementary substructure B must contain the point of the broom
(the only point which has degree ≥ 3), all points of the handle (they are the
points with degree 2, and if any of them is in B , then both neighbors must be
in B as well), and infinitely many edges from the brush (as B must contain at
least n one-degree nodes for each n). That is, remove edges from the brush
ensuring infinitely many remain. By Problem 483 all of these substructures
are elementary.

488. We can remove paths of length two that are joined to v taking care that
infinitely many of such paths should remain joined to v. The rest is similar to
Solution 487.

489. (a) An is the usual ordering of the open interval (0, 1/n). They are ele-
mentary submodels of each other by Problem 484.

(b) An is the usual ordering of the open interval (−1/n, 1/n).

490. The Skolem function of the formula ∃y( f (~x) = y) is the interpretation of
f , thus B is closed for all functions. The second claim is immediate from the
Tarski–Vaught test 8.3 as the Skolem function fψ of the formula ψ≡∃yϕ(y,~x)
satisfies, for all ~a ∈A,

AÍ (∃yϕ)[~a] implies AÍϕ[ fψ(~a),~a].
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491. If B⊆A is a substructure, t (~x) is a term and~b ∈ B , then clearly t [~b] ∈ B .
From here the claim follows from the Tarski–Vaught test and the definition of
built-in Skolem functions.

492. If X is empty, add a single point to it. Observe that there are at most
max(|τ|,ω) Skolem functions as there are that many formulas. Let B be the
closure of X for all Skolem functions. The cardinality of B is clearly at most
max(|X |, |F (τ)). Finally, B is an elementary substructure of A by Problem
490.

493. (a) By Problem 420, Γ has arbitrary large models. Apply the Downward
Löwenheim–Skolem Theorem 8.5 for a X ⊆ A of cardinality κ. (b) Apply (a)

to the theory Th(A).

494. Use the idea of Problem 358. The similarity type is empty, and for i ≥ 1
let ϕi be the formula which says that if there are i different elements, then
there are i +1 different elements. Let Γ= {ϕi : i ∉ K }.

495. Let A Í Γ of size κ. There are 2κ many different constants, relations
and functions in the structure, thus among the interpretation of the symbols
in τ there are at most 2κ many different ones. Replace different symbols
with the same interpretation by the same symbol in Γ. The new theory has
models for each λ≥ 2κ, and interpreting the missing symbols equal to their
representative ones makes it a model of Γ.

Remark. Problem 614 constructs directly a model of size 2κ from any
model of size κ. That construction, however, falls short to prove that there
are models for all λ≥ 2κ.

496. (ii)⇒(i)⇒complete is clear. The implication complete⇒(ii) follows from
the fact that if two structures A and B are not elementarily equivalent, then
there must be closed formula ϕ such that AÍϕ and BÍ¬ϕ.

497. For A,B Í Γ, using Problem 493 one can find models A′,B′ of cardi-
nality κ such that A′ ≡A and B′ ≡B. By assumption we have A′ ∼=B′, thus
A≡A′ ∼=B′ ≡B. Combining this with Problem 463 we get A≡B.

498. Let Γ be the empty theory of the empty language (models on this lan-
guage are pure sets). Each two sets of the same cardinality are isomorphic,
however no finite set can be elementarily equivalent to any other set that has
different cardinality.

499. Yes. Infinite complete graphs are elementarily equivalent (because
complete graphs of the same cardinality are isomorphic and the theory of
an infinite complete graph has no finite models; see Problem 497). Conse-
quently, for different infinite cardinals κ and λ we have κ=χ(Kκ) 6=χ(Kλ) =λ,
while Kκ and Kλ are elementarily equivalent.

500. Any uncountable model A Í Γ consists of |A| many Z-chains, hence
uncountable models of Γ are isomorphic. The type is finite, thus by Theorem
8.7, it is complete.
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501. In a modelAÍ Γ draw a directed edge from x to S(x). From the formulas
it follows that every node, except for 0A has in-degree exactly one; and there
are no loops. Thus A consists of an infinite half-line starting from 0A, and
lines isomorphic to Z. Thus any two models of cardinality ω1 are isomorphic,
and Theorem 8.7 applies. See also Problem 552.

502. By Problem 365 it has a unique countable model. Use Theorem 8.7.

503. Torsion-free divisible Abelian groups are isomorphic to the additive
groups of vector spaces over the field of rational numbers Q. Any two such
vector spaces are isomorphic if and only if their dimensions are the same.
If the cardinality is uncountable, then the dimension equals the cardinality,
thus there is only one such vector space for all κ>ℵ0.

The theory is not ℵ0-categorical; actually there are ℵ0 non-isomorphic
models corresponding to the dimension which can be n ≥ 1 or countably
infinite.

504. An algebraically closed field is uniquely determined by its transcen-
dence degree over the base field, which is Q for characteristic zero fields. If
the degree is uncountable, then the field has the same cardinality.

505. Expand the similarity type with constant symbols c, d and let

ϕn(c,d) ≡ ∃x1 . . .∃xn
(
c < x1 < ·· · < xn < d ∧ Z (x1) ∧ ·· · ∧ Z (xn)

)
Let Γ′ = Γ∪{ϕn(c,d) : n ∈ω}. Then Γ′ is finitely satisfiable, so by compactness
there is a model AÍ Γ′. By the Löwenheim–Skolem theorem we can assume
A is countable. Let B be a countable elementary substructure of 〈R,≤, Z 〉.
Then the reduct of A to the original similarity type and B are countable
models of Γ but they are not isomorphic.

506. The similarity type consists of a single unary relation symbol R. Let Γ
be the theory which says that infinitely many elements are in R , and infinitely
many elements are not in R. All countable models of Γ are isomorphic, thus
the theory is complete (Theorem 8.7). Let A = 〈A,RA〉 be such that RA is
countable, A àRA is uncountable, and let B= 〈B ,RB〉 be such that RB is
uncountable, B àRB is countable. Then A,BÍ Γ, and so A≡B, but there is
no embedding from either one to the other.

507. (a) Let j : A → B be defined by j (a) = cBa . If a,b ∈ A are distinct el-
ements, then ca 6= cb ∈ ∆0

A
, thus j (a) 6= j (b). If f ∈ τ is a function sym-

bol and f A(a1, . . . , an) = b, then the formula f (ca1 , . . . ,can ) = cb belongs to
∆0
A

and f B( j (a1), . . . , j (an)) = j (b). For a relation symbol R ∈ τ we have

〈a1, . . . , an〉 ∈ RA iff R(ca1 , . . . ,can ) ∈ ∆0
A

, thus 〈 j (a1), . . . , j (an)〉 ∈ RB. There-
fore the image of j is a substructure.

(b) Let j : A → B be defined by j (a) = cBa . For a formula ϕ and elements
a1, . . . , an ∈ A we have AÍϕ[a1, . . . , an] iff ϕ(ca1 , . . . ,can ) ∈∆A iff BÍϕ[cBa1

,
. . . ,cBan

] iff BÍϕ[ j (a1), . . . , j (an)].
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508. ∆A has arbitrary large models by Problem 420, and A can be embedded
elementarily to every model of ∆A by Problem 507(b).

509. Any model of ∆A∪Σ is an extension of A that models Σ (see Problem
507). Using compactness we show ∆A∪Σ is consistent. Take a finite subset
Γ⊂∆A∪Σ. Then A has a finitely generated substructure generated by the
constants appearing in Γ∩∆A. By the hypothesis this structure can be
extended to be a model of Σ, thus Γ is consistent.

510. (a) Let τ1 and τ2 be the similarity type of ∆A and ∆B, respectively. Then
τ1 ∩τ2 = τ. By the elementary equivalence we have that ϕ ∈∆A iff ϕ ∈∆B

for any closed formula ϕ ∈ F (τ). Thus Robinson’s consistency theorem 7.11
gives that ∆A∪∆B is consistent.

Remark. As τ1 and τ2 has additional constant symbols only, a direct ap-
proach similar to the one used in Problem 430 gives that ∆A ∪∆B is
consistent.

(b) By Problem 507(b) both A and B can be embedded into a model of
∆A∪∆B.

511. Similarly to Solution 510, it suffices to show that
⋃

i∈I ∆Ai is consistent.
For finite I proceed by induction on |I |. For |I | = n embed n −1 structures
into B. As B and An (as τ-structures) are elementarily equivalent, they
can be embedded elementarily into a τ-structure C. By the transitivity of
embedding (Problem 479) each Ai embeds to C.

If |I | is infinite, then any finite subset of Σ=⋃
i∈I ∆Ai is in a union of finitely

many ∆i ’s, thus Σ is consistent.

512. (⇒) Using Robinson’s consistency theorem Th(A1)∪Th(A2) is consis-
tent, and both A1 and A2 can be embedded to its models.

(⇐) Suppose Γ1 and Γ2 satisfies the condition of Robinson’s theorem. For
every closed ϕ ∈ F (τ) either ϕ or ¬ϕ can be added to both Γ1 and Γ2, oth-
erwise the condition would be violated. Thus Γ1 and Γ2 can be extended
so that their τ-type consequences is the same maximal consistent theory.
Take Ai Í Γi , the τ-type reducts are elementarily equivalent, thus they can
be embedded into a τ1 ∪τ2-structure B. But then Γ1 ∪Γ2 is consistent.

513. Not true even for |I | = 3. There are three binary relation symbols R1,
R2, R3 (counted modulo 3), and in Ai RAi

i is a dense linear order without

endpoints, and RAi
i+1 is the reverse order. By Problem 502 the pairwise reducts

are elementarily equivalent, thus Ai and Ai+1 embeds into a joint structure,
where Ri and Ri+2 is the same relation (both are the reverse of Ri+1). But not
all three embeds elementarily into the same structure.

514. By Problem 507 it is enough to show that ∆0
A
∪Γ is consistent. If not,

then by compactness and as ∆0
A

is closed for ∧, there is a single δ(~a) ∈∆0
A

such that ΓÍ¬δ(~a) where δ(~x) ∈ F (τ) is quantifier-free and ~a are constant
symbols denoting elements of A. As ~a does not occur in the similarity type
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τ, we have ΓÍ∀~x¬δ(~x). As this universal formula is a consequence of Γ, it
must hold in A, contradicting that δ(~a) ∈∆0

A
.

515. Suppose ϕ(~x) is not equivalent to any quantifier-free formula. Let AÍ Γ,
A Í ϕ[~b], and let B be the substructure generated by ~b. (If no such an
A exists, then ϕ(~x) is equivalent to the quantifier-free formula ⊥.) If Γ′ =
Γ∪∆0

B
∪ {¬ϕ(~b)} has a model A′, then A, A′ and B show that the conclusion

in problem holds. If Γ′ were not consistent, then by compactness and as
∆0
B

is closed for ∧, there is a single ϑ ∈∆0
B

such that Γ,ϑÍϕ(~b). As B is the

substructure generated from~b, every element in ∆0
B

is of the form δ(~b) where

δ(~x) ∈ F (τ) is quantifier-free. Consequently in this case ΓÍ δ(~b) →ϕ(~b) for
some quantifier-free δ(~x) with δ(~b) ∈∆0

B
. We get the required contradiction

if none of such δ(~b) formulas are true in A. Thus we need A to be a model of
this set:

Γ∪ {ϕ(~b)}∪ {¬δ(~b) : δ is quantifier-free and ΓÍ δ(~b) →ϕ(~b)}.

So we are done if this set is consistent. Suppose again it is not, then there are
finitely many δi (~b) such that

ΓÍϕ(~b) →∨
i δi (~b).

As ΓÍ δi (~b) →ϕ(~b) for all i , this shows that ΓÍϕ(~b) ↔∨
i δi (~b), contradict-

ing that ϕ is not equivalent to any quantifier-free formula.

516. (a) Any structure with ab-maximal element.
(b) The standard model of arithmetic 〈ω,0,1,+, ·,〉 with b as the usual

ordering, see Problem 784. More generally, every structure where b is an
order of regular order type.

(c) Any countable structure A where for each a ∈ A there are only finitely
many b ∈ A with bb a, and given finitely many b1,. . . bn ∈ A there is an a ∈ A
such that bi b a for all i , see Problem 343.

(d) Models of set theory.

517. Denote the element a of A by the constant symbol ca , and let c be a
brand new constant symbol. Take Σ=∆A∪ {ca b c : a ∈ A} (here ∆A is the
diagram of A, see Definition 8.8). For a ∈ A let Ta(x) = {x b ca ∧ x 6= cb :
bbA a} be a type.

If A has no maximal element, then Σ is consistent, and any B Í Σ is a
proper elementary extension of A (see Problem 507(b)). If B omits each
Ta , then the reduct of B to the original signature is a proper end-extension
of A. To apply the omitting types theorem 7.19 we need to show that Ta is
non-isolated.

Assume that ϕ(x,c) isolates Ta , that is, Σ∪{∃xϕ(x,c)} is consistent, and for
all bb a we have ΣÍϕ(x,c) → x b ca and

ΣÍϕ(x,c) → x 6= cb ,
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that is, ΣÍ¬ϕ(cb ,c). By compactness, there is a finite A0 ⊂ A so that

∆A Í ∧
{ca b c : a ∈ A0} →¬ϕ(cb ,c)

Let m be theb-maximal element in A0. Then ∆A Í cm b c →¬ϕ(cb ,c). As
the constant c does not occur in ∆A, we have

∆A Í cm b y →¬ϕ(cb , y).

This holds in A for all bb a, thus we have

AÍ (∀x b ca) (∃m) ∀y (mb y →¬ϕ(x, y)).

By the collection principle there is an n ∈ A such that

AÍ (∀x b ca) (∃mb cn) ∀y (mb y →¬ϕ(x, y)),

thus AÍ (∀x b ca) ∀y (cn b y →¬ϕ(x, y)). But then ΣÍ (∀x b ca) ¬ϕ(x,c),
that is, Σ Í ϕ(x,c) → ¬(x b ca). However we have Σ Í ϕ(x,c) → (x b ca),
hence Σ∪ {∃xϕ(x,c)} cannot be consistent, a contradiction.

Remark. The same solution works whenb is a partial order where every
pair has a strict upper bound.

518. After nodes ai , bi have been chosen, II wins if there is an edge between
ai and a j iff there is an edge between bi and b j . So II wins if he can maintain
the following invariant: If r more rounds are to come, then the (shorter)
distance between ai and a j is exactly the same as the distance between bi

and b j , except when both distances are larger than 2r . When the game ends
(r = 0), and this property holds, player II wins.

It is clear that II can play this way in the first two rounds. After that II
can always respond properly, as if the new point is closer to both ai and
a j than 2r−1, then ai and a j must be closer to each other than 2r , thus the
corresponding point in the other structure exists.

Remark. I can win the game in about log2 |G1| rounds. In the first three
rounds I can secure corresponding nodes a, a′ and b, b′ such that their
distances are different. Then always halving the smaller interval she can
go down to distance 1.

519. (a) By assumption, AÍ∀x∃y ϕ(x, y) and BÍ∃x∀y ¬ϕ(x, y). In her 1st
move I picks a b1 ∈ B B Í ∀y ¬ϕ(b1, y). Then II picks a1 ∈ A. Then I picks
a2 ∈ A so that AÍϕ(a1, a2) (such an a2 exists by assumption). After that no
matter what b2 ∈ B II picks, BÍ¬ϕ(b1,b2).

As ϕ is quantifier-free, there is an atomic formula ψ such that the truth
values of ψ(a1, a2) and ψ(b1,b2) are the opposite. Let us assume (for simplic-
ity) that ψ≡ R(t1, . . . , tn) or ψ≡ t1 = t2. I can secure her winning by making
sure that all arguments and all function values in the terms ti are mentioned
in structure A. The created map ai 7→ bi is a partial isomorphism only if
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II responds with the corresponding values in B. Doing so, II will miss the
correct value for the atomic formula ψ.

(b) Let N be fixed. The similarity type τ contains an N -place relation
symbol R and binary function symbols fi for 1 ≤ i ≤ N . Let A= 〈ω,RA, f Ai 〉,
where f Ai (x, y) = i , and RA holds for an N -tuple if all arguments are different.
Put B= 〈ω,RB, f Bi 〉, where f Bi = f Ai for i ≤ N , but RB never holds.

Observe that any partial map j :A→B is a partial isomorphism as far as
it keeps the integers 1 ≤ i ≤ N , and its domain does not contain N different
numbers. Thus II wins the N -1-round game.

Finally, let ϕ be the formula R( f1(x, y), . . . , fN (x, y)). ClearlyAÍ∀x∃yϕ(x, y)
and BÍ¬∀x∃yϕ(x, y), as required.

520. Suppose that A and B are not elementary equivalent witnessed by the
closed formula ϕ. Write ϕ in prenex normal form (Problem 408) as

ϕ1 ≡ Q1x1 . . .Qn xn ψ(x1, . . . , xn)

where each Qi is either existential or universal quantifier, and ψ(~x) is quanti-
fier-free. Let ϕi (x1, . . . , xi ) be the formula after the quantifier Qi . I can play
as follows. If Q1 = ∃ then he picks a1 ∈ A such that A Í ϕ1[a1] (and then
BÍ¬ϕ1[b1] whatever II’s response is), and if Q1 =∀, then he picks b1 such
that BÍ¬ϕ1[b1] (and then AÍϕ1[a1] for every response of II). In general,
in the i -th round if Q j = ∃, he picks a j ∈ A such that A Í ϕ j [a1, . . . , a j ],
otherwise he picks b j ∈ B which satisfies BÍ¬ϕ j (b1, . . . ,b j ).

After n rounds the picked elements satisfy

AÍψ[a1, . . . , an] and BÍ¬ψ[b1, . . . ,bn].

As ψ is quantifier-free, an argument similar to the one in Solution 519(a)
shows that I wins the N -round game, where N depends only on the original
formula ϕ.

521. (a) A discrete linear order without endpoints has the form ω+K ×Z for
some arbitrary (possibly empty) linear order K . Two elements a and b are
infinitely far apart if they belong to different Z-chains (that is, the distance
between them is infinite).

The main problem that player II faces is that player I can pick elements
infinitely far apart while forcing II to choose elements in the other structure
which are finitely far apart only. The crux is that the number of rounds is
fixed in advance and II can choose elements which are only “sufficiently far
apart” securing her the win.

Similarly to Solution 518, Player II can maintain the following invariant.
Add the initial points of the structures as a0, b0, they must correspond to
each other. If r more rounds are to come, then ai and b j are ordered the
same way, and the distance between ai and a j is exactly the same as the
distance between bi and b j , except when both distances are larger than 2r

(possibly infinite).
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To show that for each possible pick of player I, player II can choose a
corresponding element in the other structure can be done similarly as in
Solution 518.

(b) If N is not fixed in advance, then I can win the game, for example, for
the structures A= 〈ω,<〉 and B= 〈ω+Z,<〉. Player I will pick a decreasing
sequence of elements from Z. II is forced to pick a decreasing sequence from
ω, and sooner or later she runs out of the available elements.

522. Color a point blue if it has an immediate successor, and green otherwise.
II must keep both the order and the color of the chosen points. She can always
do it (as between any two elements of the same color there are infinitely many
other elements of both colors) except for points at the beginning or at the
end of the orderings. Thus II wins the game if and only if the orders have
minimal (maximal) elements at the same time.

523. If the element chosen by I is in some Boolean combination, II can
respond by a new element from the same combination in the other structure
up to the N -th round. Then she wins.

524. II wins the EF game for every N . The same strategy works as in Solution
521(a).

525. Proceed along the proof of Problem 520. If ∀x1∃x2 . . .δ(~x) is true in A

and false in B, then I can play so that after n moves AÍ δ[a1, . . . , an], while
BÍ¬δ[b1, . . . ,bn]. As no constant or function symbols are in τ, it means that
I won the game.

526. Suppose N is fixed. First, assume that in A the path starting from v0

has length at least 2N . Then player II can play as follows. if I picks an element
in A not from the path starting at v0, or picks an element in B not from the
infinite path, then II picks the same element in the other structure. On the
paths starting from v0 (both in A and B), II plays by the strategy described in
Solution 521(a) making sure that the pairwise distances of the chosen points
in the corresponding paths starting from v0 in A and in B are either equal or
both are bigger than 2r where r is the number of remaining rounds. Playing
so II clearly wins the N -round game.

Now, if the path starting from v0 is shorter than 2N , then a modification
of the previous strategy works. There is a point vi in A such that the path
starting from vi has length 2N and otherwise the 2N neighbourhood of vi is
isomorphic to that of vA0 . If I plays any point not in this neighbourhood, then
II replies with a point that has identical neighbourhood of size 2r where r is
the number of remaining rounds. See a more general statement in Problem
565.

527. The similarity type contains countably many constant symbols ci for
i < ω. Let A = 〈ω,cAi 〉 be such that cAi = i , that is, each element of ω is
denoted by a constant. Let B be an arbitrary proper elementary extension of
A, then there are elements in B which are not denoted by constants.
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As partial isomorphisms should preserve constant symbols, player I can
always win by choosing an element from B which is not denoted by any of
the constants.

528. If f :A→B is an isomorphism, then I = { f } is a back and forth system.
The converse statement is proved via the method in Solution 365. Suppose I
is a back and forth system and let an , bn be a one-to-one enumeration of A
and B , respectively. Define, by induction on n, partial isomorphisms fn ∈ I
so that f0 is arbitrary and

f2n = some g ∈ I for which f2n−1 ⊆ g and an ∈ dom(g ),

f2n+1 = some g ∈ I for which f2n ⊆ g and bn ∈ ran(g ).

Then
⋃

n∈ω fn is an isomorphism between A and B.

529. (⇐) Suppose A�B. The ≡∞,ω-equivalence follows from the following
fact: for every for ϕ ∈ L∞,ω, f ∈ I and ~a ∈ dom( f ) we have

AÍϕ(~a) if and only if BÍϕ( f (~a)).

This can be proved by induction on the complexity of ϕ. For quantifier-
free formulas this is straightforward from the definition of a partial isomor-
phism. For ∃xψ we have A Í ∃xψ(x,~a) if and only if there is a ∈ A so that
A Í ψ(a,~a). Then there is g ∈ I extending f such that a ∈ dom(g ). By the
induction hypothesis g preserves ψ, thus BÍψ(g (a), g (~a)) and this ensures
BÍ∃xψ(x, f (~a)).

(⇒) Suppose A≡∞,ω B. We claim that the set

I = {
f : A → B : f is finite and preserves all L∞,ω− formulas

}
is a back and forth system. Clearly ;∈ I thus we have to verify the ‘back’ and
‘forth’ properties. Pick any f ∈ I and a ∈ A. We shall find g ∈ I with f ⊆ g ,
a ∈ dom(g ). As dom( f ) is finite, there is a tuple enumerating it: ~a = dom( f ).
We have to find b ∈ B such that 〈a,~a〉 satisfies the same formulas as 〈b, f (~a)〉
does. If there were no such b then for all b ∈ B there exists an L∞,ω-formula
ϕb so that AÍϕb(a,~a) while B 6Íϕb(b, f (~a)). But then

AÍ∃x
∧

b∈B
ϕb(x,~a), while B 6Í ∃x

∧
b∈B

ϕb(x, f (~a)),

which contradicts A≡∞,ω B.

530. By Karp’s theorem 8.15 we need to find A and B such that A≡B but
A 6≡∞,ω B. Suppose the similarity type contains countably many constant
symbols, and let A be a countable structure where each element of a ∈ A is
denoted by a constant symbol cAa = a. Let B its proper elementary extension
of uncountable cardinality. Then A≡B. On the other hand with

ϕ ≡ ∀x
∨

a∈A
x = ca

we have AÍϕ but B 6Íϕ, showing A 6∼=∞,ω B.
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531. (a), (b) Finite partial isomorphisms (that respect endpoints) form a back
and forth system, see Problem 365.

(c) Let I be the set of all isomorphisms from finite subalgebras of A into B.

532. A is the Lebesgue measure algebra (measurable subsets of R modulo
zero sets), and B is the modulo finite quotient algebra ℘(ω)/[ω]<ω. Both are
atomless of cardinality continuum. In A every collection of pairwise disjoint
sets (antichain) is countable, while in B an almost disjoint family gives such
a collection of size continuum. Thus A and B are not isomorphic.

533. The closed formula ∃xP (x) is not equivalent (moduloΓ) to any quantifier-
free formula as the only quantifier-free formulas are > and ⊥. After adding
the constant symbol c the theory Γ∪ {∃xP (x) ↔ P (c)} works.

534. Yes. In A the formula ∃x (ax2 +bx + c = 0) is equivalent to(
(a 6= 0 ∧ b2 −4ac ≥ 0) ∨ (a = 0 ∧ (b 6= 0 ∨ c = 0))

)
535. By induction on the complexity of the formulas. For atomic formulas
and for the connectives ∧ and ¬ the statement is trivial. For the quantifier
suppose we have a formula ∃xϕ. By induction, there is a quantifier-free
δ′ such that Γ Í ϕ↔ δ′, thus Γ Í ∃xϕ ↔ ∃xδ′. The rest can be done using
disjunctive normal form, that ∃ distributes over ∨, and the assumption of the
problem.

536. When using strict inequality <, atomic formulas can have only two
forms: u = v and u < v. Negated literals ¬(u < v) and ¬(u = v) can be replaced
with (u = v) ∨ (u < v) and (u < v) ∨ (v < u), respectively, thus it suffices to
check the condition in Problem 535 for the case when all literals are positive.

So let take a formula of the form ∃x(`1 ∧ ·· · ∧ `n) where all `i is atomic.
We can assume that each `i contains x since otherwise `i could be move
out of the scope of ∃x. If `i is of the form x = x, then it can be deleted; if it is
x = u then replace x by u everywhere and delete it. The remaining literals
have the form x < x, u < x and x < v. If x < x occurs, then ϕ is equivalent
to ⊥ (which is quantifier-free), otherwise the literals can be rearranged as∧

i (ui < x) ∧ ∧
j (x < v j ). If bounds from any side are missing, then this is

equivalent to >, otherwise such an x exists iff
∧

i , j (ui < v j ), a quantifier-free
formula.

537. (a) Immediate from Problem 535.
(b) No. The dense linear order without endpoints has quantifier elimina-

tion. It has no terms at all, thus there is no Skolem function for the formula
∃y(x < y).

538. (a) Using the Tarski–Vaught test 8.3. Suppose~b ∈ B and AÍ ∃yϕ(y,~b).
As Γ has built-in Skolem functions, there is a τ-term t(~x) such that A Í
ϕ[tB(~b),~b)]. But tB(~b) ∈ B as B is a substructure.

(b) By Problem 325, for a quantifier-free formula ψ(~x) and~b ∈ B we have
B Íψ(~b) iff A Íψ(~b). Let ϕ(~x) ∈ F (τ) be any formula. As Γ has quantifier
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elimination, ΓÍϕ(~x) ↔ψ(~x) for some quantifier-free ψ(~x). As both B and
A are models of Γ, for any~b ∈B,

BÍϕ(~b) ⇔ BÍψ(~b) ⇔ AÍψ(~b) ⇔ AÍϕ(~b),

so B is an elementary submodel.

539. For each ϕ(~x) ∈ F (τ) let Rϕ(~x) be a new relation symbol. Let τ′ = τ∪{Rϕ :
ϕ ∈ F (τ)} and define

Γ′ = Γ∪{∀~x(ϕ(~x) ↔ Rϕ(~x)) : ϕ ∈ F (τ)
}
.

The following claims can be checked easily.

1. Each model of Γ can uniquely be expanded to a model of Γ′ on the same
ground set.

2. For each ϕ ∈ F (τ) we have ΓÍϕ if and only if Γ′ Íϕ.

3. For each ϕ ∈ F (τ′) there is ψ ∈ F (τ) such that Γ′ Íϕ↔ψ.

4. Γ′ admits quantifier elimination.

Remark. If Γ′ satisfies the first three items above, then it is a definitional
expansion of Γ.

540. No. Let Γ be a non-complete theory and take the conservative extension
described in 539. The resulting theory is non-complete (being a conservative
extension) but has quantifier elimination.

541. (a) The main observation is that whenever two tuples of elements ~a
and~b satisfy the same unnested atomic formulas (see Definition 8.11), then
they satisfy the same formulas. This is because the former implies that the
mapping ~a 7→~b is a partial isomorphism, which, by assumption, extends to
an automorphism, and automorphisms preserve all formulas.

Take a formula ϕ(~x) with free variables~x. For ~a ∈ A having the same length
as~x write

tpAat(~a) = {δ(~x) :AÍ δ[~a], and δ is an unnested atomic formula}.

As the similarity type is finite, ϑ~a(~x) =∧
{δ(~x) : δ ∈ tpAat(~a)} is a formula, and

there is a finite list of such formulas as~a runs over the vectors~a withAÍϕ(~a).
Then AÍϕ(~x) ↔∨

i ϑi (~x), and this latter formula is quantifier-free.
(b) If A Í Γ and Γ is complete, then A Í ϕ ↔ ψ if and only if Γ Í ϕ ↔ ψ

which proves that Γ has quantifier elimination.

542. (i)⇒(ii) If δ is quantifier-free, then by Problem 472, AÍ δ(~b) iff BÍ δ(~b)
iff A′ Í δ(~b), thus it cannot happen that ϕ(~b) ↔ δ(~b) is true both in A and A′.

(ii)⇒(i) See Problem 515.

543. By assumption, for all~b ∈ B we have AÍ∃xδ(x,~b) iff A′ Í∃xδ(x,~b). By
Problem 542, ∃xδ(x,~y) is equivalent to a quantifier-free formula. According
to Problem 535 this property implies that Γ has quantifier elimination.
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544. Easily follows from Problem 472.

545. It is clear that the substructure on B = A−{a} is also a dense linear order
without endpoints. As the theory admits quantifier elimination (Problem
536), A is model complete, thus every submodel is an elementary substruc-
ture by Problem 544.

546. Any two countable models of Γ are isomorphic, thus Γ is complete
(Theorem 8.7). Also, every finite partial isomorphism of a countable model
extends to an automorphism, thus Γ admits quantifier elimination (Problem
541). Therefore Γ is model complete (Problem 544).

547. Let A= 〈ω,S〉 and j :A→A be the embedding defined by j (n) = n +1.
Put ϕ(x) =∀y(x 6= Sy) and notice AÍϕ[0] while A 6Íϕ[ j (0)], therefore j is
not an elementary embedding.

548. It is enough to prove that Γ∪∆0
B

is consistent as, by Problem 507(a) B
embeds into any AÍ Γ∪∆0

B
as a substructure.

Suppose that Γ∪∆0
B

is not consistent. By compactness, there is a finite Γ′ ⊂
Γ∪∆0

B
which is inconsistent. The part of this finite subset coming from ∆0

B
can be considered as a single formula δ(~c), where~c are constants denoting
elements of B, and δ(~x) is quantifier-free. If Γ∪ {δ(~c)} is inconsistent, then
ΓÍ∀~x¬δ(~x), and, as this is a universal formula, BÍ∀~x¬δ(~x), contradicting
that δ(~c) is in the diagram ∆0

B
.

549. That (ii) and (iii) are equivalent is easy: if ¬ϕ is equivalent to an exis-
tential formula, then ϕ is equivalent to a universal formula, and vice versa.

(iii)⇒(i) If B is a substructure of A, then every universal formula true in
A is true in B (e.g. combine 311 and 325). In other words, substructures
are “elementary substructures with respect to universal formulas”. If every
formula is equivalent to a universal formula, then every substructure of every
model of Γ is an elementary substructure, thus Γ is model complete.

(i)⇒(iii) If B is a model for every universal formula ϕ such that ΓÍϕ, then
by Problem 548, B embeds into a model A of Γ. But then B is an elementary
substructure of B (by model completeness of Γ). Therefore models of Γ are
the same structures as models of the universal formulas in Γ, thus every
formula is equivalent to a universal formula modulo Γ.

550. Every closed formula ϕ ∈ F (τ′) is equivalent modulo Γ′ to a quantifier-
free closed formula δ ∈ F (τ′). As for such formulas we have either Γ′ Í δ or
Γ′ Í ¬δ, the theory Γ′ is complete. But Γ′ is a conservative extension of Γ,
thus for formulas ϑ ∈ F (τ) we have ΓÍϑ iff Γ′ Íϑ. Therefore Γ is complete
as well.

551. Let A= 〈ω,S〉 and j :A→A be the embedding defined by j (n) = n +1.
Put ϕ(x) = ∀y(x 6= Sy) and notice A Í ϕ[0] while A 6Í ϕ[ j (0)], therefore j
is not an elementary embedding, hence by Problem 544 A does not have
quantifier elimination.
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To prove that the theory of B = 〈Z,S〉 has quantifier elimination apply
Problem 543. If B is a common substructure of A and A′, then with any b ∈ B
it contains its successor (but not necessarily the unique predecessor). If there
is an element a ∈ A satisfying a quantifier-free formula δ[a,~b], then a should
be equal to or differ from different successors / predecessors of elements in
~b. Clearly, such an element can be found in A′.

552. (a) Atomic formulas are of the form Sn(x) = Sk (y). By Problem 535 it
is enough to check that every formula of the form ∃x(`1 ∧ ·· · ∧ `n), where
each `i is a literal (an atomic formula or its negation) is equivalent to a
quantifier-free formula modulo Γ. But this is straightforward using the trick
that Sn(x) = Sk (y) and x = Sk−n(y) are equivalent when n ≤ k, x = Sk (x) is ⊥
for k > 0, and ∃x(Sk (x) = y) iff

∧
j<k y 6= S j (0). Finally, the truth of quantifier-

free atomic formulas are decided by the theory.
(b) Γ is complete and 〈ω,S,0〉 is one of its models.
(c) The theory admits quantifier elimination, thus every definable set is

definable by a quantifier-free formula. The claim is true for atomic formulas,
as they define a single-element set. The collection of finite or co-finite sets
is closed under complement, union, and intersection, thus quantifier-free
formulas can define such sets only.

553. (a) The embedding of 〈Z,<〉 to 〈Z,<〉 defined by f (n) = n for n ≤ 0 and
f (n) = n +1 otherwise is not elementary, therefore Γ is not model complete,
thus it does not have quantifier elimination (see Problem 544).

(b) Recall that there are non-isomorphic countable discrete linear order-
ings without endpoints X0 and X1 (Problem 368). Take any discrete linear
ordering without endpoints X of cardinality κ and consider X0+X and X1+X .

(c) We prove that Γ has a finite conservative extension Γ′ which admits
quantifier elimination, and all variable-free formulas are decided by Γ′. By
Problem 550 it implies that Γ is complete. Add a unary function symbol S
to the language and complement Γ with the following axioms expressing S
behaves like the successor function:

∀x∀y(Sx ≤ y ↔ (x ≤ y ∧ x 6= y)),

∀x∃y(x = Sy).

Similar to Problem 536 it is enough to consider formulas of the form

∃x
( ∧

i<l
ti ≤ Spi (x) ∧ ∧

j<m
Sq j (x) ≤ u j ∧

∧
k<n

Srk (x) = vk
)
,

where ti , u j and vk are terms with no occurrence of x and pi , q j and rk are
natural numbers. (This is so as Sk (x) = S`(x) is either > or ⊥.) Now Si (x) ≤ t
if and only if Si+ j (x) ≤ S j (t), therefore one can replace all terms Si (x) with
SN (x) and also replace SN (x) with a new variable. The resulting formula will
be of the form

ϕ(x) ≡∃x
( ∧

i<k
ti ≤ x ∧ ∧

j<l
x ≤ u j

)
,
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thus it suffices to show how to eliminate the quantifier in ϕ. If k = 0 or
l = 0 then ϕ(x) ↔>; otherwise it is equivalent to

∧
i , j ti ≤ u j . As the only

variable-free formulas are > and ⊥, we are done.

554. Consider the model 〈ω,≤〉 of Γ. The function j :n 7→ n +1 is an embed-
ding (order-preserving map), but not an elementary embedding (does not
preserve the minimal element). Thus Γ does not have quantifier elimination
by Problem 544.

For the conservative extension define 0 as the minimal element, and S(x)
as the successor of x (the smallest among those which are strictly bigger than
x). The method indicated in solution 553(c) works as in this case as all facts
used there are actually consequences of Γ.

(b) The truth of the quantifier-free formulas Sk (0) =6= S`(0) (and their Boolean
combinations) in the conservative extension are decided by Γ, thus Γ is com-
plete.

555. Countable dense linear orderings are isomorphic to the rationals (Prob-
lems 531, 365). Thus the universe of countable models of Γ can be identified
with Q. A standard back and forth argument shows that up to isomorphism
Γ has exactly three countable models according to whether limcn is infinite,
rational, or irrational (see Problem 366). Observe that reducts of countable
models of Γ to a finite sublanguage are isomorphic (back and forth), conse-
quently any two models of Γ are elementarily equivalent. This means that Γ
is complete.

556. (a), (b) Countable models of Γ are isomorphic, therefore Γ is complete
(see Problem 497). Take a countable model A Í Γ. It is straightforward to
verify that a finite partial isomorphism of A can be extended to an automor-
phism of A, thus Problem 541 applies.

(c) Countable models of Γ are isomorphic, nevertheless Problem 541 cannot
be used directly because the partial isomorphism which maps an element
from a 2-sized class into a 3-sized class does not extend to an automorphism.
Indeed, Γ is not quantifier eliminable. For, consider two countable models
A,B Í Γ and the embedding f :A→B that maps equivalent elements of
A into equivalence classes of B having 3 members. Then f is not an ele-
mentary embedding, hence Γ is not model complete and thus Γ cannot have
quantifier elimination (see Problem 544). However, there is a finite conserva-
tive extension Γ′ ⊇ Γ which has quantifier elimination: Extend the language
with two unary relation symbols P and Q and add new axioms that stipu-
lates that P consists of the 2-sized and Q consists of the 3-sized classes of E .
Then countable models of Γ′ are isomorphic and thus Γ′ is complete, and
it is straightforward to check that finite partial isomorphisms of countable
models of Γ′ extend to automorphisms. By Problem 541, Γ′ has quantifier
elimination.

(d) Γ has countably many countable models: each model contains one
n-element equivalence class for all n ∈ω and zero, one, . . . , countably many
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infinite equivalence classes. Γ is not quantifier eliminable because it is
not model complete. For, let A be the model in which there is no infinite
class and take the self-embedding which moves an n-sized class into the
n + 1-sized one. This embedding cannot be elementary. To construct a
finite conservative extension Γ′ ⊃ Γ which has quantifier elimination, add a
unary function symbol f to the language and add new axioms that express
that f fixes equivalence classes setwise so that f visits all elements of the
equivalence class on n elements in a circle (thus a substructure contains
complete finite equivalence classes). Then Problem 543 applies.

(e) There are continuum many countable models of Γ: For each infinite
X ⊆ω there is a model AX that contains one n-element equivalence class
for every n ∈ X . For X 6= Y we have AX 6∼=AY . As for quantifier elimination
use the argument in (d): add a unary function symbol f to the language and
add new axioms that express that f makes a full circle in each n-element
equivalence class.

Notice that this theory is not complete, and has a countable model with
no finite equivalence class at all.

557. (a) Such a group is isomorphic to the additive group of an infinite
dimensional vector space over GF (p). Two such vector spaces of the same
dimension are isomorphic, thus the theory is complete (Problem 497). As in
this case a substructure is a linear subspace, Problem 543 applies.

(b) We employ Problem 543. Let A and A′ be torsion-free divisible Abelian
groups and B be a common substructure (in this case, subgroup) of A and
A′. Pick ~b ∈ B , a ∈ A and suppose A Í ϕ[a,~b] for some quantifier-free ϕ.
Recall from algebra, that torsion-free Abelian groups have a divisible hull, in
particular, there is a divisible torsion-free group B′ which extends B, con-
tains a ∈ A, and can be embedded into A and A′. Therefore B′ Í ∃xϕ[x,~b]
and thus there is an a′ ∈ A′ with A′ Íϕ[a′,~b].

(c) We apply Problem 543 again. Let K , L be algebraically closed fields, and
B be a common substructure (a subfield). Suppose ϕ is quantifier-free and
~b ∈ B , a ∈ K are such that K Íϕ[a,~b]. We shall show that there is c ∈ L with
L Í ϕ[c,~b]. The algebraic closure of B in K and in L are isomorphic, thus
we may assume that B is also algebraically closed. It is enough to show that
~b ∈ B , a ∈ K and K Íϕ[a,~b] imply that there is a c ∈ B such that B Íϕ[c,~b].
By Problem 535, ϕ can be assumed to be a conjunction of literals, which
are equivalent to polynomial equalities and non-equalities in the language
of fields. Thus for some polynomials p1, . . . , pn , and q1, . . . , qm ∈ B [x] our
formula ϕ(x,~b) is equivalent to

n∧
i=1

pi (x) = 0 ∧
m∧

j=1
q j (x) 6= 0.
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If any of the polynomials pi are non-zero, then a is algebraic over B and as B
is algebraically closed we have therefore a ∈ B . Hence we can assume that ϕ
is equivalent to

m∧
i=1

qi (x) 6= 0.

Each qi (x) = 0 has finitely many solutions only, thus there can be only finitely
many elements of B not satisfying ϕ. As algebraically closed fields are infinite,
there is a c ∈ B such that B Íϕ[c,~b], are required.

(d) Similar to (c) as the corresponding theorems are also true for real closed
fields

(e) Problem 531(c) tells us that the theory of atomless Boolean algebras is
complete, and finite partial isomorphisms between countable models extend
to an automorphism. Then Problem 541 applies.

558. Yes. By Problem 557(c) algebraically closed fields admit quantifier
elimination. As F′ is an algebraically closed substructure, Problem 538(b)
claims that it is an elementary subfield.

559. Suppose |t | ≤ |A| is infinite and write Σ=∆A∪ {c 6= ca : a ∈ A}, where c
is a new constant symbol and the constant ca denotes the element a ∈ A. As
each finite subset of Σ is consistent there is, by compactness, a model CÍΣ

which is an elementary extension of A (Problem 507). Take X = {c}∪ {ca : a ∈
A} and note |t | ≤ |X | = |A|. By the downward Löweinheim–Skolem theorem
8.5 C has an elementary substructure B containing X such that |X | = |B|.
560. The idea is that the sum of two odd numbers is even in Z while not in
Z⊕Z. Let Even(x) denote the formula ∃w(w +w = x). Then

ZÍ∀x∀y
(
(¬Even(x) ∧¬Even(y)) → Even(x + y)

)
,

while
Z⊕ZÍ¬Even[〈0,1〉] ∧¬Even[〈1,0〉] ∧¬Even[〈1,1〉].

561. Write Σ = Th(R)∪ {c ≤ 1/n : n ∈ ω}, where c is a new constant symbol.
Note that each finite subset of Σ is consistent. By compactness there is a
model A Í Σ. The field reduct B of A is elementarily equivalent to R as
BÍ Th(R), however there is an element c ∈ B such that for all n ∈ω we have
BÍ c ≤ 1/n. This means that B fails to satisfy the Archimedean property of
fields.

562. Let a ∈ A be an element not in R. As either a or −a is positive, we may
assume that a ≥ 0. If r < a for all r ∈R, then A is not Archimedean. Otherwise
the set {r ∈R : r < a} is bounded, and let s ∈R be its lowest upper bound. If
a < s, then 1/(s −a) ∈ A is larger than any number in R; if s < a then 1/(a − s)
is larger than any real number in R.

563. Use additive notation + for the group operation. Let G be a free group.
Observe that for each n ∈ω there is a non-zero group element g ∈G which is
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2n-divisible, meaning G Í∃h(g = 2n ·h) (take a generator and add it to itself
2n times). Let c be a new constant symbol and write Σ = Th(G)∪ {∃h(c =
2n ·h) : n ∈ω}. Since each finite subset of Σ is consistent, by compactness
there is a model AÍΣ. The group reduct B of A is elementarily equivalent
to G as BÍ Th(G), however c ∈ B is infinitely divisible, thus B cannot be a
free group.

564. Let H ⊂G be a proper subgraph. As G is connected, there are connected
vertices v ∈ H and w ∈GàH . If v has degree n in G then it satisfies the formula
ϕn(x) saying that x has exactly n different neighbours. The same formula is
not true in H , thus H cannot be an elementary subgraph.

565. Suppose N is given and we play the N -round Ehrenfeucht–Fraïssé
game. If II has a winning strategy, then by Problem 520 the two graphs are
elementarily equivalent.

In the first round I picks a vertex, say a1. Then let II pick b1 such that
G2(b1,2N ) = G1(a1,2N ). If there are r rounds left, II plays as follows: if I
picks, say, ai , then II checks whether ai belongs to any of the neighbor-
hoods G1(a j ,2r ) for j < i . If so, then II picks the corresponding point bi

from G2(b j ,2r ). Otherwise II picks an arbitrary bi far away from every point
chosen earlier such that G2(bi ,2r ) =G1(ai ,2r ).

566. (a) Take a vertex v and for each n > 0 attach a path of length n to v.
This will be G1. To get G2 attach an additional path of infinite length to v.
The graphs clearly satisfy the requirements, and are elementarily equivalent
shown by the usual winning strategy of II in the N -round Ehrenfeucht–Fraïssé
game.

(b) The graphs in Problem 526 are focally finite (every node has degree 2 or
3), non-isomorphic, elementarily equivalent, and clearly non-isomorphic.

567. For ϑ≥ κ+λ let G =⋃
ϑ Kκ and H =⋃

ϑ Kλ.

568. LetAbe the usual ordering of the natural numbers and for each n ∈ω let
cn denote a new constant symbol. PutΣ= Th(A)∪{c0 < c1 < ·· · < cn−1 : n ∈ω}.
For each finite subset Γ of Σ there is an expansion AΓ of A such that AΓ Í Γ.
By compactness it follows that Σ is consistent; the ordering-reduct of any
model of Σ is not well ordered. See also Problem 421.

569. Use induction on the complexity of the formula. For details see the solu-
tion of Problem 536 where it is shown that the theory of A admits elimination
of quantifiers.

570. A standard back and forth argument, see Problem 365

571. Let A be the ordering ω2 ×Q, where each element of ω2 is replaced by
a copy of the rationals. Let a1 < a2 ∈ A be two points such that the interval
(a1, a2) contains ω1 many different elements, and b1 < b2 such that there
are countably many elements between (b1 and b2. The map f : ai 7→ bi is a
partial isomorphism which does not extend to an isomorphism.
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572. If a theory Γ eliminates quantifiers and A,B Í Γ are such that A is a
submodel of B, then A ≺B, see Problem 538(b). Note that the theory of
dense linear orderings without endpoints eliminates quantifiers (see Problem
536).

573. The conservative extension with the unary function S denoting the
successor has quantifier elimination, see Problem 554. B is a substructure
and also a discrete order in that type, thus Problem 538(b) gives that it is an
elementary substructure.

574. Take A=ω+Z×R. That 〈R,≤〉 can be embedded into A is clear: map
each r ∈R into any element of the corresponding Z-chain.

As this is a discrete order with initial element and 〈ω,≤〉 is its initial seg-
ment, Problem 573 gives that 〈ω,≤〉 is an elementary submodel of A.

575. (a) The back and forth argument in Solution 570 implies that 〈Q,<〉
can be properly embedded into itself. By Problem 572 this embedding is
elementary.

(b) Any proper embedding α : 〈Q,<〉→ 〈Q,<〉 induces a proper elementary
embedding α∗ : Q×Z→Q×Z by Problem 553(c).

(c) Similarly to (b), the embedding α∗ : (ω+Q×Z) → (ω+Q×Z) which
keeps ω fixed, is elementary by Problem 573.

576. Take the dense linear ordering A= 〈Q,≤〉, and X =;. An elementary
substructure of A is an infinite dense linear ordering (in fact, all such sub-
structures are elementary, see Problem 572) but clearly there is no minimal
one.

577. Replacing each point in a linear order I by Z gives a discrete linear
ordering without endpoints. Take the two orderings in Solution 468, make
the above substitution. The resulting structures are elementarily equivalent,
not isomorphic, and each can be embedded into the other.

578. Denote the set of function symbols of A by F , then |F | ≤ω.
(a) Define, by induction on n, an increasing sequence α0 ≤ α1 ≤ . . . of

countable ordinals. Choose α0 so that it contains the interpretation of all
constant symbols. (As there are only countably many of them, there is such
an α0 < ω1.) If αn has been chosen, let αn+1 < ω1 be an upper bound for
the countable set { f A[αn] : f ∈ F }. (This set is countable as there are at
most countably many function symbols, and there are countably many finite
tuples from αn .) Put α= sup{αn : n ∈ω} <ω1.

Now, for each ~x ∈ α and f ∈ F there exists n ∈ω so that ~x ∈ αn , and thus
f A(~x) ∈αn+1 ⊆α. Consequently we have f A[α] ⊆α for all f ∈ F , that is, α is
the universe of a substructure of A.

(b) As τ is countable, there are countably many Skolem functions, see
Definition 7.6. Add these symbols to the type, and let A∗ be the expanded
structure (adding the interpretation of the new function symbols). Now A∗

has built-in Skolem functions (Definition 8.4, has the ground set ω1, and has a
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countable substructure (part (a)). But every substructure of A∗ is elementary,
by Problem 538(a), which is an elementary submodel of A as well.

579. (a) ω+4 has a maximal element while ω does not have any, thus they
are not even elementarily equivalent.

(b) There is exactly one element in ω+ω which does not have an immediate
predecessor, while there are infinitely many such elements in ω ·ω. This
property can be expressed by a first-order formula, hence the two orderings
are not even elementarily equivalent.

(c) Let ϕ(x) be the formula which expresses that there is no immediate
predecessor of x. In ω1 it is true that there is an x (this is just ω ·ω) such
that the elements below x satisfying the formula ϕ are not bounded: (∀u <
x) (∃v< x) (u < v∧ϕ(v)), while this is not true for any element in ω ·ω.

580. Regard ordinals as structures with the usual ordering. Problem 578
gives a countable ordinal α such that 〈α,<〉 is an elementary submodel of
〈ω1,<〉. In fact, Solution 578 gives more: this α can be arbitrarily large (as
α0 can be any ordinal in the proof of 578). Therefore there are countable
ordinals α<β such that both 〈α,<〉 and 〈β,<〉 are elementary submodels of
〈ω1,<〉. Problem 479 implies α≺β.

Remark. An example for such countable ordinals is ωω ≺ωω+ωω.

581. (a) Take Γ=; with the empty language. Countable models (=sets) are
isomorphic.
- There is a unique countable complete graph as well.
- The theory of a single unary relation R such that there are infinitely many
elements both in R and in the complement of R, see Solution 359.
- Dense linear order without endpoints by Problem 502.
- Atomless Boolean algebras by Problem 531(c).

(b) Let Γ be the theory of simple graphs in which each vertex has degree
two and there are no cycles (this latter can be expressed by a countable set of
formulas each stating that there is no cycle of length n). Models of Γ consist
of disjoint paths isomorphic to Z. It has countable many countable models,
and κ-categorical for every κ>ω, thus complete by Problem 497.
- The theory of 〈ω,0,S〉 discussed in Problem 552 has also countably many
countable models.
- Among the complete theories discussed in Problem 557 the following have
countable many countable models: divisible torsion-free Abelian groups
(determined by their dimension); algebraically (and real) closed fields of
characteristic zero; algebraically closed fields of characteristic p (determined
by their transcendence degree).

(c) The theory of discrete orderings without endpoints has continuum
many countable models (Problem 368), and it is complete (Problem 553).

Remark. The Baldwin–Lachlan theorem says that if a theory is κ-categori-
cal for some κ>ω1 then it has either 1 or ℵ0 countable models.
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582. (a) Let c0,c1, . . . be constant symbols and let Γ be the theory of dense
linear orders with formulas added asserting that cn is strictly increasing. By
Problem 555 Γ is complete and has exactly three countable models according
to whether limcn is infinite or rational, or irrational.

(b) Consider Γ as in (a) and add a unary relation symbol P to the language.
Adjoin new formulas to Γ which express that both P and ¬P is dense, and all
cn are in P . The four models are distinguished whether limcn , if rational, is
in P or is not in P .

(c) Same as (b), but rather than using two colors (P or not P ), use n −2
colors such that between any two points all colors occur, and all cn are
colored with the first color. See also Problem 366.

Remark. By a surprising theorem of Vaught, no complete theory can have
exactly two non-isomorphic countable models.

583. Such a theory must have a type of cardinality 2ω, thus, according to the
hint, we can try a structure with ground set ω and a relation symbol RX for all
elements X in an almost disjoint family F . As for different X ,Y ∈F there are
only finitely many elements satisfying both RX and RY , this condition can be
expressed by a formula, thus in any elementary extension RX and RY have no
more elements in common. Thus if we could force that in any extension each
RX has additional elements, this would mean |F | many different elements.
Let’s see the details.

Let F be an almost disjoint system of infinite subsets of ω of cardinality
continuum. Such a family exists by Problem 1. The similarity type τ will con-
tain unary relation symbols RX for every X ∈F , the binary relation symbol <
(for ordering) and constant symbols ci for i ∈ω. The τ-type structure A has
universe ω, the interpretation of ci is i ∈ω, <A is the usual ordering, and for
X ∈F , j ∈ RA

X iff j ∈ X . Let Γ= Th(A).
We claim that if BÍ Γ, then either B is isomorphic to A, or |B| ≥ |F |. Let

b ∈ B be an element which differs from the interpretation of all constant
symbols ci . (Such a b exists as A and B are not isomorphic.) The binary
relation <B is a total discrete order in B (the corresponding formulas are
true in A), and for each i ∈ω, cBi < b. Indeed, the following formula holds
in A, and consequently, in B: ∀x (x < ci → x = c0 ∨ ·· · ∨ x = ci−1). It means
that elements smaller than cBi are of the form cBj .

Each X ∈F is infinite, thus A Í ∀x∃y(y > x ∧ RX (y)), consequently the
same formula holds in B. It means that for all X ∈ F there is an element
bX ∈ B such that b < bX and bX ∈RB

X . We claim that for different X ,Y ∈F ,
bX and bY are also different. Indeed, X ∩Y is finite, say each element in the
intersection is smaller than s = sX ,Y ∈ω. Then

AÍ∀x (RX (x) ∧ RY (x) → x < cs ),

consequently the same formula holds in B. It means that if b′ ∈ RB
X ∩RB

y ,
then b′ equals the interpretation of some ci , and then cannot be bigger than
b.
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As B contains the distinct elements bX for X ∈F , the cardinality of B must
be at least |F |, as was claimed.

584. Similarly to Problem 539, for each formula ψ(~x) of the form ψ(~x) ≡
∃yϕ(y,~x) add a new function symbol fψ(~x) and define

Γ′ = Γ∪ {(∃yϕ(y,~x) →ϕ( fψ(~x),~c) : ϕ ∈ F (τ)}.

It is easy to check that Γ′ is a conservative extension, and has built-in Skolem
functions.

585. Consider the ground set A as nodes of a complete graph, and color
the edge ab blue if a and b are ordered the same way by ≤1 and ≤2, and red
otherwise. By the infinite Ramsey theorem (Problem 54) there is an infinite
homogeneous set. If it is blue, then ≤1 and ≤2 coincide, if red, then they are
the reverse of each other.

586. Add the constant symbols ci to τ, and let ∆ be the set of formulas ex-
pressing that their interpretation satisfies the requirements. By compactness
it suffices to show that Γ∪∆′ has a model where ∆′ is a finite subset of ∆. Let
A be an arbitrary infinite model of Γ.

(a) Given finitely many formulas ϕ1(x), . . . , ϕn(x), each element of A falls
into one of the 2n many classes depending on whether ϕi (x) is true for that
element or not. As A is infinite, one of the classes is infinite, and interpret
the finitely many ci in ∆′ from that class.

(b) Pick different elements {ai : i ∈ω} from A. Given finitely many formulas
ϕ1(x, y), . . . , ϕn(x, y), each pair (ai , a j ) with i < j falls into one of the 2n

many classes depending on which ϕi is true for that pair. We need a large
homogeneous subset (to be assigned to the finitely many constant symbols
in ∆′) where every pair is in the same class. But Ramsey’s theorem (Problem
54) guarantees an infinite homogeneous subset, so we are done.

587. Apply Definition 8.20 to the formula ϕ(x, y) ≡ (x < y).

588. By Problem 570 the truth of a formula ϕ(~x) in A depends only on the
<A-order of the free variables, which is the same for two 〈ai j 〉 sequences
where the indices i j are increasing.

589. Any permutation of X induces an automorphism of A. Take ϕ(~x) ∈ F (τ)
and ~a,~b ∈ X . Let π be the automorphism that maps ~a to ~b (they have the
same number of elements, so there is a permutation on X which maps ~a to
~b). As automorphisms preserve formulas we have AÍϕ[~a] iff AÍϕ[π(~a)],
as required.

590. By Problem 554 the conservative extension of type 〈≤,0,S〉 has quan-
tifier elimination, thus only quantifier-free formulas (on the extended lan-
guage) should be considered when checking indiscernibility. Points of H are
infinitely far apart, thus applications of S (and zero) can be discarded. The
ordering of the tuples, however, are the same by assumption.
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591. Each element of the generated substructure B is of the form tA[~b]
where~b ∈ H . Consequently any type realized in B is realized by the tuple
〈tAi [~b] : i < n〉. Since ¿ is well-ordering, the tuple ~b is order-isomorphic
to some 〈h0,h1, . . .hm〉 ∈ H where these elements are among the first m
elements of H . As H is indiscernible, the type realized by the tuple 〈tAi [~b]〉 is

the same which is realized by 〈tAi [~h]〉. As there are at most |F (τ)| many finite
sequences of τ-terms, it gives an upper bound on the number of realized
types.

592. Add new constants denoting elements of H . It is enough to show that

∆A∪{
ϕ(~c) ↔ϕ(~d) : ~c, ~d ∈ H are ¿-increasing tuples

}
has a model B. Here ∆A is the diagram of A, see Definition 8.8. Recall that
any BÍ∆A is a proper elementary extension of A, see Problem 507(b).

By compactness it is enough to show that

Σ=∆A∪{
ϕ(~c) ↔ϕ(~d) : ~c, ~d ∈ H0,ϕ ∈∆

}
,

is consistent, where H0 and ∆ are finite sets. We may assume that |c̄| = n.
Define an equivalence ∼ on elements of [A]n by ~a ∼~b iff

AÍϕ[~a] ↔ϕ[~b] for all ϕ ∈∆

where ~a and~b are tuples in <-increasing order.
∼ has at most 2|∆| (finitely many) equivalence classes, therefore Ramsey’s

theorem implies the existence of an infinite C ⊆ A such that all n-element
subsets of C belong to the same ∼-equivalence class. Interpret c ∈ H0 by
elements bc ∈C ordered in the same way as c. Then 〈A,bc〉c∈H0 is a model
for Σ.

593. The lexicographic ordering on κ×Q has 2κ automorphisms as for each
A ⊆ κ,

πA(〈α, q〉) =
{ 〈α, q〉 if α ∈ A
〈α, q +17〉 otherwise

is an automorphism and πA 6=πB for A 6= B ⊂ κ.

594. Elements of the substructure generated by B are the terms tA[~b] where
~b ∈ B . The map π extends to these values by taking π(tA[~b]) = tA[π(~b)]. This
is a sound definition as tA1 [~b] = tA2 [~b] iff tA1 [π(~b)] = tA2 [π(~b)] by the property
of indiscernibles. For the same reason π preserves the interpretation of
function and relation symbols, thus it is an isomorphism between the two
substructures.

595. Let Γ′ be the conservative extension of Γ which has built-in Skolem
functions (see Problem 584) and let AÍ Γ′. Take the ordering (H ,¿) from
Problem 593. By Problem 592A has an elementary extensionB such that H ⊆
B and (H ,¿) is indiscernible in B. Let C be the substructure of B generated
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by H . As Γ′ has built-in Skolem functions, C is an elementary substructure
(see Problem 491). If we prove that automorphisms of the ordering (H ,¿)
extend to automorphisms of C, then taking the reduct of C to the original
language completes the solution. This latter claim, however, follows from
Problem 594.

596. Similarly to Problem 595, we can assume that Γ has built-in Skolem
functions (Problem 584), thus every substructure is elementary (Problem
491). Let (H ,¿) be a well-ordering of size κ, and A be a model of Γ in which
(H ,¿) is indiscernible (Theorem 8.21). If B is the substructure generated by
H , then (i) it is an elementary substructure of A, thus a model of Γ, (ii) as τ is
countable, it has cardinality κ, and (iii) by Problem 591 only countably many
different types are realized in B.

12.9 ULTRAPRODUCTS

597. Straightforward induction of the complexity of the term t .

598. Let A= 〈ω,<〉 and let ϕ be the formula ∀x∀y((x < y) ∨ (x = y) ∨ (y <
x)). In A×A the elements 〈1,0〉 and 〈0,1〉 are not comparable w.r.t <A×A.

By Problem 597 and by definition variable-free atomic formulas are pre-
served under taking a product.

599. Let ϕ be ∃x(R(x) ∨Q(x)), where R and Q are relation symbols. Then
ΠiAi Í∃x(R(x) ∨Q(x)) if and only if there exists a ∈Πi Ai such that ΠiAi Í
(R[a] ∨ Q[a]) which holds if and only if ΠiAi Í R[a] or ΠiAi Í Q[a]. By
definition of the product, this holds iff we have either either Ai Í R[a(i )]
for all i , or Ai ÍQ[a(i )] for all i ∈ I . This is not the same thing as requiring
Ai Í (R[a(i )] ∨Q[a(i )]) for all i ∈ I .

An explicit counterexample is the following. Let An = 〈ω,RAn ,QAn 〉 be
such that

RAn =
{

ω if n is odd,
; otherwise,

QAn =
{ ; if n is odd,

ω otherwise.

Then for all n ∈ω we have An Í∃x(R(x) ∨Q(x)). But x ∈ RΠAn if and only if
x(n) ∈ RAn for all n, thus RΠAn =; (and similarly QΠAn =;), consequently
ΠnAn 6Í ∃x(R(x) ∨Q(x)).

600. Let ϑn be the formula (R1(~x) → R2(~x)). For each evaluation e over ΠiAi

the following implication holds: if Ai Í ϑn[e(i )] for all i ∈ I , then ΠiAi Í
ϑn[e]. Indeed, if ΠiAi Í R1[e], thenAi Í R1[e(i )] for all i ∈ I (by the definition
of RΠA

1 ), thus the assumption gives Ai Í R2[e(i )] for all i , and then ΠiAi Í
R2[e] again by the definition of RΠA

2 .
Now proceed by induction on the number of quantifiers at the beginning

of the formula. Assume the following statement is true: “for all evaluation
e over ΠiAi , if Ai Í ϑ(y,~x)[e(i )] for all i ∈ I , then ΠiAi Í ϑ(y,~x)[e].” Then
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the same statement is true for ∃yϑ(y,~x) and ∀yϑ(y,~x). Fix the evaluation
e, and assume Ai Í ∃yϑ(y,~x)[e(i )] for all i ∈ I . There is a vector a ∈ Πi Ai

such that a(i ) ∈ Ai is such an element: Ai Í ϑ[e(i )(y/a(i ))]. Apply the in-
ductive hypothesis to ϑ and the evaluation e(y/a) to get ΠiAi Í ϑ[e(y/a)],
thus ΠiAi Í ∃yϑ[e], as required. Similar reasoning works for the universal
quantifier.

601. (a) a ∈ a/F as I ∈F . If b ∈ a/F , then b/F = a/F . Indeed, the indices
of a and b agree on a set I1 ∈F . If b′ and b (b′ and a) agree on the set I2 ∈F ,
then b′ and a (b′ and b) agree on a set which is a superset of I1 ∩ I2, thus an
element of F , meaning b′ ∈ a/F (b′ ∈ b/F ).

(b) Let f ∈ τ be an n-place function symbol, and suppose ~a/F = ~b/F .
Then there is a J ∈F such that for all i ∈ J , ~a(i ) =~b(i ). But then f ΠA(~a) and
f ΠA(~b) take the same value for all i ∈ J , thus they are in the same equivalence
class as well.

602. By Problem 601 the value of a function is independent of the choice
of the representatives in ~a/U . Thus it suffices to check that the definition
of a relation does not depend on the choice of the representatives. Namely,
if ~a/U =~b/U , then Ia = {i ∈ I :~a(i ) ∈ rAi } and Ib = {i ∈ I ;~b(i ) ∈ rAi } are in U
at the same time. This follows immediately from the observation that there
is a J ∈U such that for all i ∈ J , ~a(i ) =~b(i ) (the intersection of the sets from
U where a1(i ) = b1(i ), . . . , an(i ) = bn(i )). As Ia ∩ J = Ib ∩ J we have Ia ∈U iff
Ia ∩ J ∈U iff Ib ∩ J ∈U iff Ib ∈U , as required.

603. We have to prove that Πi<nAi /U is isomorphic to A j for some j < n. As
every ultrafilter on a finite set is trivial (Problem 30), we have U = {A ⊆ n : j ∈
A} for some j < n. We claim that Πi<nAi /U ∼= A j . Let Φ :Πi<n Ai /U → A j be
the function that maps a/U into a( j ). This map is well defined and injective:

a/U = b/U ⇔ {i < n : a(i ) = b(i )} ∈U
⇔ a( j ) = b( j )

⇔ Φ(a/U ) =Φ(b/U ).

It also is surjective: for each x ∈ A j there is an a ∈Πi<n Ai such that a( j ) = x.
Finally, for a relation symbol R and a function symbol f we have

~a/U ∈ RΠiAi /U ⇔ {
i < n : ~a(i ) ∈ RAi

} ∈U
⇔ ~a( j ) ∈ RA j

⇔ Φ(~a/U ) ∈ RA j ,

and

Φ
(

f ΠiAi /U (~a/U )
) = Φ

(〈
f Ai

(
~a(i )

)
: i < n

〉
/U

)
= f A j

(
~a( j )

)
= f A j

(
Φ(~a)

)
.

Consequently, Φ is an isomorphism.
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604. For i ∈ I let Ji be disjoint sets, and letVi be an ultrafilter on Ji . Elements
of the ultraproduct Πi (Π jAi , j /V j )/U are equivalence classes of vectors of
elements of Π jAi , j /V j , which, in turn, are equivalence classes of vectors
of elements of Ai , j . Thus two vectors 〈a(i , j ) : i ∈ I ; j ∈ Ji 〉 and 〈b(i , j )〉 are
equivalent if the set of indices i ∈ I for which { j ∈ Ji : a(i , j ) = b(i , j )} ∈Vi is
in U . Let W be the collection of those subsets X of indices (i , j ) for which the
following holds:

{i ∈ I : { j ∈ Ji : (i , j ) ∈ X } ∈Vi } ∈U .

It is easy to check that W is an ultrafilter, and a/W = b/W just in case a and
b represent the same element in Πi (Π jAi , j /V j )/U . Thus the ultraproduct
Πi , jAi , j /W is isomorphic to the ultraproduct of the ultraproducts.

605. Suppose {Ai : i ∈ I } = {B1, . . . ,Bk } and for j < k let X j = {i ∈ I : Ai =
B j }. Then X1, . . . , Xk is a finite partition of I and hence exactly one of them,
say Xk , belongs to U (Problem 31). Write Bk = {b0, . . . ,b`} (the ground set of
Bk ) and choose a0, . . . , a` ∈Πi∈I Ai such that for all i ∈ Xk

a0(i ) = b0, a1(i ) = b1, . . . , a`(i ) = b`.

Then for all a ∈Πi∈I Ai there is a unique a j such that a/U = a j /U since

{i ∈ I : a(i ) = a0(i )}∪ {i ∈ I : a(i ) = a1(i )}∪ . . .∪ {i ∈ I : a(i ) = ak (i )} ⊇ Xk ,

thus exactly one of the above sets belongs to U . It is not hard then to check
that the map

Φ :Πi Ai /U → Bk ,

Φ
(
a j /U

)= b j

is an isomorphism.

606. Let ϕ̄ be the universal closure of ϕ. Then for a structure A and eval-
uation over A, A Í ϕ iff A Í ϕ[e], see Problem 311. So let e be an arbitrary
evaluation over ΠiAi , then

ΠiAi /U Íϕ ⇔ ΠiAi Í ϕ̄[e/U ] ⇔ {i ∈ I :Ai Í ϕ̄[e(i )]} ∈U
⇔ {i ∈ I :Ai Í ϕ̄} ∈U ⇔ {i ∈ i :Ai Íϕ} ∈U .

607. As the whole index set is always in U for any formula ϕ we have

κAÍϕ ⇔ {i ∈ κ :AÍϕ} ∈U ⇔ AÍϕ

according to Łoś lemma. Here either use closed formulas only, or refer to
Problem 606.

608. Solution 1. It is enough to prove part (c). Write X = {ni : i < |X |} and
for each i < |X | let

Xi = {α ∈ I : |Aα| = ni } ∈U , Y = {α ∈ I : |Aα| ∉ X } ∉U .
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Exactly one block of the finite partition I = Y ∪⋃∗
i Xi belongs to U , say

X0 (Problem 31). For simplicity we may assume that for each α ∈ X0 the
underlying set of Aα is {b1, . . . ,bn0 }. Choose elements a1, . . . , an0 ∈ ΠαAα

such that

a1(α) = b1, a1(α) = b1, . . . , an0 (α) = bn0 for all α ∈ X0.

Then for all a ∈ΠαAα there is an a j such that a/U = a j /U because⋃
j<n0

{α ∈ I : a(α) = a j (α)} ⊇ X0.

This means that A has exactly n0 elements, hence |A| ∈ X .

Solution 2 (Using Łoś lemma). (a) The first-order formula which expresses
that there are at most n elements is true in all Aα, therefore by Łoś lemma it
is true in A, as well.

(b), (c) Let X = {n1, . . . ,nk } and let ϕ be the formula that expresses “the size
of the structure is one of the nk ’s”. Then for an index set in U we have Ai Íϕ,
and by Łoś lemma, AÍϕ.

609. The ultraproduct has cardinality at most continuum as the product
Πi<ωAi of countable sets has continuum. We show that there are continuum
many different elements in the ultraproduct.

Let F be an almost disjoint family of cardinality continuum on ω having
infinite members only (see Problem 1). Let j :ω→ A be an injection. For X ∈
F with X = {s0, s1, . . . } enumerated increasingly define aX ∈ ωA by aX (i ) =
j (si ). For different X ,Y ∈F aX /U and aY /U are different elements of the
ultraproduct as {i ∈ω : aX (i ) = aY (i )} is a subset of X ∩Y , which is finite.

610. We use the idea from Problem 13. Assume first that 2n ≤ ni . For a
sequence s :ω→ 2 let s�n be the natural number whose binary expansion is
given by the first n digits of s, and let as ∈Πi Ai be the sequence whose n-th
element is the s�n-th element of An . Clearly as /U gives continuum many
distinct elements, as for different s1, s2 the sequences as1 and as2 agree at
finitely many places only.

This construction can be modified for the case when limni =∞. In this
case there is an increasing sequence m0 < m1 < ·· · such that ni ≥ 2n when
i ≥ mn . For a sequence s :ω→ 2 let as (i ) be the s�`-th element of Ai where
m` ≤ i < m`+1. Again, different sequences as1 and as2 agree at finitely many
indices only, thus they give continuum many different elements in the ultra-
product.

If limsupni =∞, then it may happen that the sets Xn = {i : ni > n} do not
belong to U . Consider for example the following sequence

ni =
{

2 if i is even,
i otherwise.

limsupni =∞ but if {2n : n ∈ω} ∈U , then we have |Πi<ωni /U | = 2.
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611. That δ is a bijection between A and δ[A] is straightforward. For a ∈ A
write ε(a) = 〈a : i ∈ κ〉, then δ(a) = ε(a)/U . As for the relation and function
symbols R and f we have

〈δ(a1), . . . ,δ(an)〉 ∈ R
κA/U

⇔ {i ∈ I : 〈ε(a1)(i ), . . . ,ε(an)(i )〉 ∈ RA} ∈U
⇔〈a1, . . . , an〉 ∈ RA,

and

f
κA/U (

δ(a1), . . . ,δ(an)
) = 〈 f A

(
ε(a1)(i ), . . . ,ε(an)(i )

)
: i ∈ I 〉/U

= 〈 f A
(
a1, . . . , an

)
: i ∈ I 〉/U

= δ
(

f A(a1, . . . , an)
)
.

Consequently δ[A] is isomorphic to A. To show that δ[A] is an elementary
substructure of κA/U we use the Tarski–Vaught test (Theorem 8.3). Let ~a ∈ A
and ϕ(~x, y) be a formula. By Łoś lemma we have

κA/U Í∃yϕ[δ(~a)] ⇔ {i ∈ κ :AÍ∃yϕ[ε(~a)(i )]} ∈U
⇔ {i ∈ κ : AÍ∃yϕ[~a]} ∈U
⇔AÍ∃yϕ[~a].

Therefore, if for some b ∈ A we have A Í ϕ[~a,b] and then again by Łoś
lemma we get κA/U Í ϕ[δ(~a),δ(b)]. Since δ(b) ∈ δ[A] conditions of the
Tarski–Vaught test are satisfied, consequently δ[A] is an elementary substruc-
ture of κA/U .

612. The embedding δ :A→ ωA/U is an elementary embedding by Problem
611. Let ε(a) = 〈a : i ∈ ω〉 ∈ ωA, then δ(a) = ε(a)/U . We only need to show
that there is an element in the ultrapower which differs from all δ(a). By
assumptionA is infinite, and take b = 〈ai : i ∈ω〉 where all ai ∈ A are different.
We claim that b/U is not in the range of δ. Indeed, δ(a) and b/U are different
as they agree on at most one place, while U is non-trivial.

613. By Problem 609, for a non-trivial ultrafilter U , ωA/U has cardinality 2ω.
By Problem 611, it is an elementary extension of A.

614. The construction from Problem 19 gives 2κ many elements aξ from the
product Πi Ai such that choosing finitely many aξ1 , . . . , aξn , there is an index
i ∈ I where all aξ j (i ) differ. When factoring the product by the ultrafilter U ,
these elements will be different if all the sets

Iξ,η = {i ∈ I : aξ(i ) 6= aη(i )}

are in U . Such an ultrafilter U exists if and only if this collection has the
FIP property, namely given finitely many pairs, there is an i ∈ I which is an
element of each Iξ,η. But clearly this is the case, so we are done.
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615. The ultrapower κA/U has cardinality at least 2κ for the ultrafilter from
Problem 613. From |A| ≤ 2κ it follows that the product space κA has cardinal-
ity 2κ, thus the ultrapower is of cardinality 2κ, and is an elementary extension
of A by Problem 611.

616. The ω-ultrapower of a set X of cardinality continuum has cardinality
continuum: |X | ≤ |ωX /U | ≤ |ωX | = |X |. Therefore there is a bijection between
X and ωX /U , and any bijection is an isomorphism in the empty language (i.e.
considering sets without further structure). Each infinite set can be properly
embedded into itself.

617. The field of complex numbers is algebraically closed – a property that
can be expressed by first-order formulas, see Problems 339, 504, 557. It follows
that ωC/U is algebraically closed, has characteristic zero, and has cardinality
continuum. Thus both the characteristic and the transcendental degree of
the algebraically closed fields C and ωC/U are the same (zero and continuum
respectively), consequently they are isomorphic.

618. Let Ai and B j be structures in the empty language (pure sets) such that
|Ai | = 2i+1 and |B j | = 3 j+1. Ai 6∼=B j is straightforward and both ΠiAi /U
and ΠiBi /U have cardinality continuum (Problem 610), consequently they
are isomorphic.

Remark. There is nothing in particular choosing pure sets. If Cn denotes
the cyclic graph on n vertices, then ΠnC2n/U and ΠnC2n+1/U are isomor-
phic as both consist of continuum many infinite paths (see Problems
629).

619. By assumption {Th(Ai ) : i ∈ I } is finite, say it is equal to {T0, . . . ,Tn−1}.
For j < n let X j = {i ∈ I : Th(Ai ) = T j }. As I =⋃∗

j X j is a finite partition, there

is a unique j < n such that X j ∈U (see Problem 31). Then Th
(
ΠiAi /U

)= T j ,
which can be seen as follows: ϕ ∈ T j ⇔ (∀i ∈ X j ) Ai Í ϕ ⇔ X j ⊆ {i ∈ I :
Ai Íϕ} ∈U ⇔ ΠiAi /U Íϕ.

620. Our similarity type will consist of countably many constant symbols
〈cn : n <ω〉. The ultraproduct of two element structures has two elements,
thus for simplicity suppose that the ground set of both structures is {0,1}. Let
the interpretations of the constants as follows

cAi
n =

{
1 if i = n,
0 otherwise.

Then for all n <ω we have {i <ω : cAi
n = 0} ∈U , therefore cΠAi /U

n = 0. But in
each Ai the interpretation of the constant ci is 1, thus Ai is not elementarily
equivalent to the ultraproduct.

621. Recall that V = {Z ∩ J : Z ∈U } is an ultrafilter on J (see Problem 37). For
a/V ∈Π j∈JA j /V write

a′(i ) =
{

a(i ) if i ∈ J ,
arbitrary ∈ Ai otherwise.
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The mapping Φ(a/V) = a′/U is well defined (does not depend on the choice
of representative of a/V) and is an isomorphism.

622. One direction is obvious. For the other direction, write

I = [Γ]<ω = {Σ⊆ Γ : Σ is finite}.

By assumption, for all i ∈ I there is a model Ai Í i . Let A=∏
i∈I Ai /U for an

ultrafilter U over I . We want to choose U so that for all γ ∈ Γ we have AÍ γ.
By Łoś lemma this amounts to

{i ∈ I :Ai Í γ} ∈U .

But if γ ∈ i , then Ai Í γ, therefore it is enough to guarantee that

Iγ = {i ∈ I : γ ∈ i } ∈U .

Note that the family {Iγ : γ ∈ Γ} has the finite intersection property, therefore
it can be extended to an ultrafilter U .

623. For each n let An be a finite model of Γ of cardinality at least n. The ul-
traproduct ΠnAn/U for a non-trivial ultrafilter U has cardinality continuum
(Problem 610) and is a model of Γ.

624. By Łoś lemma. For a fix e ∈ E the set

{ξ ∈ I :Aξ Íϕe [ fξ]}

contains e ⊆ I by assumption, and e ∈U .

625. As U is regular, for every ξ ∈ I there are only finitely many e ∈ E such
that ξ ∈ e. Choose Aξ ∈K to be a model of the finite set {ϕe : ξ ∈ e}. Problem
624 claims that ΠξAξ Íϕe for all e ∈ E .

626. Solution 1. Let U be a regular filter over I with the corresponding set
E ⊂U such that |E | = |A|. Fix a bijection f : A → E . For every ξ ∈ I there are
finitely many a ∈ A such that ξ ∈ f (a); let Aξ be the substructure generated
by these elements. In particular, a ∈ Aξ whenever ξ ∈ f (a). As f (a) ∈ U , it
means that given finitely many a1, . . . , an ∈ A, each ai is in Aξ for every
ξ ∈ f (a1)∩·· ·∩ f (an) ∈U .

We claim that A can be embedded as substructure to the ultraproduct
ΠξAξ/U . For a ∈ A define xa ∈ΠξAξ as

xa(ξ) =
{

a if a ∈ Aξ,
arbitrary ∈ Aξ otherwise.

The function Φ : a 7→ xa/U is such an embedding. For different a1, a1 ∈ A we
have xa1 (ξ) 6= xa2 (ξ) for all ξ ∈ f (a1)∩ f (a2) ∈U , hence Φ is injective.

Using the observation above, for any ~a ∈ A the substructure generated by ~a
is a substructure of Aξ for every ξ ∈⋂

i f (ai ) ∈U . By Łoś lemma it means that
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ΠξAξ/U Íϕ[Φ(~a)] and AÍϕ[~a] are equivalent for atomic formulas. Conse-
quently Φ preserves the truth of atomic formulas, thus it is an embedding
indeed.

Solution 2. Let A be the structure, and Γ = ∆0
A

be its atomic diagram, see
Definition 8.8. By Problem 507A can be embedded into any model of Γ, and
by Problem 625 there is a model of Γ which is an ultraproduct of structures
from the collection K assuming that each finite subset Γ′ ⊆ Γ has a model in
K. In our case K is the collection of all finitely generated substructures of
A. As each finite subset of ∆0

A
mentions finitely many elements of A only,

that subset holds in that finitely generated substructure. Consequently the
required ultraproduct exists.

627. As all finite subsets of T (x) can be realized in ΠiAi /U , for each k ∈ω

the set
Xk = {i ≥ k :Ai Í∃x (ϕ0(x) ∧ ·· · ∧ϕk−1(x))}

belongs to U . For i ∈ Xk −Xk+1 choose any realization a(i ) of ϕ0 ∧ ·· · ∧ϕk−1

in Ai . Then 〈a(i ) : i ∈ω〉/U realizes T (x) as for any k ∈ω fixed we have

Xk+1 ⊆ {i ∈ω :Ai Íϕk [a(i )]} ∈U .

Remark. See also Problem 677.

628. It is clear that κAk /U is a substructure of ωA/U , and also that κA1/U
and κA2/U have disjoint ground sets (as the product structures are disjoint).
Thus it suffices to show that every element in κA/U is also an element either
of κA1/U or κA2/U . Let a ∈ κA and define

Xk = {i ∈ κ : a(i ) ∈ Ak }.

As X1 and X2 are complements, exactly one of them is in U , say X1. Pick
s ∈ A1, and define a′ ∈ κA as

a′(i ) =
{

a(i ) if i ∈ X1,
s if i ∈ X2.

Then a′/U = a/U , thus a/U ∈ κA1/U , as required.

629. Let ϕ be the formula that expresses “each vertex has degree two” and
let ψk express “no k vertices form a circle.” Łoś lemma and Gi Íϕ implies
Πi∈ωGi /U Íϕ, further Πi∈ωGi /U Íψk because {i ∈ω : Gi Íψk } is co-finite.
By Problem 610, |Πi<ωGi /U | = 2ω.

It follows that Πi∈ωGi /U is a cycle-free graph of cardinality continuum,
each of its vertices has exactly two neighbors. Such a graph is isomorphic to
a union of continuum many infinite paths without endpoints.

630. Let ϕ be the formula expressing “all vertices have exactly two neigh-
bors, except for two which have one”, and let ψk express “there are no k
vertices that form a circle.” Clearly Gn Íϕ,ψk , hence by Łoś lemma we have
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Πn∈ωGn/U Íϕ,ψk . By Problem 610 the cardinality of Πn∈ωGn/U is contin-
uum. It follows that Πn∈ωGn/U is a cycle-free graph of cardinality continuum,
each of its vertices has exactly two neighbors, except for two vertices which
have one neighbor. Such a graph consists of infinitely many infinite paths
without endpoints together either with two infinite paths that have endpoints
or with one finite path (that has two endpoints). In our situation this latter
cannot be the case, which can be seen as follows. Let ϑk express “the distance
of the two vertices that has one neighbor is k”. Then for all n, by Łoś lemma,
we have Πn∈ωGn/U 6Íϑk , hence the ultraproduct does not contain any finite
path.

631. We prove that if G is such that for any n ∈ω there exist two vertices such
that the shortest path between them has length at least n, then ωG/U is not
connected. For n ∈ω let vn and wn be vertices witnessing that the diameter
of G is at least n. Then for all k we have that the set

{n ∈ω : Gn Í ”the shortest path between vn and wn has length at most k”}

does not belong to U . It follows that there is no finite path between v= 〈vn :
n ∈ω〉/U and w = 〈wn : n ∈ω〉/U , consequently Πn∈ωGn/U is not connected.

632. Let G1 be the countable 3-regular, cycle free, connected graph (an
infinite tree with degrees three: such a graph is unique), and let G2 be the
disjunct union of two copies of G1. As G2 is not connected, G1 and G2 are not
isomorphic. The ultrapower is again 3-regular and cycle-free, therefore all of
its connected components are isomorphic to G1. The cardinality of ωGi /U is
continuum (Problem 609), hence it is isomorphic to the union of continuum
many copies of G1. Thus ωG1/U ∼= ωG2/U . See also Problem 360.

The case of 4-regular cycle-free graphs is completely analogous. Up to iso-
morphism there is a unique connected graph of this type, and the ultrapower
consists of continuum many disjoint instances.

633. In ωH/U there is exactly one vertex that has two neighbors and all the
other vertices have three neighbors. Also ωH/U must be cycle-free as H does
not contain cycles. Since H is embeddable into ωH/U (Problem 611), the
connected component which contains the vertex that has two neighbors is
isomorphic to H . All the other components are connected 3-regular cycle-
free graphs, which are unique, up to isomorphism. By Problem 609 the
cardinality of ωH/U is continuum, therefore

ωH/U ∼= H ∪ ⋃
α<c

(the 3-regular connected cycle-free graph).

634. ωG/U has cardinality continuum. The following sentences are valid in
G thus they are valid in ωG/U :

(i) each vertex has either one, two or more than three neighbors,

(ii) no n points form a cycle,

(iii) there is exactly one vertex that has more than three neighbors,
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(iv) the degree-one vertices are connected to the vertex that has more than
three neighbors.

In what follows v denotes the vertex of G that has infinitely many neighbors,
the xi ’s are the degree-one vertices, and the yi ’s refer to degree-two vertices,
as pictured below. δ :G → ωG/U is the diagonal embedding (see Problem
611).

G = v

x0

y0y1yi

xi

The product ωG/U has cardinality continuum, contains δ[G], thus there must
be additional vertices, which must be of degree one or degree two (sentences
(i) and (iii)). As there are no cycles in G , the additional degree-two vertices
form infinite paths, and the degree one vertices are connected to δ(v).

A new degree one vertex which is connected to δ(v) is 〈xi : i ∈ω〉/U . If X
denotes {xi : i ∈ω}, then it is not hard to check that degree-one neighbors of
δ(v) are exactly elements of ωX /U . As the cardinality of ωX /U is 2ω, we get
continuum many new neighbors.

As for degree-two vertices, notice that 〈yi : i ∈ω〉/U and 〈yi+1 : i ∈ω〉/U are
connected, thus there must appear new infinite paths in ωG/U . Similarly as
above, if Y = {yi : i ∈ω}, then elements of ωY /U are the degree-two vertices,
which form continuum many infinite paths. In summary, the ultraproduct is
depicted below with δ[G] in black and the new items in red.

δ[G] =
ωG/U =



635. By the Erd˝s–deBruijn theorem (Problem 265) there must exist a finite
subgraph H ⊂Πi∈ωGi /U that has chromatic number k. The graph H , being
finite, can be described, up to isomorphism, by a single formula ϕH (~x) having
|H |-many free variables. (For example, up to equivalence the diagram ∆H

contains finitely many formulas, take their conjunction, and replace the
constants by variables.) By Łoś lemma it follows that

J = {n ∈ω : Gn Í∃~xϕH (~x)} ∈U .

For each i ∈ J , the graph H can be embedded into Gi .

636. Solution 1. Each element â = 〈a(i ) : i ∈ω〉/U has an immediate succes-
sor â +1 = 〈a(i )+1, : i ∈ω〉/U and each non-zero element has an immediate
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predecessor â −1 = 〈a(i ) .− 1 : i ∈ ω〉/U . The cardinality of ωA/U is contin-
uum (Problem 609), hence if we denote by B the integers with the successor
function, then we get

ωA/U ∼=A∪ ⋃
α<c

B.

Solution 2. Problem 501 describes all models of a theory Γ and proves that Γ is
κ-categorical for each κ≥ω1. As AÍ Γ, Łoś lemma gives that the ultrapowers
are also models Γ. The cardinality of any non-trivial ultrapower is 2ω ≥ω1,
thus all these ultrapowers are isomorphic to the structure described above.

637. Γ can be the set

0 6= S(x), x 6= 0 →∃y(x = S(y)), x 6= y → S(x) 6= S(y).

Let AÍ Γ. Following the method used in Problem 501, draw a directed edge
from x to S(x). From the formulas it follows that every node, except for
0A has in-degree exactly one. Consequently A consists of an infinite path
starting from 0A (which is isomorphic to ω), paths infinite in both directions
(isomorphic to Z), and loops of size one (when f (x) = x), two, etc. Therefore
a countable model of Γ is determined uniquely by the number of loops
and infinite paths: each such number is either a non-negative integer, or
countably infinite.

Let A Í Γ be countable. Then A1 = 〈ω,S〉 is a substructure of A, thus by
Problem 628 ωA/U contains ωA1/U as a substructure. According to Problem
636, this ultrapower has a single instance of 〈ω,S〉, and continuum many
instances of 〈Z,S〉. Consequently the ultrapower ωA/U also contains contin-
uum many instances of 〈Z,S〉, and not more, as its cardinality is continuum.

It remained to determine the number of loops of size k ≥ 1 in ωA/U . Sup-
pose there are s ∈ω such loops in A. There is a formula ϕs.k expressing that
there are exactly s loops of size k (including the case s = 0. As the same
formula holds in the ultrapower by Łoś lemma, there will be exactly s loops
of size k there as well.

In the case when there are countably many loops of size k in A, then A is
the disjoint union of structures Ak

1 and Ak
2 where Ak

1 contains the k-loops
only. Now the ultrapower ωAk

1 /U has cardinality continuum, consists of
k-loops only (as this is a property expressible by a formula), thus has contin-
uum many k-loops. It means that ωA/U has also continuum many k-loops.

In summary: in the ultrapower ωA/U there is a single copy of 〈ω,S〉, contin-
uum many copies of 〈Z,S〉, and for each k ≥ 1, either there are finitely many
k-loops (exactly as many as in A), or there are continuum many k-loops (if
the number of k-loops in A is infinite).

638. ωA/U is a linear order of cardinality continuum (Problem 609) with
a smallest element 〈0 : i ∈ ω〉/U and without largest element. For a ∈ ωA
the immediate successor of a /U is 〈a(i )+1 : i ∈ω〉/U , and the immediate
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predecessor is 〈a(i ) .− 1 : i ∈ω〉/U . The distance from a1/U to a2/U is infinite
if for all n ∈ω we have

Xn = {i ∈ω : a2(i )−a1(i ) > n} ∈U .

Set c(i ) such that for all n ∈ω

{i ∈ω : a2(i )− c(i ) > n/3 and c(i )−a1(i ) > n/3} ∈U
(e.g., set c(i ) = [a(i )+b(i )/2]). Then c /U is as desired.

639. Similarly to Problem 638, for a ∈ ωZ, the immediate predecessor of a /U
is 〈a(i )−1 : i ∈ω〉/U , and its immediate successor if 〈a(i )+1 : i ∈ω〉/U . The
distance between a1/U and a2/U is finite if they are on the same copy of Z,
which happens if and only if there is an n ∈ω such that

{i ∈ω : |a1(i )−a2(i )| < n} ∈U .

Let a′ = 〈a(i )− i : i ∈ω〉, then a′/U < a /U , and the distance between them is
infinite – thus M has no smallest element. Similarly, 〈a(i )+i : i ∈ω〉/U shows
that M has no largest element either.

Finally if a1/U < a2/U are not on the same copy of Z, then their distance is
infinite. Taking c(i ) = [(a1(i )+a2(i ))/2], c /U is between a1/U and a2/U , and
the distance between ai /U and c/U is infinite – showing that M is dense.

Remark. If the continuum hypothesis holds, then ultrapowers ωA/U for
different non-trivial ultrafilters U are actually isomorphic (Keisler’s the-
orem, see Problem 679). If the continuum hypothesis fails, then there
are 22ω

pairwise non-isomorphic ultrapowers ωA/U . This result of S. She-
lah holds for any countable structure A on a countable similarity type in
which an infinite total order is definable.

640. Let B = {bi /U : i < ω} be a countable set of elements from the ultra-
product, and write x(n) = max{bi (n) : i ≤ n}+1. Then for each i ∈ω the set
{n ∈ ω : x(n) > bi (n)} is co-finite, hence belongs to U , therefore x/U is an
upper bound for B .

Remark. This is a standard diagonal argument, see also Problem 677.

As for the second part, we define a strictly increasing sequence 〈xα : α<ω1〉
as follows. Let x0 ∈ ωA/U be arbitrary and suppose for β<ω1 the sequence
〈xα : α < β〉 has already been defined. Then the set Bβ = {xα : α < β} is
countable, thus by the first part it is bounded. Choose xβ to be any upper
bound for Bβ.

641. Let A= 〈ω,<〉, we claim that the ultrapower ωA/U has this property. Let
(an/U ,bn/U ) be the endpoints of the strictly decreasing interval sequence.
First note that there are infinitely many distinct elements between an/U and
bn/U , thus {i ∈ω : an(i )+10 < bn(i )} ∈ U , see Solution 638. Also, an−1/U <
an/U and bn/U < bn−1/U , therefore

Xn = {i ∈ω : an−1(i ) < an(i ) < an(i )+10 < bn(i ) < bn−1(i )} ∈U .
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Let Pk = X1 ∩·· ·∩Xk ∈U . Observe that if i ∈ Pk then

a0(i ) < ·· · < ak (i ) < ak (i )+10 < bk (i ) < ·· · < b0(i ).

For each i let k be the maximal such that i ∈ Pk (there can only be finitely
many such k), and define x(i ) = ak (i )+1, y(i ) = bk (i )−1. If no such a k exists,
let x(i ) = y(i ) = 0. Now ak (i ) < x(i ) < y(i ) < bk (i ) whenever i ∈ Pk ∈U , thus
ak /U < x/U < y/U < bk /U . It means that the non-empty interval (x/U , y/U )
is in the intersection of all (ak /U ,bk /U ).

642. It is straightforward that Q does not have the desired property, therefore,
using Problem 365, such an ordering must be uncountable.

The ultrapower M = ωQ/U , where U is a non-trivial ultrafilter on ω, is a
dense ordering of cardinality 2ℵ0 . Suppose A = {ai /U : i ∈ω} and B = {bi /U :
i ∈ω} are countable subsets of M such that A < B . It is enough to define two
elements x/U and y/U in the ultrapower so that A < x/U < y/U < B . Since
ai /U < b j /U for all i , j , we have that

Xk,` = {i ≥ k,` : ak (i ) < b`(i )} ∈U ,

Xk =⋂
`≤k Xk,` = {i ≥ k : ak (i ) < b0(i ), . . . ,bk (i )} ∈U ,

Pk =⋂
j≤k X j = {i ≥ k : a0(i ), . . . , ak (i ) < b0(i ), . . . ,bk (i )} ∈U .

Clearly P0 ⊇ P1 ⊇ P2 ⊇ ·· · . For each i ∈ ω let k be the largest number such
that i ∈ Pk , and define x(i ) and y(i ) such that

max{a j (i ) : j ≤ k} < x(i ) < y(i ) < min{b j (i ) : j ≤ k}.

This can be done as Q is dense. Finally, note that for all k we have {i ≥ k :
ak (i ) < x(i ) < y(i ) < bi (i )} ⊇ Pi ∈U , consequently A < x/U < y/U < B .

Remark. Problem 681 provides an alternative construction as a non-trivial
ultrapower of Q is σ-saturated by Problem 677 or Problem 682.

643. (a) Let the decreasing sequence be 〈an/U : n ∈ω〉 where an ∈ ωR. For
each k ∈ω the set

Xk = {i ≥ k : 0 < ak (i ) < ak−1(i ) < ·· · < a0(i )}

belongs to U . Choose b(i ) so that

0 < b(i ) < ak (i ) < ak−1(i ) < ·· · < a0(i ) if i ∈ Xk −Xk+1.

Then for all k ∈ω we get

Xk ⊆ {i ∈ω : 0 < b(i ) < ak (i )} ∈U ,

in particular 0A < b/U < ak /U for all k ∈ω.

(b) Let B ′ = {〈b : i ∈ ω〉/U : b ∈ B} be the image of B w.r.t the diagonal
embedding, see Problem 611. B ′ has an upper bound (e.g. 〈n : n ∈ ω〉/U )
but has no least upper bound. For B ′ < x/U if and only if the sequence
〈x(i ) : i ∈ω〉 is unbounded on some element of U , and then B ′ < x ′/U , where
x ′(i ) = x(i )−1 (and, of course, x ′/U < x/U ).
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644. There must exist a universal bound for the length of E-chains. If there is
some n ∈ω such that all E-chains are of length ≤ n in A, then there can be no
E-chain in ωA/U longer than n, thus each non-empty subset of ωA/U has an
E-minimal element. Conversely, suppose for each n there is an E-sequence
an

n E · · · E an
2 E an

1 of length n. Choose an arbitrary a ∈ A and for j > n
write an

j = a. Let bi = 〈an
i : n < ω〉/U . Then · · · E bn E · · · E b1 is an infinite

decreasing E-chain in ωA/U which does not have a minimal element.

645. (a) Let X = {i1, i2, . . . }. By assumption, for all n ∈ω there exists a(n) ∈ A
such that a(n) satisfies Ri1 , . . . ,Rin but does not satisfy R j for j ∉ X . It follows
that if n > k, then a(n) satisfies Rik and thus the set

{n ∈ω : a(n) ∈ RA
ik

}

is co-finite and belongs to U . By Łoś lemma we get a/U ∈ R
ωA/U
ik

. Similarly,

a(n) ∉ RA
j for j ∉ X , and hence a/U ∉ R

ωA/U
j .

(b), (c) We prove first that for {i1, . . . , in}∩ { j1, . . . , jn} =; the intersection

A1 = RA
i1
∩·· ·∩RA

in
∩ (A−RA

j1
)∩·· ·∩ (A−RA

jm
)

is always infinite. Indeed, elements which satisfy Ri1 , . . . , Rin , Rk1 , . . . , Rk`

where the latter relation symbols differ from each Ri and R j , are all different
and are in the intersection.

Let X = {i1, i2, . . .} and ω−X = { j1, j2, . . .} and consider the ultraproduct

B= ( ∏
n∈ω

RA
i1
∩·· ·∩RA

in
∩ (A−RA

j1
)∩·· ·∩ (A−RA

jn
)
)
/U ⊆ ωA/U .

A moment of thought shows that each element b ∈ B satisfies RB
k if and only

if k ∈ X . By Problem 609, B has cardinality continuum.

646. Let pn be the n-th prime and denote by Gn the cyclic group of order pn .
If a/U ∈ΠnGn/U is not the unit element and n ∈ω, then

(a/U )n = 1/U ⇔ 〈a(i )n : i ∈ω〉/U = 1/U
⇔ {i ∈ω : a(i )n = 1} ∈U
⇔ {i ∈ω : pi |n} ∈U

Obviously, no natural number is divisible by infinitely many primes, hence
a/U has infinite order, thus ΠnGn/U is torsion free.

647. The element 〈n! : n ∈ω〉/U is infinitely divisible.
As for the free group G on generators X , note that all groups with gener-

ators X are homomorphic images of G , and the homomorphic image of a
divisible group is a divisible group. As there are non-divisible groups gener-
ated by X , G cannot be divisible. However, G might still contain infinitely
divisible elements. To see why it is not the case observe that cyclically re-
duced words, i.e. words of the form w = x1x2 . . . xn , where xi 6= x−1

j (the xi ’s
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are the generators), are torsion free. As every word is the conjugate of cycli-
cally reduced words (cyclically reducing a word amounts to conjugating by
the indices which cancel), every word must be torsion free.

If g is any of the generators, then 〈g i ! : i ∈ω〉/U is infinitely divisible.

648. (a) Correct, see Problem 610.
(b) Incorrect. Each cyclic group of even order contains elements of order

two. The equivalence class of the element defined below has order two in
Πi Ci /U , provided {2i : i ∈ω} ∈U .

g (i ) =
{

arbitrary ∈Ci if i is odd,
element of order two ∈Ci if i is even.

(c) Correct. Suppose P = {p : p is prime} ∈ U and let a/U ∈ Πi Ci /U be a
non-zero element. We wish to show that for all n we have n ·a/U 6= 0/U . By
assumption N = {i ∈ω : a(i ) 6= 0} ∈ U , thus n ·a(i ) 6= 0 for all i ∈ N ∩ {p ∈ P :
n < p}. As N ∩ {p ∈ P : n < p} ∈U , we get

N ∩ {p ∈ P : n < p} ⊆ {i ∈ω : n ·a(i ) 6= 0} ∈U .

(d) Incorrect. Πi Ci /U always contains an element of infinite order: If
gi ∈Ci is an element of order i , then 〈gi : i ∈ω〉/U has infinite order.

649. If {n :Fn is a prime order field} ∈U , then ΠnFn/U has characteristics 0.
Similarly, if {n :Fn has order pk } ∈U then ΠnFn/U has characteristics p.

650. We prove that Πp prime Fp /U is not algebraically closed. In fact, there
is an element which has no square root. For each prime p ≥ 3 there is an
element xp ∈ Fp which is not a square in Fp (not a quadratic residue mod p).
Then 〈xp : p is prime〉/U does not have a square root in Πp prime Fp /U .

651. Take a polynomial f (x) = an xd + ·· ·+ a1x + a0 ∈ Fp [x] with non-zero
leading coefficient. The sentence “ f has a root” can be expressed as

ϕ f ≡ ∃x (t (ad )xd +·· ·+ t (a1)x + t (a0) = 0),

where t(ai ) is the term (0+ 1+ ·· · + 1) which equals to ai in any field of
characteristic p. Now f has all its roots in Fpn for some n, and then in Fpnk for
all k ≥ 1. If U contains the set {k ! : k ∈ω}, then we have {i ∈ω : Fp i Íϕ f } ∈U .
Therefore each f ∈ Fp [x] has all its roots in Πi∈ωFp i /U .

652. There is a quadratic equation which has no root. Let p ≥ 3, then x 7→
x2 is not an injection in Fn

p (as x and −x has the same square), thus Fn
p Í

∃a∀x(x2−a 6= 0). Consequently the same formula is true in the ultraproduct,
showing that it is not algebraically closed.

When p = 2 then one has to take the polynomial x2 + x. As x2 + x = (x +
1)2 + (x + 1), in every finite field of characteristic two there is an element
which is not of this form, thus the ultraproduct satisfies ∃a∀x(x2 +x +a 6= 0).
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653. By way of contradiction suppose that there are fields of arbitrarily large
characteristic p such that Fp 6Íϕ. As the characteristics of the fields Fp are
different, the ultraproduct ΠpFp /U has characteristics 0 for any non-trivial
ultrafilter U . By Łoś lemma ΠpFp /U 6Íϕ, contradicting the assumption.

654. Suppose each polynomial f ∈Fn[x] of degree at most n has a root in Fn

(which is of characteristic p), while Fn is not algebraically closed (i.e. higher
degree polynomials can be irreducible). This property can be expressed by
the first-order formula ϕ1 ∧ϕ2 ∧ ·· · ∧ϕn where

ϕ j ≡∀a0 . . .∀a j (a j 6= 0 →∃x(a j x j +·· ·+a1x +a0 = 0).

Let F = ΠnFn/U for any non-trivial ultrafilter U on ω. Then F Í ϕn for all
n ∈ ω, which means that F is algebraically closed. Note that F also has
characteristics p. So it remained to construct the fields Fn .

Let Fp be the p-element field (in case p = 0 start from Q), let n be fixed and
consider the field extensions

Fp = F n
0 ⊂ F n

1 ⊂ F n
2 ⊆ ·· ·

where F n
i+1 is the algebraic extension by the roots of all polynomials of degree

at most n with coefficients from F n
i . The degree of every element in F n

i+1 over
F n

i is at most n, consequently the degree of a ∈ F n
i over F n

0 is the product of i
numbers each of which is at most n.

Write Fn for the union
⋃

i F n
i . All coefficients of f (x) ∈ Fn[x] are in F n

i
for some i , thus if f has degree at most n, then f has roots in F n

i+1 ⊂ Fn .
To prove that Fn is not algebraically closed, observe that the degree of each
element inFn over F n

0 = Fp is a product of numbers ≤ n. Thus any irreducible
polynomial over Fp of degree a prime larger than n has no root in Fn .

655. Remark first that there are regular ultrafilters with |E | = κ for every
infinite cardinal κ (Problem 57), thus the infinite collection of polynomials
can always be indexed by elements of such an E .

If U is regular, then {pe = 0 : ξ ∈ e} is finite for every ξ ∈ I , thus there is in-
deed a common solution fξ which satisfies pe [ fξ] = 0 when ξ ∈ e. By Problem
624 we have pe [〈 fξ〉/U ] = 0 for all e ∈ E . As each fξ maps the variables to the
finite set F (elements of the finite field), 〈 fξ〉/U also maps the variables to the
same finite set, providing the required common solution.

Remark. Compare this solution to that of Problem 626.

656. The argument of Solution 655 also works here. Since E is countable,
the regular ultrafilter U can be chosen over the countable set ω. Each partial
solution fξ maps the variables to the structure C, and, according to Problem
624, 〈 fξ〉/U maps the variables to the ultrapower ωC/U . As this ultrapower is
isomorphic to C, the system has a solution in C as well.

For a different solution see Problem 680.
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657. Fix any polynomial f ∈ F [x] and denote by δ the diagonal embedding
δ : F→B (see Problem 611). We prove that no element in B àF is a root of
δ( f ). For if B` δ( f )[g /U ] = 0/U for some g /U ∉ F , then

{i ∈ κ : f [g (i )] = 0} ∈U .

This set must be infinite (as U is non-trivial), and since g is not a diagonal
element, it follows that f must have infinitely many different roots.

658. Note that in an ordered field squares are non-negative, and 0 < 1 and
−1 < 0 always hold. The set of non-negative elements determines the order-
ing uniquely as x ≤ y iff 0 ≤ y −x.

(a) Each square is non-negative, and for each real x either x or −x is a
square.

(b), (d) Finite fields have characteristics p for some prime number p, so it is
enough to prove that fields of non-zero characteristics cannot be turned into
ordered fields. This follows easily from the equation 0 < (p −1) ·1 =−1 < 0.

(c) The property that a field is orderable can be expressed by a first-order
formula (in the language extended by a relation for ≤). If Πn∈ωFn/U were
orderable, then the set of Fn ’s that are orderable would belong to U , in partic-
ular, it would be non-empty, which contradicts (b).

(e) Q(
p

2) denotes the extension of Q with
p

2. Each element of Q(
p

2)
can be uniquely written in the form a +b

p
2, where a,b ∈Q. Let <1 be the

ordering inherited from the reals, and let <2 be defined such that
p

2 <2 0.
Then <2 is a field-ordering which can be seen using that the automorphism
f (a +b

p
2) = a −b

p
2 of Q(

p
2) turns <1 to <2.

(f ) That the condition is necessary is straightforward. Let P the set of sums
of squares

P = {∑
i∈n a2

i : ai ∈ F, n ∈ω
}
.

It can be checked that P is closed under addition and multiplication, and by
assumption −1 ∉ P (such sets are called cones). In fact, P − {0} is a subgroup
of the multiplicative group of F. Using Zorn’s lemma we can find a maximal
cone P ′ extending P . Then F = P ′∪(−P ′) and thus an ordering can be defined
as

0 < a ⇔ a ∈ P ′.

659. Let U be a regular ultrafilter on κ (see Problem 57) with the correspond-
ing set E ⊆U , |E | = κ for which γ(α) = {e ∈ E : α ∈ e} is finite for all α ∈ κ. It is
straightforward to see that ∣∣κA/U

∣∣≤ ∣∣κA
∣∣=λκ.

Since |A| =λ is infinite, it follows that |A| = |γ(α) A|, therefore we may replace
A with γ(α) A and it is enough to prove∣∣(Πα<κ

γ(α) A
)
/U

∣∣≥λκ.
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Let Φ : E A → (
Πα<κ

γ(α)A
)
/U be the mapping Φ(s) = 〈s�γ(α) : α< κ〉/U . For

s 6= t ∈ E A we have

{α ∈ κ : s�γ(α) = t�γ(α) } ∉U ,

thus Φ is injective, meaning that

λκ = ∣∣E A
∣∣≤ ∣∣(Πα<κ

γ(α) A
)
/U

∣∣.
Remark. See also Solution 609.

660. If ω≤ λ< κ, then there exists a non-uniform ultrafilter U on κ which
has an element X ∈U of cardinality λ (Problem 59), and there also exists a
regular ultrafilter V on κ (Problem 57; and note that regular ultrafilters are
uniform: Problem 58). We know by Problem 659 that |κA/V | = 2κ and it is
not hard to see that |κA/U | ≤ |X A| = κλ. It follows that κA/U and κA/V have
different cardinalities provided κλ < 2κ. This can be achieved e.g. with the
choice λ=ω and κ= 2ω.

661. Take the two discrete orderings A=ω2 ×Z and B= (ω2 +ω1)×Z. The
theory of discrete linear orderings without endpoints is complete (see Prob-
lem 553, thus A≡B. Clearly cf(A) =ω2 and cf(B) =ω1, thus A and B are not
isomorphic. Let cα : ω→ {α} denote the constant function with value α. No
countable sequence is cofinal in ω2, therefore for every f :ω→ω2 there is an
α<ω2 such that ∀n ∈ω f (n) < cα(n). It follows that the sequence (cα,0)/U
(α<ω2) is a cofinal sequence in ωA/U (and thus cf(ωA/U ) =ω2). Similarly,
(cα,0)/V (α<ω1) is a cofinal sequence in ωB/V , thus the ultrapowers cannot
be isomorphic.

662. Let R be a unary relation symbol and put A = 〈ω2, RA〉 and B =
〈ω2, RB〉 with |RA| = ℵ0 and |RB| = ℵ1. Each non-trivial ultrafilter on ω

is regular (Problem 58(b)), hence the ω-ultrapower of a set of cardinality
λ has cardinality λω (see Problems 659 and 609). It follows that |ωA/U | =
|ωB/V | =ωω

2 and

|RωA/U | = |ωRA/U | =ωω, and |RωB/V | = |ωRB/V | =ωω
1 .

Note that ωω =ωω
1 which ensures that ωA/U and ωB/V are isomorphic.

663. Let RX be a unary relation symbol for each X ⊆ ω and let A be the
structure with ground set ω in which each RA

X is equal to X . Let U be an
ultrafilter on ω and F ⊆℘(ω) a system of sets. We say that F is realized in
ωA/U if there is an a/U ∈ ωA/U such that

F = {
X ⊂ω : ωA/U Í RX [a/U ]

}
.

Observe that U can be realized in ωA/U : if a :ω→ω is the identity function
a(n) = n, then

U = {
X ⊂ω : ωA/U Í RX [a/U ]

}
.
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Notice that only 2ω many set systems can be realized in each non-trivial
ultrapower ωA/U , because |ωA/U | = 2ω (see Problem 609). As there are 22ω

many non-trivial ultrafilters on ω (Problem 33) and each ultrafilter U can
be realized in ωA/U , there must exist 22ω

non-isomorphic ultrapowers of A
(Note: isomorphic ultrapowers realize the same systems of sets).

664. Let E ⊆ U , |E | = κ witness the regularity of U where {e ∈ E : ξ ∈ e} is
finite for all ξ < κ (see Definition 1.17). We define the increasing sequence
〈xα/U : α< κ+〉 by transfinite recursion. Suppose it has been defined up to
α< κ+. As |α| ≤ κ, there is an injection fα : α→ E . Put

xα(ξ) = 1+max{xβ(ξ) : β<α and ξ ∈ fα(β) }.

As for each ξ there are finitely many β for which ξ ∈ fα(β), this is a sound
definition. Now for all β<α we have

{ξ< κ : xβ(ξ) < xα(ξ)} ⊇ {ξ< κ : ξ ∈ fα(β)} = fα(β) ∈U .

Therefore xβ/U < xα/U , as required.

Remark. Each non-trivial ultrafilter U on ω is regular (Problem 58), thus
Problem 640 is a special case.

665. Let Fin(A) = {Ai : i < κ}. By Problem 626 A can be embedded to an
appropriate ultraproduct Πi<κAi /U . As each Ai is a subgraph of B, it fol-
lows that Πi<κAi /U can be embedded into κB/U , and therefore A can be
embedded into κB/U .

666. B can be embedded into some ultraproduct Πi<κBi /U of its finitely
generated substructures Bi . Each Bi embeds into A, thus B can be embed-
ded into κA/U . As B is countable, by the downward Löwenheim–Skolem
theorem 8.5 κA/U has a countable elementary substructure A′ that contains
B . But A is ℵ0-categorical, thus A and A′ are isomorphic, and so B can be
embedded into A.

667. It suffices to check that every finitely generated substructure has such
an order. Indeed, if it is so, then their ultraproduct also has a shift-invariant
total order (as the corresponding formulas are true), and the inherited order-
ing is shift-invariant in any substructure. By Problem 626 every structure can
be embedded into some ultraproduct of its finitely generated substructures.

According to the hint, it is enough to check the claim for Zn , in which the
lexicographic ordering works.

668. As G can be embedded to an appropriate ultraproduct of its finitely
generated subgroups (Problem 626), and all such subgroups are assumed to
be n-representable, it suffices to show that any ultraproduct of the groups
Gξ =GL(n,Fξ) is n-representable.

Let F=ΠξFξ. Elements of the group H =GL(n,F) can be identified with
g /U , where g (ξ) ∈GL(n,Fξ). This is so, as elements of GL(n,F) are actually
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n2-tuples of elements of F, and similarly for g (ξ). (If g /U ∈ H , then g (ξ) is
non-singular atU-many places, thus we may as assume that it is non-singular
everywhere.) Thus ΠξGξ is isomorphic to H , and then n-representable.

669. Problem 536 says that the dense linear order without endpoints has
quantifier elimination. Thus any type over a finite subset X describes the
ordering between elements of X and the variables. Realization of such a
type requires the existence of other elements which are in a given order w.r.t.
elements of X . If the type is finitely satisfiable in Q, then such elements exist
in Q.

670. For each natural number n ∈ω let π(n) be the term which has the value
n. The type

T (x) = {
π(p) <π(q) · x :

p

q
<p

2
} ∪ {

π(p) >π(q) · x :
p

q
>p

2
}

is clearly finitely satisfiable, but not satisfiable in Q.

671. 〈R,<〉 is a dense linear ordering, thus ℵ0-saturatedness can be proved
exactly the same way as in 669. To see that R is not ℵ1-saturated, consider
the following set of formulas with X = {0,1/n : n ≥ q} ⊂R:

T (x) = {x < 1/n : n ∈ω}∪ {0 < x}.

It is finitely satisfiable, but not satisfiable in R.

672. Suppose A is |A|+-saturated. Then each type T (x) ⊂ τA can be realized
in A. Since A is infinite, the set T (x) = {x 6= a : a ∈ A} is finitely satisfiable in
A. But it is impossible to realize T (x) in A.

673. An infinite structure A cannot be |A|+-saturated by Problem 672.

674. If X ∈ [A]<κ and T (x) ⊂ F (τX ), then |T (x)| < κ · |F (τ)|+.

675. First let T (x, y) ⊂ F (τX ) be a 2-type, and let T ′(x) be the set of formulas
∃y(ϕ1(x, y) ∧ . . .ϕk (x, y)) where {ϕ1, . . . ,ϕk } runs over the finite subsets of
T (x, y). As every finite subset of T (x, y) is satisfiable in A, the same is true
for T ′(x). Consequently T ′(x) is a 1-type, and suppose a ∈ A realizes it. Now
consider T ′′(y) = {ϕ(ca , y) : ϕ(x, y) ∈ T }. This T ′′(y) is a formula set over
F (τX∪{a}), and it is finitely realizable as a realizes every element of T ′(x).
Thus T ′′(y) is realized in A, which means that T (x, y) is also realized in A.

Similar ideas work in general. One can fix the value of variables x1, x2, etc.,
in this order so that after changing the variable to the realizing constant in
all formulas of T , T remains finitely satisfiable. As every formula contains
finitely many variables only, every element of T will be realized eventually.

676. For any ε ∈ ω2 the type Tε(x) = {Rε(i )
i (x)} (negate / don’t negate Ri ) is

finitely satisfiable in Σ, thus a saturated model must have such an element.
It means that a saturated model has continuum many elements at least.
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Similarly, for any subset X ⊆ A the type T ′(x) = Tε(x)∪ {x 6= ca : a ∈ X } is
finitely satisfiable. Therefore each type Tε(x) must be satisfied by |A| many
different elements. This motivates the definition A= 〈ωR, RA

0 ,RA
1 , . . .〉 with

the interpretation
RA

i = {x ∈ ωR : x(i ) ≥ 0}.

Then AÍΣ as for a given {i0, . . . , in}∩ { j0, . . . , jm} =; the element

x = 〈. . . ,
i0
^
a , . . . ,

jk
^−a, . . .

in
^
a ,

jm
^−a, . . .〉

realizes Ri0 (v) ∧ . . . ∧ Rin (v) ∧¬R j0 (v) ∧ . . . ∧¬R jm (v) for every positive real a.
To show that A is saturated let X ⊂ A, |X | < |A| = |R|, and T (~x) ⊂ F (τX ) be a
type. As there are only unary relation symbols and no function symbols, the
type can only express that what unary relations the variables in~x satisfy and
what they do not, and whether they are equal or different from elements in
X . As |X | has cardinality smaller than |R|, such an element always exists in A.

677. (a) Let X be a subset of ωA/U and T (~x) = {ϕi (~x) : i <ω} be a countable
type over X . As finite subsets of T (~x) are realizable in ωA/U , for each k ∈ω

the set
Xk = {i ≥ k :AÍ∃~x(ϕ0 ∧ ·· · ∧ϕk−1) }

belongs fo U . For i ∈ Xk −Xk+1 choose any realization ~a(i ) of ϕ0 ∧ ·· · ∧ϕk−1

in A. Then ~a = 〈~a(i ) : i ∈ω〉/U realizes T in ωA/U as for k ∈ω fixed we have

Xk+1 ⊆ {i ∈ω :AÍϕk [~a(i )] } ∈U .

(b) If the similarity type of A is countable then each type over a countable
set is countable. It follows that in this case ωA/U is σ-saturated and by
Problem 611 it is an elementary extension of A.

678. IfA orB is finite and elementarily equivalent, then they are isomorphic
by Problem 465. So suppose |A| = |B| = κ is infinite, and let {cξ : ξ< κ} be new
constant symbols which will be used to mark corresponding elements of A
and B. The interpretation will be assigned using the standard back and forth
method, see Problems 365, 528, 531, 555, 570. Thus assume α < κ and the
constant symbols {cξ : ξ<α} has been added to the type τ such that A and B

are still elementarily equivalent in the extended τα type. Let a ∈ A be the first
element in A not assigned a constant symbol yet (forth), and take the type
T (x) = {ϕ(x) ∈ F (τα) : A Í ϕ[a]}. As A and B are elementarily equivalent,
T (x) is a type in B, and as it is saturated, there is a b ∈ B such that BÍ T [b].
Assign the constant symbol cα to a in A, and to b in B. Then choose the first
unassigned element b ∈ B (back), and repeat the above process.

679. If any of the structures is finite, then both are finite (Problem 465), and
the ultrapowers of finite structures are isomorphic to the original structures
(Problem 605). So suppose A and B are countably infinite. Both ωA/U
and ωB/U are ℵ1-saturated (Problems 677 and 674), elementarily equivalent
(Problem 607) and have cardinality 2ℵ0 (Problem 609). As 2ℵ0 =ℵ1, Theorem
9.8 applies.
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680. (a) Problem 617 says that C and ωC/U are isomorphic. Problem 677 says
that this ultrapower is σ-saturated. Consequently C, as a field, is σ-saturated.

(b) Immediate from the definition of saturated models.

681. Let M be a σ-saturated dense ordering, A be the initial points of the
intervals, and B be the endpoints of the intervals. Write

T (x, y) = {a < x < y < b : a ∈ A,b ∈ B
}
.

Then T (x, y) is a countable set of formulas with parameters from A and B
and free variables x, y . Since M is dense, T (x, y) is finitely satisfiable, hence,
by σ-saturatedness, T (x, y) is satisfiable in M. This means that the interval
[x, y] is contained in each Ii .

682. Let T be a type over A with |T | ≤ κ. Let E ⊂U , |E | = κ witness regularity
of U , i.e. the sets {e ∈ E : ξ ∈ e} are finite for all ξ < κ. As |T | ≤ κ, it can
be enumerated as {ϕe (~x) : e ∈ E }. We want to apply Problem 624. Let ξ ∈ I ,
and consider the finite subset Tξ = {ϕe (~x) : ξ ∈ e} of T . This is realizable in
κA/U by assumption. Note that A is an elementary substructure of κA/U
(Problem 611), and since formulas in Tξ contain parameters only from A, Tξ

is realizable in A as well, say by fξ: A Í ϕe [ fξ] for every ξ ∈ e. Then 〈 fξ〉/U
realizes T as κA/U Íϕe [〈 fξ〉/U ] for all e ∈ E by Problem 624.

683. Straightforward application of the Downward Löwenheim–Skolem the-
orem 8.5.

684. (a) If Γ has arbitrarily large finite models, then it has an infinite model
by Problems 623 and 419.

(b) The set of formulas {ϕn : n ∈ω}, where

ϕn ≡ ∃x1 . . .∃xn
∧
i 6= j

xi 6= x j

axiomatizes infinite structures.

685. Every infinite A ∈K has an elementary extension of arbitrary large car-
dinality (Problems 420, 615), which cannot be isomorphic to A for cardinality
reasons. For the other direction see Problem 465.

686. (a), (b) No, K1 is never axiomatizable. An axiomatizable class contains
all isomorphic images of its members. Elementary substructures of B are
not closed for isomorphism, thus cannot form an axiomatizable class.

(c) Yes, let A be a countable ;-type structure (a set). Then K2 is the class
of all infinite sets which can be axiomatized.

(d) Yes, let A be an ;-type structure of cardinality continuum. Then K2 is
the class of all sets having cardinality ≥ continuum but any axiomatizable
;-type class should contain a countable structure (cf. Problem 683).
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687. Assume that the set of closed formulas ∆= {ϕi : i <ω} axiomatizes K,
and contains no formulas valid on every structure. If ∆ would be empty or
finite, then it is equivalent to a single formula, which is independent.

Define by induction on n the formulas ψn such that ψ0 = ϕ0 and ψn+1

is the least ϕk such that {ψ0, . . . ,ψn} 6Í ϕk . It is easy to see that {ϕi : i < ω}
and {ψi : i < ω} are equivalent. Let ϑ0 = ψ0 and ϑn+1 = ∧

m≤n ψm → ψn+1

and put Γ = {ϑi : i < ω}. Since {ψ0, . . . ,ψn} 6Í ψn+1, there is some model
A Íψ0, . . . ,ψn ,¬ψn+1. Then A Í ϑ0, . . . ,ϑn but A 6Í ϑn+1. For m > n +1 we
have that the antecedent of ϑm is not true in A, therefore

AÍ ∧
m 6=n+1

ϑm ∧¬ϑn+1.

Consequently {ϑi : i <ω} is independent. Checking K is axiomatized by Γ is
straightforward.

688. Every ultraproduct is a model of Γ by Łoś lemma. For the other direction
let AÍ Γ. Problem 625 claims that if every finite subset of Th(A) has a model
in K, then there is an ultraproduct ΠξAξ/U of elements of K which is a
model of Th(A), and this model is clearly elementarily equivalent to A. Thus
suppose, by way of contradiction, that no Aξ ∈K is a model of {ϕ1, . . . ,ϕn} ⊆
Th(A). Then

¬ϕ̄1 ∨ ·· · ∨¬ϕ̄n ∈ Γ

as this formula is true in every element of K, contradicting that AÍ Γ.

689. (a) We will use Problem 625. Suppose Γ axiomatizes K. To show that
there is some structure in K which is an ultraproduct of structures not in K,
we need to find, for each finite subset of Γ, a model not in K. But such a
model is provided by the assumption that K is not axiomatized by any finite
subset of Γ.

(b) Not true. Let Ri be unary relation symbols, ϕ ≡ ∀x R0(x) and ψi ≡
ϕ ∨ ∀x Ri (x). Let K be axiomatized by {ϕ,ψi : i ≥ 1}. Clearly K cannot be
axiomatized finitely, and no structure outside of K is a model of ϕ. Thus no
structure with AÍϕ (clearly an element of K) can be elementarily equivalent
to an ultraproduct of structures not in K.

690. (a) If K is axiomatizable, then it is clearly closed under elementary
equivalence and ultraproduct. The converse follows from Problem 688: K is
axiomatized by the theory Γ= {ϕ : A Íϕ for each A ∈K }.

(b) If K is finitely axiomatizable, then its complement is finitely axiomatiz-
able as well. The converse is covered in Problem 689: if K is axiomatizable
but not finitely axiomatizable, then its complement is not closed for ultra-
products.

691. (a) Let K contain all sets of cardinality ≥ continuum.
(b) LetK consist of all finite sets. K is closed under elementary equivalence

but not closed under ultraproducts (see Problem 609).
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(c) No such a K exists. For, if A ∈ K, B ∉ K and A ≡ B then for some
ultrafilter U we get K 3 κA/U ∼= κB/U ∉K.

692. The class K of models of Γ1 is closed under elementary equivalence
and ultraproducts, thus it is enough to check whether the complement of K
is closed under ultraproduct (Theorem 9.10). Take any Ai ∉ Mod(Γ1). Then
Ai Í Γ2 hence ΠAi /U Í Γ2 therefore ΠAi /U ∉K.

693. If no finite subset of Γ axiomatizes K, then every such subset has a
model in the complement of K. In this case Problem 625 shows that some of
their ultraproducts will be a model of Γ, contradicting the assumption (and
Theorem 9.10) that K is finitely axiomatizable.

694. (a) It is easy to see that universal formulas are preserved under sub-
structures. For the other direction suppose that K is preserved under sub-
structures. Let Σ= {ϕ : ΓÍϕ and ϕ is closed universal}, then every element
of K clearly models Σ. Now let AÍΣ. By Problem 514A is a substructure of
some model of Γ, and as K is closed under substructures, it is an element of
K as well.

(b) This is the dual statement of (a) and follows from the observations that
(i) a formula is equivalent to an existential formula if and only if its negation
is equivalent to a universal formula; and (ii) a formula is preserved under
extensions if and only if its negation is preserved under substructures.

695. It is enough to prove that a closed ∀∃-formula is preserved under
unions of chains. For, consider the ∀∃-formula ϕ=∀~x∃~yδ(~c,~y), where δ is
quantifier-free. Let 〈Aξ : ξ < κ〉 be an increasing chain of models of ϕ and
set A=⋃

ξAξ. For each ~a ∈ A we show AÍ ∃~yδ[~a,~y]. Let ξ be the minimal
ordinal such that ~a ∈ Aξ. Since Aξ Í ϕ it follows that Aξ Í ∃~yδ[~a,~y], and
thus for some~b ∈ Aξ we have Aξ Í δ[~a,~b]. As δ is quantifier-free and A is an
extension of Aξ, AÍ δ[~a,~b] follows.

Remark. Models of theory are closed under unions of chains if and only if
the theory is equivalent to a set of ∀∃ formulas.

696. Using Problem 694(a). The 〈0,S,>〉-type model ω+Z has a substructure
in which an element, different from 0, has no immediate predecessor. To pre-
vent this construction, add another unary function symbol S−1 which assigns
the predecessor to each element (and S−1(0) = 0). Now every substructure is
a discrete ordering with 0 as the initial element.

697. (a), (b), (c), (d), (g), (j) K is not closed under ultraproduct, see Problems
629, 631, 610, 646, 649, 644,

(e), (h), (k) K is not closed under elementary equivalence, see Problems
563, 561, 568.

(f) Cyclic groups of prime order are simple but a non-trivial ultraproduct
of such groups contains elements of infinite order, thus it cannot be simple.
See Problem 648.
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(i) K is not closed under ultraproduct: Pick any non-trivial ultrafilter and
observe that the element

〈x, x +x2, x +x2 +x3, . . .〉/U ∈∏
F [x]/U

cannot be written as a finite sum a0x + . . . an xn for some ai ∈ F . (Note that
ΠFi [x]/U is usually not isomorphic to (ΠFi /U )[x]).

698. The set of three universal formulas

∀x∀y((x ≤ y ∧ y ≤ x) → x = y),

∀x∀y∀z((x ≤ y ∧ y ≤ z) → x ≤ z),

∀x∀y(x ≤ y ∨ y ≤ x)

axiomatizes linear orderings. Since each dense ordering has a non-dense
subordering, by Problem 694(a) the class of dense linear orderings without
endpoints cannot be axiomatized by universal formulas.

699. The class of totally ordered Dedekind-complete fields is not closed
under elementary equivalence. By Problem 683 it suffices to show that no
countably infinite ordered field is Dedekind-complete. Firstly, an ordered
field F has characteristics zero (Problem 658). It follows that Q is a subfield of
F. For a real number α let Cα = {q ∈Q : q <α}. Then each Cα ⊆Q⊆F must
have a supremum, and this implies |F| ≥ |R|.

700. Let k ≥ 3 be fixed and pick, for i ∈ω, graphs Gi such that χ(Gi ) = k (or
χ(Gi ) > k in the case of K>k ) and the girth of Gi is at least i . If U is a non-
principal ultrafilter on ω then the ultraproduct Πi∈ωGi /U does not contain
cycles of any length because the set

{i ∈ω : Gi contains a cycle of length `}

is finite, thus by the fundamental theorem of ultraproducts we get, for each
`,

Πi∈ωGi /U Í there is no cycle of length `

(see also Problem 629). It follows that the chromatic number of Πi∈ωGi /U
is 2. Consequently K=k and K>k are not closed under ultraproducts, hence
they are not axiomatizable.

As for K6=k let Hi be the disjoint union of the complete graph Kk on k
points and a graph Gi with girth at least i and chromatic number χ(Gi ) > k.
Then χ(Hi ) 6= k. The ultraproduct Πi∈ωHi /U contains Kk , and an argument
similar to the previous one shows that apart from Kk there are no cycles in the
ultraproduct. Therefore χ(Πi∈ωHi /U ) = k, hence K¬k is not axiomatizable.

A graph has chromatic number 2 iff it contains no cycles of odd length. So
Γ= {ϕ2k+1 : k ∈ω} axiomatizes K2, where ϕn expresses that there is no cycle
of length n, see Problem 330(a).

281



12 Solutions

701. There are infinite planar graphs, and no graph of cardinality larger than
continuum can be planar.

702. By the Kuratowski theorem a countable graph is planar if and only if it
contains no (finite) subdivision of K5 or K3,3 as a subgraph. For each such
finite graph G there is a formula ϕG expressing “G is not a subgraph”. Thus
the set

Γ= {ϕG : G is a finite subdivision of K5 or K3,3}

axiomatizes the theory of planar graphs.

Remark. The class of planar graphs is not axiomatizable, see Problem 701.

As for finite axiomatizability, denote by Gi the graph obtained from K5

by dividing some edge with i new points. Clearly, Gi is a subdivision of K5

and is not planar. But Πi∈ωGi /U ÍϕG for every finite subdivision G of K5 or
K3,3. Therefore the complement of the class of graphs which are elementarily
equivalent to a planar graph is not closed under ultraproducts, hence this
theory is not finitely axiomatizable.

703. The complement of K is not closed under ultraproducts: Πn∈ωKn/U
is a complete graph of cardinality continuum (cf. Problem 610), hence it
belongs to K. Notice that K is axiomatizable by the infinite set of formulas
“each vertex has at least n neighbors”.

704. For better visualization edges and non-edges are flipped, thus the re-
quirement is that the graph has infinitely many vertices and each vertex is
not connected to infinitely many other vertices.

As indicated in the hint, Problem 449 describes a method which can be
used to embed a linear ordering into the graph. Let Φ be the graph formula
which forces the graph to have the structure as described there, namely there
is a unique vertex a with a single one-degree neighbor, another single vertex
b with two one-degree neighbors. Further neighbors of a are A-vertices,
and further neighbors of b are B-vertices; every A-vertex is connected to a
unique C -vertex of degree two, and, similarly, every B-vertex is connected to
a unique C -vertex. Further edges are between A and B-vertices.

The ordering is defined on A-vertices: u and v are in the relation R (in
this order), if there is an edge from u to v′, where v′ is the unique B=vertex
connected to v via a C vertex. Stipulating that this relation is a strict order
and adding that ∀x∃yR(x, y) yields the required finitely axiomatizable class.

705. In each case Γ will be an infinite set of axioms for the class in question
and we show that the complement of the class is not closed under ultraprod-
ucts, therefore is not finitely axiomatizable.

(a) The ultraproduct Πn∈ωCn/U of cyclic groups of order n is infinite (Prob-
lem 610).

Γ= {group axioms}∪ {∃x1 · · ·∃xn(
∧
i 6= j

xi 6= x j ) : n ∈ω}.
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(b) Non-trivial ultraproducts of cyclic groups of prime order are torsion-
free, see Problem 646.

Γ= {group axioms}∪ {∀g (g 6= 0 → n · g 6= 0) : n ∈ω}.

(c) Let p j be the j -th prime and Gi = 〈Qi ,+〉 where Qi = {n/m : n,m ∈Z,
p j -m for j > i }. For each i ∈ω the group Gi is not divisible while Πi Gi /U is
divisible.

Γ= {group axioms}∪ {∀g∃y(n · y = g ), ∀g (g 6= 0 → n · g 6= 0) : n ∈ω}.

(d) If Fn is the n-th finite field then ΠnFn/U can be of characteristics 0
(Problem 649).

Γ= {field axioms}∪ {n ·1 6= 0 : n ∈ω}.

(e) See Problem 654.

Γ= {field axioms}∪
{∀a0 · · ·∀an∃x(an 6= 0 → an xn + . . .+a1x +a0 = 0) : n ∈ω}.

(f) Similarly to Solution 654 start with F0 =Q, and for each fixed n take the
field extensions F0 ⊆ F n

1 ⊆ F n
2 ⊆ . . . where all polynomials of odd degree at

most n with coefficients in F n
i have a root in F n

i+1. Let Fn =⋃
i F n

i . It is not
real closed, but the ultraproduct ΠnFn/U is.

Γ= {field axioms}∪ {∀a0 . . .∀an−1(a2
0 +·· ·+a2

n−1 6= −1) : n ∈ω}∪
{∀a0 · · ·∀a2n+1∃x(a2n+1x2n+1 + . . .+a1x +a0 = 0) : n ∈ω

}
.

(g) With Cn the cyclic graph on n vertices and U non-trivial, the graph
Πn∈ωCn/U is cycle-free.

Γ= {graph axioms}∪ {∀x1 · · ·∀xn( “x1, . . . , xn is not a cycle”) : n ∈ω}.

(h) Let Gn be the following graph: take a circle on n vertices and to each
of these vertices join an infinite binary tree. The resulting graph is 3-regular
and contains exactly one circle. Then the ultraproduct ΠnGn/U is cycle-free
and 3-regular.

Γ= {graph axioms}∪ {“all vertices have degree 3”}∪
{∀x1 · · ·∀xn( “x1, . . . , xn is not a cycle”) : n ∈ω}.

706. Let An be the model that consists of ω with the usual 0 and S and n
new elements a0, . . . , an−1 for which S is defined by

S(ak ) = ak+1 mod n .

Clearly An is a model of Γ except for the last set of formulas. For each k we
have that the set

n ∈ω :An contains an element which is the k-th successor of itself
}

is finite, therefore Πn∈ωAn/U Í Γ for all non-trivial ultrafilter U on ω. It
follows that the complement of K is not closed under ultraproducts, conse-
quently K is not finitely axiomatizable.
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12.10 ARITHMETIC

707. It is clear by inspection.

708. If 0 = 1, then 0+0 would be equal to 0+1 but by Q1 we have 0+1 6= 0,
and by Q3 we have 0+0 = 0.

709. (a) If x 6= 0 then by Q7 x = y +1, and then 0+x = 0+ (y +1) = (0+ y)+1
by Q4, but this cannot be 0 by Q1.

(b) By Problem 708 0 6= 1, thus Q7 gives 1 = x +1 for some x. Then 0+1 =
0+ (x +1) = (0+x)+1 by Q4, then 0 = 0+x by Q2. Therefore x = 0 by (a).

710. (a) By induction on p. For p = 0 we have πp = 0 and by Q3, x +0 = x.
Thus πn +0 =πn . In the inductive step we use Q4 to get

πn +πp+1 =πn + (πp +1) = (πn +πp )+1 =πn+p +1.

(b) Similar as in (a) but use Q5 and Q6 in place of Q3 and Q4.

711. We proceed by induction on n. The n = 0 case follows from Q3. Suppose
we know that Q ` x ≤πn ∨πn ≤ x, we need to show that x ≤πn+1 ∨πn+1 ≤ x
for all x. If x = 0, then x ≤ πn+1 by Q3. If x 6= 0, then by Q7 there is an
y so that x = y + 1. Apply the inductive hypothesis to y to get y ≤ πn ∨
πn ≤ y , that is, z + y = πn or z +πn = y for some z. In the first case z + x =
z + (y + 1) = (z + y)+ 1 = πn+1 by Q4, thus x ≤ πn+1. In the second case
z +πn+1 = (z +πn)+1 = y +1 = x, therefore πn+1 ≤ x.

712. By Q7 and Q4 if z +x = 0 and x 6= 0, then there is a y so that x = y +1 ∧
(z+ y)+1 = 0. Q1 implies (z+ y)+1 6= 0, thus in the case z+x = 0 we get x = 0.
That is, Q ` x ≤π0 → x =π0. In general, by Q7 and Q4 we obtain

Q ` z +x =πn+1 ∧ x 6= 0 →∃y(x = y +1 ∧ (z + y)+1 =πn +1),

Q2 then ensures

Q Í z +x =πn+1 → x = 0 ∨∃y(x = y +1 ∧ y ≤πn).

From here we get the result by induction.

713. Suppose, by contradiction, that there is a model AÍQ and AÍπn =πp

for different n and p. Let n be minimal such that AÍπn =πp for some n 6= p.
Then n < p, and n 6= 0 by Q1. Thus πn = πn−1 +1 = πp = πp−1 +1, and then
AÍπn−1 =πp−1 by Q2, contradicting the minimality of n.

By Problem 710 for n ≤ p we have Q ` πp−n +πn = πp , thus Q Í πn ≤ πp .
On the other hand if p < n and AÍπn ≤πp in some model of Q, then by 712
we would get

AÍπn =π0 ∨ ·· · ∨πn =πp ,

though, by the first part, in models of Q we have 6= everywhere above.
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714. The condition a+b =πn means b ≤πn , thus by Problem 712AÍ b =πm

for some m ≤ n. Applying Q4 and Q2 m times we get AÍ a+π0 =πn−m , thus
a =πn−m by Q3.

715. Take ω with the usual operations and an additional element ∞. The
result of addition and multiplication involving ∞ is ∞ except for ∞·0 = 0.

716. The universe of the model is ω∪ {a,b}. The interpretations of the opera-
tions on ω are the usual ones, while we let a+n = a ·n = a and b+n = b ·n = b
for all natural numbers n except for a ·0 = b ·0 = 0. Further, for any x we put
x +a = x ·a = b and x +b = x ·b = a. Then b +a = b while a +b = a.

717. No. The model in Solution 716 has 0+a 6= a.

718. Keep 0, 1, addition and multiplication in ω. The result of both operations
on n ∈ ω and a ∈ D could be a with the exception of multiplying by zero,
which should be zero.

719. Consider the model created in Problem 718. In that model A for two
infinite elements a,b ∈ D we have a ≤A b iff a ≤D b.

(a) Any such model works as a +a = a for all infinite elements.
(b) ≤A is not an ordering if D is not totally ordered.
(c) Any D works which has two incomparable elements.
(d) In models considered above a ≤ b and b ≤ a always implies a = b.

However, in the model of Problem 716 there are a +b = a and b +a = b, thus
both b ≤A a and a ≤A b holds, while a and b are different.

720. The model consists of one copy of ω, and three copies of Z with el-
ements a(i ), b(i ), c(i ) for i ∈ Z. In each copy addition and multiplication
is done locally, for example z(i ) · z( j ) = z(i · j ), where z is any of a, b, or c.
Similarly, addition and multiplication by elements of ω is n+x(i ) = x(i )+n =
x(n+ i ), and n ·x(i ) = x(i ) ·n = x(n · i ), except for x(i ) ·0 = 0. Finally, addition
and multiplication across the copies of Z is defined as

a(i )+b( j ) = b(i + j ) b(i )+a( j ) = a(i + j ) c(i )+a( j ) = b( j )
a(i )+ c( j ) = a(i + j ) b(i )+ c( j ) = b(i + j ) c(i )+b( j ) = a( j )

a(i ) ·b( j ) = a(i · j ) b(i ) ·a( j ) = b(i · j ) c(i ) ·a( j ) = a(i · j )
a(i ) · c( j ) = a(i · j ) b(i ) · c( j ) = b(i · j ) c(i ) ·b( j ) = b(i · j ).

It is tedious but otherwise routine to check that this is a model of Q. Now
we have a(i ) ≤ b(i ) (and b(i ) ≤ a(i )), and then a(i ) < b(i ) and a(i ) as b(i ) are
different. However a(i )+1 = a(i +1) and b(i ) are incomparable.

721. The set B = {πA
n : n ∈ω} is a substructure isomorphic to N by Problems

709 and 710. Problems 711 and 712 show that B ≤A A àB , thus A is an end-
extension of B.

722. By Problem 721 the standard model N is an initial segment of every
model of Q. Quantified variables bounded by elements of N run over ele-
ments in N, thus if ϕ is true in N, then it is true in every model of Q.
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723. By Problems 713 and 715 the formula x +1 6= x works. Another example
is 0+x = x by Problem 717.

724. Suppose first that Γ is recursive, and consider the (code of the) se-
quences 〈ϕ1,ϕ2, . . . ,ϕn〉 which are valid Hilbert-type derivations from Γ, see
Definition 5.19. It is tedious, but otherwise routine to check that they form a
recursive set (see also Problem 381). Whether a formula is in Γ is recursive by
assumption: each axiom scheme and the validity of the derivation rules can
be recognized by recursive relations. To enumerate all consequences of Γ,
check each sequence whether it is a valid derivation from Γ. If yes, return the
last element of the sequence, otherwise return >.

If Γ is recursively enumerable, then for each pair (u,n) check that u is a
valid derivation from the first n elements of Γ as provided by the enumera-
tion.

725. Extend the set with ⊥. Then {ϕ ∈ F (τ) : Γ,⊥`ϕ} is the set of all τ-type
formulas, which is a recursive set by Problem 381(a).

726. If Γ has no infinite models, then, by the compactness theorem, there
is a natural number N (depending on Γ) such that every A Í Γ has size
|A| ≤ N . As τ is finite, there are finitely many possible models of size at most
N , consequently there are only finitely many models of Γ. ΓÍϕ if ϕ is true
in that finitely many models. By Problem 385 whether a formula is true in a
finite model is decidable, thus ΓÍϕ is decidable as well.

727. (a) If the similarity type is empty, then atomic formulas are of the form
x = y for variable symbols x and y (not necessarily distinct). Thus, `ϕ can
be decided by checking whether A Í ϕ for every set A of size at most the
number of variable symbols in ϕ, see Problems 385 and 726.

(b) Let τ= 〈R1, . . . ,Rk〉. By Problem 362;`ϕ iff AÍϕ for every τ-structure
A of cardinality |A| ≤ n2k where n is the length of ϕ. Given n one can recur-
sively enumerate all such structures (observe: k is a fixed number, only n
varies), and then check each of them whether ϕ holds or not, see Problem
385.

(c) By Problem 536 this theory admits elimination of quantifiers. The
method outlined in the solution can be turned into a recursive procedure:
maintain, for each subformula of ϕ, the equivalent quantifier-free formula,
and then check that logical operations and quantifications are performed
correctly.

Another approach could be defining a function which assigns to each
subformula of ϕ the collection of those orders of its free variables which
makes the subformula true. Clearly this function can be defined by a course-
of-value recursion using recursive functions and relations.

728. Similarly to Solution 307 let g be a recursive function whose range is
not recursive. Let ϕk be the formula which says that it has no k-element
models. The i -th formula inΓ is ϕk ∨ ·· · ∨ϕk (i+1 times). ThenΓ is recursive,
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and Γ`ϕk iff k ∈ dom(g ). As the function k 7→α(ϕk ) is clearly recursive, if
{α(ϕ) : Γ`ϕ} is recursive, then dom(g ) were recursive, a contradiction.

729. The same idea works as in the Solution 728. Let {ϕi : i ∈ω} be a recursive
enumeration of Γ. Σ will be the set

{>∧>∧ ·· · ∧>︸ ︷︷ ︸
i +1 times

∧ (⊥∨ϕi ) : i ∈ω}.

Clearly this set has the same consequences as Γ. Given any formula one can
decide whether it has the form above, recover i by a recursive function, and
check that ϕi is indeed the i -the element of the enumeration.

730. This is a variant of Problem 157 which says that if a set and its comple-
ment are both recursively enumerable, then the set is recursive.

Let ϕ̃ be the universal closure of ϕ. By Problem 381(d) the function α(ϕ) 7→
α(ϕ̃) is recursive, thus clearly so the function g (α(ϕ)) 7→ α(¬ϕ̃). As Γ is
complete, for every ϕ ∈ F (τ) either Γ ` ϕ or Γ ` ¬ϕ̃. By Problem 724, the
set A = {α(ϕ) : Γ ` ϕ} is recursively enumerable, say it is the range of the
recursive function h. Now let

f (i ) =µ{u : h(u) = i or h(u) = g (i ) or i is not a formula code}.

This is a recursive function (for each i ∈ω there is a u satisfying the recursive
condition) and Γ`ϕ iff h( f (α(ϕ)) =α(ϕ), clearly a recursive relation.

731. (a) By the Łoś–Vaught test 8.7, Γ is complete. Apply Theorem 10.3 to
complete the proof.

(b) Let τ be the empty type, and ϕk be the formula which says that the
universe has exactly k elements. For every A ⊂ω the theory Γ= {¬ϕk : k ∈ A}
is ω-categorical. If A is not recursive, then Γ is undecidable. By Problem
729 Γ can be replaced by a recursive set with the same consequences if it is
recursively enumerable.

732. It is clear that each theory is recursively axiomatizable, and has infinite
models only. By Problems 557, 553, 531 these theories are complete. Recursive
and complete theories with infinite models only are decidable by Theorem
10.3.

733. (a) As ∆ is finite, it can be assumed to be a single closed formula Φ (the
conjunct of the closure of the formulas in ∆). Now Γ∪∆`ϕ iff Γ`Φ→ϕ by
the deduction theorem 7.1.

By way of contradiction assume that the set {Γ Í ϕ} is recursive. As the
function α(ϕ) 7→ α(Φ→ ϕ) is clearly recursive, we get that the set {ϕ : Γ Í
Φ→ϕ} is also recursive. This set, however, is just the consequences of Γ∪∆

which was assumed not to be recursive, a contradiction.

(b) Immediate from (a) using Γ=;.

287



12 Solutions

734. The main problem is that Γ has many more consequences in type
τ′ = τ∪ {c} than it has in type τ. So assume Γ is decidable, and let ψ ∈ F (τ′)
be arbitrary. Now ψ can be written as ϕ[x/c] for some ϕ ∈ F (τ) where x is a
variable symbol not present in ψ. The code of ϕ is clearly a recursive function
of the code of ψ. By Problem 400, Γ`ψ iff Γ`∀xϕ, and this is recursive as Γ
is decidable.

735. (a) Suppose BÍ∆ can be defined semantically in AÍ Γ. The ground
set of B is defined by some τ′-formula ϑ(x), and all symbols in τ have similar
definitions. As τ is finite, there is a single closed formula Φ ∈F (τ′) which
says that the elements satisfying ϑ(x) form a τ-type structure (it is closed
for the interpretation of function symbols in τ). Clearly, for every ϕ ∈ F (τ)
there is a “translation” ϕ∗ ∈ F (τ′) such that in the semantical substructure
determined by Φ the formula ϕ holds iff ϕ∗ holds in A.

Let ∆∗ = {δ∗ : δ ∈ ∆}∪ {Φ}, and consider the formula set Σ = {ϕ ∈ F (τ) :
Γ∪∆∗ `ϕ∗}. This set contains ∆, and is consistent as every element holds in
the embedded structure B. As ∆ is essentially undecidable, Σ is undecidable.
If Γ were decidable, then so would be Γ∪∆∗ by Problem 733(a), and as the
function α(ϕ) 7→α(ϕ∗) is clearly recursive, the same would be true for Σ, a
contradiction.

(b) ∆∗ is essentially undecidable. For any Γ⊆ F (τ′), any model of ∆∗∪Γ

has a semantical substructure described by Φ ∈∆∗ which will be a model of
∆. Then (a) applies.

736. The undecidable theory ∆ created in Problem 728 works. It is defined in
the empty type, and excludes certain finite models only. Thus the structure
with infinite ground set is a model of ∆, and it is also a model of the decidable
theory of the empty set, Problem 727(a).

737. (a) and (b) are clear. For (c) remark that a formula can represent at most
one function or relation, and the type τ is finite.

(d) Let R be a triadic relation symbol, and Γ be the set of formulas

{πk 6=π` : k 6= `}∪
{∀y(R(πi ,π j , y) ↔ y =πk ) : fi ( j ) = k}.

(e) Suppose ϕ represents f . By Problem 724 the consequences of Γ is
enumerable. For each ~a ∈ωn consider the first formula in the enumeration
which has the form ϕ(π~a , y) ↔ y = π j for some j ∈ ω. This is a recursive
condition, and by the assumption of the representability, there is such a
consequence of Γ. Thus an application of the µ operator shows that this j is
a recursive function of ~a. Now j ∈ω is the value of f (~a), as otherwise, using
that Γ`πk 6=π` for different k and `, Γ would be contradictory.

738. For addition and multiplication the formulas x1 + x2 = y and x1 · x2 =
y work by Problems 710 and 713. For the function K<(x1, x2) Problem 713
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indicates that the formula (x2 ≤ x1 → y =π1) ∧ (¬(x2 ≤ x1) → y =π0) works.
The projection functions are immediate. Checking that

∃z1 . . .∃z`(ψ1(~x, z1) ∧ ·· · ∧ψ`(~x, z`) ∧ϕ(~z, y))

works for the composition operator Comp(g ,h1 . . . ,h`) is routine. Finally
f =µ(g ) can be represented by

ϕ(~x, y) ≡ ψ(~x, y,0) ∧ (∀z<y)∃u(ψ(~x, z,u) ∧ u 6= 0)

where ψ(~x, y,u) represents g . Suppose f (~a) = b, then g (~a,b) = 0 and g (~a,d) 6=
0 for all d < b. First we show that Q ` ϕ(π~a ,πb). By induction hypothesis,
Q ` ψ(π~a ,πb ,0) and for all d < b, Q ` ϕ(π~a ,πd ,u) → u 6= 0. This fact com-
bined with Q ` x <πb →∧

d<b x =πd (Problem 712) shows that Q `ϕ(π~a ,πb)
indeed. To check that Q ` ϕ(π~a , y) → y = πb , observe that Problem 711
says that Q ` (z ≤ πb) ∨ (πb ≤ z). For z < πb Q ` ¬ψ(π~a , z) by induction
(as in this case z is one of πd for d < b). For πb < z again by induction,
Q `¬∃u(ψ(~a,πb ,u) ∧ u 6= 0), thus Q proves that the second part of ϕ(π~a , y)
fails.

739. (⇒) Suppose ϕ(~x) represents the relation R, then

ψ(~x, y) ≡ (ϕ(~x) → y =π0) ∧ (¬ϕ(~x) → y =π1)

clearly represents χR as Γ`π0 6=π1.
(⇐) Suppose ψ(~x, y) represents the function χR . Then a possible represen-

tation of R is

ϕ(~x) ≡ ∀y(ψ(~x, y) ↔ y =π1).

740. Let Γ be the theory of 〈ω,0,S〉 where S is the successor function (see
Problem 552), and, for the sake of concreteness, define x + y = x · y = S(x).
Then Γ`πk 6=π` for k 6= `. Let R be a new unary relation symbol, and add
the set {R(πn) : n is even} to Γ. We claim that the set of even numbers is not
representable. For if ϕ(x) represents this set, then Γ ` ¬ϕ(πk ) for all odd
integers k. Now take the model A = 〈ω,0,S〉 where RA is identically true;
this is a model of Γ as well. Then in A the set of even integers is defined
by the formula ϕ(x). As in this model the relation R is identically true, ϕ

is equivalent in A to a formula of type 〈0,S〉 which defines the set of even
numbers. But by Problem 552(c) such a formula does not exist.

741. Let Γ extend Q. Enumerate all infinite recursive sets. As Q represents all
recursive functions (Problem 738), pick the formula ϕi (x) which represents
the i -th infinite recursive set. Let R be a new binary relation symbol, and
N be a new unary relation symbol. The new representations will be the
formulas R(πi , x). Thus add these formulas to Γ for different i and j :

{∃x (¬R(πi , x) ∧ R(π j , x)) : i 6= j }. (?)
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We need R(πi , x) and ϕi (x) be equivalent when x is one of the terms πn , but
not in other cases. Thus add to Γ that all terms πi satisfy N , and for elements
in N these formulas are equivalent:

{N (πi ) : i ∈ω}∪ {∀x
(
N (x) → (R(πi , x) ↔ϕi (x))

)
: i ∈ω}. (??)

Then Γ clearly satisfies the requirements. It is consistent. Take a model
of Q which has infinitely many infinite elements. Interpret N as the set of
natural numbers. For each i , j pick ci , j as different infinite elements. Finally,
interpret R on natural numbers so that it satisfies (??), and otherwise it holds
for the pairs ( j ,ci , j ) only, giving (?).

742. Denote the set by R ⊂ ω2. By Problem 383 the function n 7→ α(πn) is
recursive, and then the function f : 〈α(ϕ),n〉 7→ α(ϕ(πn)) is also recursive
using the recursivity of the substitution, Problem 381(e). Now (i , j ) ∈ R if i is
a code of a formula ϕ with x as the only free variable (recursive condition
by Problems 381(a) and 381(b)), and f (i ,n) ∉ {α(ψ) : Γ`ψ}. As Γ is decidable,
this latter set is recursive, thus R is recursive as well.

743. Suppose, by contradiction, that Γ is decidable. By Problem 742 the
set R = {〈α(ϕ),n〉 : Γ0ϕ(πn)} ⊂ω2 is a recursive set, thus so is the diagonal
P = {n : 〈n,n〉 ∈ R}. As Γ represents all recursive functions, according to
Problem 739 there is a formula ϕ(x) ∈ F (τ) such that n ∈ P implies Γ`ϕ(πn),
and n ∉ P implies Γ`¬ϕ(πn). Let m =α(ϕ). The question is whether m ∈ P
or not.

If m ∈ P , then (α(ϕ),m) ∈ R, that is, Γ0ϕ(πm). As ϕ represents P , we have
Γ`ϕ(πm), which is impossible.

If m ∉ P , then (α(ϕ),m) ∉ R, that is, Γ`ϕ(πm). As ϕ represents P , we have
Γ`¬ϕ(πm), thus Γ is not consistent.

744. If Γ is inconsistent, then for every formula ϕ we have Γ`ϕ, and then Γ

is decidable. On the other hand, there are consistent and decidable theories,
e.g. the empty theory in the empty similarity type (see Problem 727).

745. Q represents every recursive functions by Problem 738. As it has a
model it is consistent, thus Church’s Theorem 10.5 applies. By Problem 737
extensions of Q represent recursive functions as well.

746. Γ∪Q is consistent (as AÍ Γ∪Q) and Q represents recursive functions
(Problem 738), hence Γ∪Q is undecidable by Church’s theorem 10.5. So Γ

has a finite consistent extension Γ∪Q which is undecidable. Problem 733
implies that in this case Γ is undecidable.

747. Q is essentially undecidable as it is finite, and every consistent extension
of Q is undecidable (Problem 745), and N is a model of Q. By Problem 735(a)
Γ is undecidable.

748. There is a model of the theory in which N can be defined semantically.
This is clear for (a), (b). For (c), (d), (e) it was proved in Problems 444, 450, 451.
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By Problem 453 the theory of groups is undecidable in the language with an
additional constant symbol. But then Problem 734 says that it is undecidable
without that symbol as well. (g) follows from J. Robinson’s theorem 7.17.

749. By Problem 450 there is a graph in which N can be defined semantically.
This graph is a model of the empty theory with a binary relation symbol, thus
that theory is undecidable by Problem 747. If τ contains a binary function
symbol, then use Problem 445 instead.

750. It suffices to show that every graph can be semantically defined in some
structure with unary function symbols f and g . Suppose the graph is (V ,E)
where V is the set of vertices and is E the set of edges. The ground set of
our structure will be V ∪E . For v ∈ V f (v) = g (v) = v, and for an edge e ∈ E ,
f (e) = u and g (e) = v where u and v are the endpoints of the edge e.

751. By Church’s theorem 10.5, if Γ is consistent and represents recursive
functions, then Γ is undecidable. By Theorem 10.3, Γ cannot be complete,
because complete and recursive theories are decidable.

752. By the incompleteness theorem there is a closed ϑ which is independent
of Γ. Then ϕ(x) ≡ (ϑ→ x = 0) ∧ (¬ϑ→ x = 1), works.

753. Let ϑ be independent of Γ, and define ϕ(x, y) ≡ (ϑ→ y = 0) ∧ (¬ϑ→
y = 1). This formula defines either the constant 0 or the constant 1 function,
but does not decide between the two values.

754. (a) By Theorem 10.3 any recursive and complete theory suffices. For a
list see Problem 732.

(b) No such theory exists by Theorem 10.3.

(c) Algebraically closed fields without the characteristic specified. This
theory is clearly recursive, and is incomplete shown by the formula ∀x(x+x =
0). Decidability follows from 557(c).

(d) Robinson’s Q, Peano arithmetic or ZFC are the standard examples. Both
represent recursive functions (Problem 738), hence they are undecidable
by Church’s theorem 10.5. Both are recursive, thus they are incomplete by
Gödel’s first incompleteness theorem 10.6.

(e) Take a finite, complete and decidable Γ (e.g. dense linear ordering
without endpoints). There are continuum many subsets Γ′ with Γ ⊂ Γ′ ⊂
ConsΓ, thus there must exist a non-recursive such Γ′. Clearly ConsΓ = ConsΓ′ ,
and Γ′ is complete.

(f) Th(N) is complete, but not recursive and undecidable. Th(N) represents
recursive function, thus it is undecidable (Church’s theorem 10.5). The theory
of any model is complete. It cannot be recursive by Theorem 10.3.

(g) The similarity type τ consists of uncountably many constant symbols
cα for α< κ. Let Γ= {cα = cβ : α,β< κ}. Γ and ConsΓ being uncountable are
non-recursive. However Γ is clearly complete.
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(h) The similarity type τ consists of uncountably many constant symbols cα

for α< κ. Let Γ= {cα = cα : α< κ}. As uncountable sets cannot be recursive,
Γ is not recursive and not decidable. It is clearly incomplete (e.g. c0 = c1 is
independent from Γ).

755. Let j = α(ϕ(πm)). As α(ϕ) = m, the value of the function at the pair
(m,m) is j , thus representability gives

Γ`∀y(χ(πm ,πm , y) ↔ y =π j ). (?)

By definition Ψ(πm) is the same as ∀y(χ(πm ,πm , y) →Φ(y)). According to
(?) in every model A of Γ there is a unique y satisfying χ(πm ,πm , y), namely
π j . Thus Ψ(πm) holds in A if and only if this value satisfies Φ, which means
A ÍΨ(πm) ↔ Φ(π j ). As this is true in every model of Γ, it can be derived
from Γ.

756. According to Problem 755 there is a formulaΨ(x) such thatΓ`Ψ(πm) ↔
Φ(pϕ(πm)q) for any ϕ(x) with m =α(ϕ). Choose ϕ≡Ψ and ν≡Ψ(πm).

757. Suppose otherwise. By the fixed point theorem there is a formula ν

such that Γ ` ν ↔ ¬Φ(pνq). If Γ ` ν then Γ ` Φ(pνq) by assumption, and
Γ ` ¬Φ(pνq) as Γ ` ν. This means that Γ is inconsistent. If Γ 0 ν, then
Γ`¬Φ(pνq) by assumption, and then Γ` ν, a contradiction.

758. Suppose by contradiction that {ϕ : Γ`ϕ} is recursive. The existence of
the formula Φ(x) representing this relation contradicts Problem 757.

759. A fixed point of ¬Φ(x) is a counterexample.

760. Proceed along the lines of the proof of Theorem 10.7 (see Solution 756),
but instead of Ψ(x) ≡∀y(χ(x, x, y) →Φ(y)) use the formula

Ψ∗(x) ≡∀y(χ(x, x, y) →>∧>∧ ·· · ∧>︸ ︷︷ ︸
n times

∧Φ(y) ).

Each one leads to a different fixed point of Φ(x).

761. We need to find ν1 and ν2 such that

Γ` ν1 ↔Φ1(pν2q),

Γ` ν2 ↔Φ2(pν1q)

hold. If we already have ν1 and ν2, then by the equivalences we obtain

Γ` ν1 ↔Φ1(pΦ2(pν1q)q)

Indeed, we claim that it is enough to find a formula ϕ such that

Γ`ϕ↔Φ1(pΦ2(pϕq)q)

as in this case we can take ν1 ≡ϕ and ν2 ≡Φ2(pϕq).
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To prove the existence of such a ϕ we follow the proof of the fixed point
theorem 10.7. The function f : 〈α(ψ),n〉 7→ α(Φ2(pψ(πn)q)) is recursive, let
the formula χ(x1, x2, y) represent it, and define

Ψ(x) ≡ ∀y(χ(x, x, y) →Φ1(y)).

Let m = α(Ψ). Then f (m,m) = α(Φ2(pΨ(πm)q)), thus the only y which sat-
isfies χ(πm ,πm , y) is pΦ2(pΨ(πm)q)q. Consequently for ϕ≡Ψ(πm) we have
Γ`ϕ↔Φ1(pΦ2(pϕq)q), as required.

762. Let χ(x1, x2, x3, z) represent the recursive function which maps the
triplet 〈α(ϕ),k,`〉 to the code of ϕ[x/πk , y/π`]. For i = 1,2 let

Ψi (x, y) ≡ ∀z1∀z2(χ(x, x, y, z1) ∧χ(y, x, y, z2) → Φi (z1, z2) ).

Let k =α(Ψ1), `=α(Ψ2), and replace x by πk and y by π`. Then χ(x, x, y, z1)
holds for z1 = pΨ1(πk ,π`)q only, and χ(y, x, y, z2) holds for z2 = pΨ2(πk ,π`)q
only. Thus the choice νi ≡Ψi (πk ,π`) works.

763. Suppose by contradiction that the recursive C separates A and B . Let
Φ(x) represent C in Γ, and ν be a fixed point of ¬Φ: Γ` ν↔¬Φ(pνq).

If α(ν) ∈C , then Γ`Φ(pνq), that is, Γ`¬ν, contradicting that C is disjoint
from B . If α(ν) ∉ C , then Γ ` ¬Φ(pνq), that is, Γ ` ν, contradicting that C
contains A.

764. (a) If there is a derivation of ϕ from Γ, then let u ∈ ω be the code of
this derivation. As 〈u,α(ϕ)〉 ∈ PPΓ, the definition of representability gives
Γ`Prov(πu ,pϕq). From here the claim follows.

(b) If ϕ cannot be derived from Γ, then there is no u ∈ω with 〈u,α(ϕ)〉 ∈
PPΓ. Again, by definition of representability, we have Γ`¬Prov(πu ,pϕq).

765. Suppose by contradiction that every formula ϕ has a derivation with
code less than f (α(ϕ)). As the relation PP ⊆ ω2 is recursive, it means that
the set {ϕ : Γ`ϕ} is recursive, that is, Γ is decidable. But Γ is undecidable by
Church theorem 10.5.

766. (a) Let u be the code of the derivation Γ ` ∀xϕ(x). By Ax10, for each
n ∈ω, Γ`ϕ(πn), as

1. ∀x ϕ(x) (proof from Γ)

2. ∀xϕ(x) →ϕ(πn) (axiom Ax11)

3. ϕ(πn) (MP from 1, 2)

It is clear that the code of this proof is a recursive function of u (a fixed
number) and n.

(b) No such a formula exists. As Γ is recursive, the provability predicate
PPΓ is recursive. For a fixed formula ϕ(x) the function n 7→ α(ϕ(πn)) is
recursive. By assumption Γ`ϕ(πn) for all n ∈ω, thus for every n there is a
u ∈ω such that 〈u,α(ϕ(πn))〉 ∈PPΓ. The function which picks the smallest
such u is recursive.
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767. If Γ` ν, then there is a natural number u such that Γ` Prov(πu ,pνq).
Then Γ`∃uProv(u,pνq). By the definitions of Pr and ν this implies Γ`¬ν.
This, combining with the assumption on ν, yields the inconsistency of Γ.

768. Let ν be a fixed point of ¬Pr(x), that is, Γ` ν↔¬Pr(pνq). By assump-
tion, Γ ` Pr(pνq) → ν, thus Γ ` Pr(pνq) →¬Pr(pνq). As it has contradicting
consequences, Γ ` ¬Pr(pνq). Consequently Γ ` ν, while Problem 767 says
that it cannot happen for a consistent theory.

769. Let ν be a fixed point of ¬Pr(x), and let ϕ(u) ≡¬Prov(u,pνq). As Γ0 ν

(Problem 767), we have Γ`¬Prov(πn ,pνq) for each n ∈ω (Problem 764(b)).
Also,

Γ` ν↔¬Pr(pνq) ↔∀u¬Prov(u,pνq),

as required.

770. If Γ is inconsistent, then there is nothing to prove. So assume Γ is
consistent. Suppose first, that Γ`ϕ is witnessed by u ∈ω, that is, 〈u,α(ϕ)〉 ∈
PPΓ. Then Γ0¬ϕ̃ by consistency, Γ`Prov(πu ,pϕq) as Prov represents the
provability predicate, and Γ`¬Prov(πn ,p¬ϕ̃q) for every n ∈ω by Problem
764. By the definition of n(x) we have Γ` n(pϕq) = p¬ϕ̃q. As Q ⊆ Γ Problem
712 gives

Γ` v≤πu → (v=π0 ∨ v=π1 ∨ ·· · ∨ v=πu).

Combining them together we get that Γ`Prov∗(πu ,pϕq).
If 〈u,α(ϕ)〉 ∉PPΓ, thenΓ`¬Prov(πu ,pϕq), thusΓ also proves the negation

of Prov∗.

771. Assume Γ is consistent, otherwise there is nothing to prove. Now Γ`
Prov(πu ,p¬ϕq) for some u ∈ω, and Γ`¬Prov(πn ,pϕq) for every n ∈ω as Γ

is consistent. Assume by contradiction that A is a model of Γ where A Í
Prov∗(a,pϕq) for some element a ∈ A. Then a 6=πn for any n ∈ω, and then
AÍπu ≤ a by Problem 711. Also we have AÍProv(πu ,pϕq), thus

A 6Í (∀v≤u)¬Prov(v,pϕq),

a contradiction.

772. We have Γ` ν∗ ↔¬Pr∗(pν∗q). The case Γ0 ν∗ goes similarly to Prob-
lem 767. If Γ` ν∗, then Γ`Pr∗(pν∗q) by representation, and Γ`¬Pr∗(pν∗q)
by the fixed point, thus Γ is inconsistent.

For the other case use Problem 771. If Γ`¬ν∗, then Γ`¬Pr∗(pν∗q). This
combined with the fixed point shows that Γ is inconsistent.

773. Clearly, Γ`¬⊥, thus Γ`¬Pr∗(p⊥q) by Problem 771, as required.

774. (a) As Γ`>, we also have Γ`Pr∗(p>q), thus > is such a fixed point.
(b) By Problem 773 Γ`¬Pr∗(p⊥q). Thus Γ`⊥↔Pr∗(p⊥q), ⊥ is also a fixed

point, and clearly, Γ`¬⊥.
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775. (a) Using Rosser’s trick. If either A or B is finite (or recursive), then
the formula (or its negation) representing that set works. So assume both
are infinite, and let Φ(x, y) and Ψ(x, y) represent the recursive functions
enumerating A and B , respectively. We claim that

ϕ(y) ≡ ∃x(Φ(x, y) ∧ (∀z≤x)¬Ψ(z, y) ) (?)

is as required. Indeed, if n ∈ A, then there is an i ∈ω such that Γ`Φ(πi ,πn),
and Γ ` ¬Ψ(π j ,πn) for all j ≤ i as n ∉ B . Conversely, if n ∈ B , then Γ `
Ψ(π j ,πn) for some j ∈ ω, and Γ ` (π j ≤ x) ∨ (x ≤ π j ). In the first case the
second part of (?) fails. In the first case x is one of πi with i ≤ j , and Γ `
¬Φ(πi ,πn), thus the first part of (?) fails, showing that Γ`¬ϕ(πn).

(b) For any formula ϑ(x) the set {n : PA `ϑ(πn)} is recursively enumerable,
and if a set and its complement are recursively enumerable, then the set is
recursive. Thus, the additional requirement would guarantee a recursive set
C which separates A and B . In Problem 763 two recursively enumerable sets
are created which are not separable.

776. We only need to show that PA Í Q7. Let ϕ(y) be the formula y 6= 0 →
∃x(y = x +1). Clearly PA Í ϕ(0). ϕ(y +1) always holds, as y +1 = y +1 (no
need to assume ϕ(y)). Thus PA Í∀y(ϕ(y) →ϕ(y+1)), and then the induction
axiom (and modus ponens) gives PA Í∀yϕ(y) as desired.

777. A structure with a single element (and with 0A = 1A) is a model of
PA2–PA7.

778. (a) (b) follow by induction on z.
(c) follows from Q By Problem 714, thus it also follows from PA.
(d) To show commutativity, first observe that 0+1 = 1+0 = 1 (follows from

Q, Problem 708). Prove by induction that x+0 = 0+x, and y +1 = 1+ y . Then
for x + y = y +x the induction step could be

x + (y +1)
(1)= (x + y)+1

(2)= (y +x)+1
(3)= y + (x +1)

(4)= y + (1+x)
(5)= (y +1)+x,

where (1) is PA4, (2) is the induction hypothesis, (3) and (5) are associativity
from part (a), and (4) is the special case proved earlier.

(e) Prove first that (y +1) · x = y · x + x by induction on x, then proceed
similarly to (d).

779. x ≤ x as x +0 = x by PA3. If x ≤ y and y ≤ z, then there are a and b such
that x + a = y and y +b = z. As x + (a +b) = (x + a)+b by 778(a), we have
x ≤ z.

For antisymmetry suppose x ≤ y and y ≤ x. Then x+a = y and y+b = x for
suitable a and b. By 778(a) and PA3, x = y+b = (x+a)+b = x+(a+b) = x+0,
hence 778(b) implies a +b = 0. By 778(c), a = 0 or b = 0, therefore x = y +0 or
y = x +0, which by PA3 leads to x = y .

For totality of ≤ pick arbitrary x and y . We need to show x ≤ y or y ≤ x.
Let ϕ(x, y) be the formula ∃z(z +x = y ∨ z + y = x). Then ϕ(0, y) holds and
ϕ(x, y) implies ϕ(x +1, y), thus the induction axioms ensure ∀xϕ(x, y).
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0 ≤ x for all x as x +0 = x. If x < y then z +x = y for some non-zero z, that
is, z = z ′+1. But then z ′+(x+1) = y , which means x+1 ≤. Also, if x 6= 0, then
x = x ′+1 and then x ′ is the immediate predecessor of x.

780. By induction on b. For b = 0 the only good choice is r = 0 (you need
the distributivity of multiplication to prove that no other element below a is
divisible by a). For b +1 use the induction hypothesis, take r which works
for b, and then either the predecessor of r is good, or the predecessor of a in
case r = 0. The unicity also follows from the induction hypothesis.

781. Assume
∀x

[
(∀y < x)ϕ(y,~p) →ϕ(x,~p)

]
, (??)

and use the induction axiom PA7 for the formula

ϕ∗(x,~p) ≡ (∀y ≤ x)ϕ(y,~p).

The conclusion of P7 is ∀xϕ∗(x,~p) and from here ∀xϕ(x,~p) follows as x ≤ x
for all x. Thus it suffices to show that both the initial step and the induction
step follow from (??). First we check ϕ∗(0,~p). As there is no y < 0, (??) gives
ϕ(0,~p), and as x ≤ 0 → x = 0, we are done.

Second we show ϕ∗(x,~p) →ϕ∗(x+1,~p) for all x. So suppose ϕ∗(x,~p) holds
for some x. Now y ≤ x+1 if either y ≤ x, or y = x+1. For the first case ϕ∗(x,~p)
implies ϕ(y.~p), and for the second case (??) implies ϕ∗(x,~p) →ϕ(x +1,~p) as
all elements strictly below x +1 are ≤ x. No more cases are left, we are done.

782. The base set ofA is ω×ω, and 0A = (0,0), 1A = (1,0). Define the addition
as (a, i )+A (b, j ) = (a,b + i + j ), and the multiplication as (a, i ) ·A (b, j ) =
(ab, j (a+ i )). Then (a, i )+A (1,0) = (a, i +1), and the multiplication has been
chosen so that (a, i ) ·A (b,0) = (ab,0), and it satisfies PA6:

(a, i ) ·A (b, j +1) = (a, i ) ·A (b, j )+A (a, i ).

It is a routine to check that PA1–PA6 holds. The relation x ≤ y is defined by
∃z(z + x = y). In this model (b, j ) ≤A (a,k) iff b + j ≤ k. To check the strong
induction (?), assume ϕ(x,~p) fails in A for some x = (a,k). Choose this
element so that k is minimal, and if there are more elements with the same
k, then choose the one with the smallest a. If (b, j ) = y <A x = (a,k), then
b + j ≤ k (thus j ≤ k), and if j = k then b = 0 < a (as x and y are different).
By the choice of x (minimal counterexample) AÍϕ(y,~p), contradicting the
antecedent of the strong induction.

783. To get the induction axiom for a formula ϕ(x,~p) with parameters, apply
the parameter-free induction axiom to the formula

ψ(x) ≡ ∀~p[
ϕ(0,~p) ∧∀y(ϕ(y,~p) →ϕ(y +1,~p)) →ϕ(x,~p)

]
.

784. The collection principle is

(∀x < a)(∃y)ϕ(x, y,~p) → (∃b)(∀x < a))∃y < b)ϕ(x, y,~p),
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where b is not free in phi . Denote this formula by Φ(a), we proceed to prove
(∀a)Φ(a) by induction on a. For a = 0 the statement holds vacuously as there
is no x < 0. So suppose Φ(a) holds, witnessed by b. For Φ(a +1) the only
element x < a +1 not covered by b is x = a. Let y ′ = 0 if there is no y with
(∃y)ϕ(a, y,~p), otherwise any such element. Then b′ = 1+max(b, y ′) works
for Φ(a +1).

785. (⇒) Let X = {a ∈ A :AÍϕ[a,~p]}, and assume that X has no≤A-minimal
element. Consider the formula

ϕ∗(x,~p) ≡ (∀y < x)¬ϕ(x,~p).

Now AÍϕ∗[0,~p], as nothing is smaller than 0A, and AÍϕ∗(x,~p) →ϕ∗(x +
1,~p). This latter holds since the only element not covered in ϕ∗(x,~p) is x, and
if AÍ¬ϕ(y,~p) for all y < x but AÍϕ(x,~p), then x ∈ X would be a minimal
element in X . Thus by P7 we have A Í ∀xϕ∗(x,~p), which means that X is
the empty set.

(⇐) Let ϕ(x,~p) be a formula such that AÍϕ(0,~p) and AÍϕ(x,~p) →ϕ(x +
1,~p). Assume X = {a ∈A : A Í ¬ϕ[a,~p]} is not empty, and let a ∈ X be ≤A-
minimal. a 6= 0 as AÍϕ(0,~p), this the predecessor of a is not in X while its
successor is in X , which is impossible.

786. (a) Every element of N is the value of one of the terms {πn : n ∈ ω}.
Replace the parameters in the defining formula with the corresponding
terms.

(b) There are countably many formulas, thus there are countably many
subsets in any structure which can be defined without parameters. Any one-
element set can be trivially defined using parameters: the formula x = p just
does it. Thus any uncountable structure has such a subset.

787. Let n +1 be the minimal number of parameters ~p which defines a set
without a minimal element, and suppose X = {a ∈ A : A Í ϕ(a,~p)} has no
minimal element. This fact is expressed by

Φ(~p) ≡ (∃xϕ(x,~p)) ∧∀x(ϕ(x,~p) → (∃y < x)ϕ(y,~p)).

Let ~p = 〈~q , p〉 then the set {a ∈ A : A Í Φ(~q , a)} is defined by n parameters
thus has a minimal element p which is defined by Φ(~q , x) ∧ (∀y < x)¬Φ(~q , y).
But then a set without minimal element is defined by the formula ϕ(x,~q , p)
which has only n parameters, a contradiction.

788. If a and b are definable, then so are a +b and a ·b, thus the definable
elements form a substructure. To check that it is an elementary substructure,
use the Tarski–Vaught test 8.3. Suppose~b ∈ B , and AÍ (∃x ϕ)[~b]. Then the
minimal such element c is defined by

ψ(x) ≡ ϕ(x,~b) ∧∀(y < x)¬ϕ(y,~b)

(replace~b by their defining formulas). Thus c ∈ B and AÍϕ(c,~b).
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789. As PA models are also models of Q, this claim follows from Problem 721.

790. A non-standard model is a proper extension ofN, thus it has at least one
infinite element a. But the a +1, a +2, . . . are all different infinite elements.

791. By Problem 785 every definable subset has a minimal element. However,
there is no minimal infinite number: if a is infinite, then so is its immediate
predecessor.

792. (⇐) If a is infinite, then AÍπn ≤ a for all n ∈ω, and then AÍϕ(πn ,~p).
(⇒) The set X = {a ∈ A :AÍ¬ϕ(a,~p)} is definable. Thus either it is empty,

in which case any infinite a ∈ A works, or it has a minimal element a ∈ A
(Problem 785). This a cannot be finite as all finite elements satisfy ϕ(x,~p),
and clearly AÍ (∀x < a)ϕ(x,~p), as required.

793. Using the omitting type theorem 7.19. By Problem 784 every Peano
model satisfies the collection principle, thus Problem 517 yields the result.

794. The set P of primes is infinite. Adjoin a new constant symbol c to the
similarity type and for each subset X ⊆ P consider the formulas

TX (c) = {p | c : p ∈ X
}∪{

p - c : p ∈ P àX }

By the compactness theorem each TX (c) is realized in some Peano model,
which has a countable elementary submodel AX by the Löwenheim–Skolem
theorem.

Why are AX and AY not isomorphic for X 6= Y ? It might happen that for
different X ,Y ⊆ P they are. But as AX is countable, there can be at most
countably many formulas TZ which are realized in AX . Since there are
continuum many subsets of P , we can conclude that there are continuum
many models among the AX ’s which are not isomorphic. We used that
whenever two models realize different sets of formulas, then they cannot be
isomorphic.

795. (i) and (ii) clearly indicate that the multiplication cannot be defined
explicitly (see Definition 7.13) by the 〈0,1,+〉-reduct. Use Beth’s theorem 7.14.

796. For an infinite element a ∈ A the island of a is the set

. . . , a −2, a −1, a, a +1, a +2, . . .

which is order-isomorphic to Z. We write a ¿ b if a ≤ b and a and b are
on different islands, namely, if they correspond to different elements in the
linear order 〈M ,≤〉.

(a) Note that for all infinite a we have a ¿ 2a since otherwise a +πn = 2a
for some n ∈ω and thus a = πn would be finite. Also, a can be assumed to
be even, as either a or a +1 is even, and then a/2 ¿ a for similar reasons.
Now, if a and b are infinite, a ¿ b, then both can be assumed to be even.
We have that a ¿ (a +b)/2 ¿ b, otherwise a +πn = (a +b)/2 would imply
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2a+2πn = a+b, therefore a+2πn = b which contradicts a ¿ b. Consequently
we got that between each copy of Z, there is another copy. This proves
denseness of M

(b) A countable, dense linear order is isomorphic to the ordering of rational
numbers, see Problem 365.

(c) By way of contradiction suppose that the order type of A is ω+Z×R.
Then each copy of Z (each island) can be indexed with a corresponding real
number r . Let a ∈ A be infinite and consider the sequence πn ·a for n ∈ω.
For each such a multiple there is an rn ∈ R so that πn · a ∈ Zrn . This way a
sequence (rn) of reals is defined. Observe that πn · a < a2 for every n ∈ ω,
therefore if a2 ∈Zp , then rn < p.

The sequence (rn) is clearly increasing, and it is also bounded, hence rn

converges to some r ∈R. Pick any b ∈Zr and define the set

S = {x : a · x < b}.

This is a first-order definition of just the standard elements of A, which is
impossible by problem 791.

797. In each PA-model the formula ϕ f (~x, y) defines a function, which means
that PA ` ∀~x∃!yϕ f (~x, y). Similarly, in every model ϕ f (π~a , y) holds iff y =
π f (~a), thus PA `ϕ f (π~a , y) ↔ y =π f (~a).

798. According to Problem 769, there is a formula ϑ(x) such that PA `ϕ(πn)
for all n ∈ω, while PA0∀xϑ(x). Let f be the constant 0 function and consider
ϕ(x, y) ≡ y = 0, and ψ(x, y) ≡ϑ(x) → y = 0.

799. x .− y = z can be defined by the formula

(x ≤ y ∧ z = 0) ∨ (y ≤ x ∧ x + z = y).

For the last function let prime(y) be the formula which says that y is at least
one and has no non-trivial divisor. The defining formula can be

(x < z ≤ 2x +1 ∧∀y(prime(y) ∧ y | z → y = 2)).

Other functions can be handled similarly. The existence and uniqueness of z
in each model can be proved by induction similarly to Problem 780.

800. Use induction on x.

801. (a) Following the solution of Problem 134, the defining formula could be

ϕ(x, y) ≡ ∀u
[
(Len(u) = x +1 ∧ Elem(u,0) = 1 ∧

∧ (∀i<x)Elem(u, i +1) = 2 ·Elem(u, i ) )

→ y =Elem(u, x)
]
.

Both the existence of u and the soundness of this definition can be shown by
induction on x (using the provable properties of function Elem).

(b) By induction on n, as PA ` 2 ·π2n =π2n+1 .
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802. (a) By induction on how the function was built up. For initial functions
and composition it is straightforward. For primitive recursion show by recur-
sion on x that such a u always exists (using Theorem 10.11), and by induction
on the length of u that for all such u their elements are the same.

(b) We need to show that PA `ϕ f (π~a ,πn , y) ↔ y =π f (~a,n). Again, it holds
for the initial functions, and easy to check for composition. Suppose f =
PrRec(g ,h). Form the defining formula we have PA `ϕ f (~x,0, z) ↔ϕg (~x,0, z).
By induction, PA ` ϕg (π~a ,0, z) ↔ z = πg (~a,0), thus PA ` ϕ(π~a ,0, z) ↔ z =
π f (~a,0). This establishes the claim for n = 0. For larger values of n go by
induction using that we know the claim both for the function h (with arbitrary
arguments) and for n −1.

803. Using the idea of Solution 146, the graph H(i , x, y) of the Ackermann
function can be formalized using Len, Elem and the initial functions. Us-
ing Theorem 10.11 we have PA ` ∀x∃y H(0, x, y) and PA ` ∀x∃y H(i , x, y) →
∀x∃y H (i +1, x, y). Applying the induction scheme of PA completes the proof.

Remark. The Ackermann function is not primitive recursive by Problem
111, yet it is PA-definable. In Problem 842 we construct a recursive function
that is not PA-definable.

804. The coding functions are primitive recursive by Problem 128. Instances
of axiom schemes Ax1–Ax12 and Ex1–Ex3 are primitive recursive as well as the
derivation rules MP and G (see Section 7.1.1). By assumption Γ is primitive
recursive, thus whether the sequence u = 〈ϕ1, . . . ,ϕn〉 is a correct Hilbert-
type derivation from Γ can be checked by primitive recursive relations using
bounded quantifiers, see Problem 104(c).

805. (a) If Γ`ϕ, then 〈u,α(ϕ)〉 ∈PPΓ for some u ∈ω. Since Prov◦Γ represents
PPΓ, see Problem 802(b), we have PA `Prov◦Γ(πu ,pϕq).

(b) As Prov◦Γ(u, x) is a faithful representation, it checks whether every ele-
ment in the proof sequence u is correctly entered. When swapping Γ to Γ∪∆

the only difference is that that instead of checking whether Elem(u, i ) is a
member of Γ, the formula checks whether it is a member of Γ∪∆. Again, it is
a faithful representation, which means that PA proves that members of Γ are
also members of Γ∪∆.

(c) If u is a derivation of ϕ and v is a derivation of ϕ→ψ, then it is a matter
to concatenate these derivations and add an application of MP. PA proves
that for any two sequences their concatenation exists (by induction on the
length of the second sequence), and the append function can add a new
element to the sequence.

806. (a) By Problem 805(c) this is derivable from PA. But PA is a subset of Γ,
thus it is also derivable from Γ.

(b) By Problem 805(a) PA ` Pr(pϕ → ψq). Combining with (a) gives the
required implication.
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(c) By induction on the number of ϕi formulas. For n = 1 this is (b). Oth-
erwise (Φ∧ϕ) →ψ is propositionally equivalent to Φ→ (ϕ→ψ). Using the
induction and (a) in the form

Γ`Pr(pϕ→ψq) → (
Pr(pϕq) →Pr(pψq)

)
completes the induction step.

(d) By Problem 805(b) PA `PrPA(pϕq) →PrΓ(pϕq) for every ϕ. This together
with Theorem 10.13 gives the claim.

807. Clearly, Γ` (ϕ∧¬ϕ) →⊥). Use Problem 806(c).

808. By Problem 806(b), Γ ` Pr(pϕq) ↔ Pr(p¬¬ϕq). Thus let ν be a fixed
point Γ` ν↔¬Pr(pνq), then ϕ≡¬ν works.

809. Solution 1. Take ϕ to be ⊥.
Solution 2. If ϕ is of the form Pr(•) then Γ`ϕ→Pr(pϕq) holds by Problem
806(d). In Problem 808 we saw that for ϕ ≡ ¬ν we have Γ ` ϕ→ Pr(p¬ϕq).
However, we also have Γ `¬ν↔ Pr(pνq), thus ϕ it is just of the right form.
We also need that Γ ` ψ1 ↔ ψ2 implies Γ ` Pr(pψ1q) ↔ Pr(pψ2q), which is
true by Problem 806(d).

810. We have Γ`⊥→ ν, thus Problem 806(b) gives Γ` Pr(p⊥q) → Pr(pνq).
As ν is a fixed point of ¬Pr(x), we get Γ`Pr(p⊥q) →¬ν.

For the other direction Problem 809 showed that both Γ`¬ν→ Pr(pϕq)
and Γ`¬ν→Pr(p¬ϕq) for ϕ≡Pr(pνq). By Problem 807 in this case Γ`¬ν→
Pr(p⊥q).

811. (⇒) Let Γ` ν↔¬Pr(pνq). As ν has contradictory consequences, Γ`¬ν.
By Problem 810 it implies Γ`Pr(p⊥q).

(⇐) Since Γ`⊥→ϕ, Problem 806(b) shows Γ`Pr(p⊥q) →Pr(pϕq). Con-
sequently Γ`Pr(pϕq) for all closed ϕ.

812. If ν is the fixed point of ¬Pr(x), then Γ0 ν by Problem 767. By Problem
810, Γ`ConΓ ↔ ν.

813. (a) This is the case as the standard model N is a model of PA. If we have
NÍ∃uProv◦Γ(u,p⊥q), then there is a u ∈ω such that the pair 〈u,α(⊥)〉 ∈PPΓ.
Consequently this u ∈ω is the code of a correct proof sequence which derives
⊥ from Γ, thus Γ is inconsistent. PA is consistent, as it has a model N.

(b) As PA 0 ConPA, Γ = PA∪{¬ConPA} is consistent, and clearly primitive
recursive. Also, Γ`Pr◦PA(⊥) (as this is an element of Γ). By Problem 805(b) in
this case Γ`Pr◦Γ(⊥) as well.

814. By Problem 810 for theories considered in this section Γ ` ν ↔ ConΓ.
Thus Γ`¬ν iff Γ`¬ConΓ. Such a theory was constructed in Problem 813.

815. By Problem 807 in this case Γ`Pr(p⊥q). Thus take Γ from Problem 813,
for this theory Γ`Pr(p>q), and Γ`Pr(p⊥q).
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816. Not necessarily. For PA yes (in general, for every Γ which has N as a
model), as in this case the derivation guaranteed by the formula PrΓ corre-
sponds to a real derivation, see Problem 813(a).

For a counterexample consider the consistent theory in Problem 815, we
cannot have Γ`ϕ and Γ`¬ϕ at the same time.

817. (a) As Γ`µ↔ (Pr(pµq) →ϕ), we also have Γ`ϕ→µ (if ϕ is true, then
the implication Pr(pµq) → ϕ is true, thus µ must also be true). From here
Problem 806(b) gives Γ`Pr(pϕq) →Pr(pνq).

(b) NowΓ` (µ∧Pr(pµq)) →ϕ, thusΓ` (Pr(pµq) ∧Pr(pPr(pµq)q)) →Pr(pϕq)
by Problem 806(c). We also have Γ` Pr(pµq) → Pr(p(Pr(pµq)q), thus we are
done.

(c) By (a), Γ ` Pr(pϕq)→ Pr(pµq), thus Γ ` (Pr(pϕq)→ϕ) → (Pr(pµq)→ϕ).
Denoting Pr(pϕq)→ϕ by ψ, it gives Γ`ψ→µ as µ is the fixed point. Conse-
quently, Γ` Pr(pψq) → Pr(pµq) and Γ` Pr(pµq) → Pr(pϕq) by part (b), thus
we are done.

818. The condition and Problem 806(d) gives Γ ` Pr(pPr(pϕq)→ϕq). By
Problem 817 this implies Γ`Pr(pϕq), which gives Γ`ϕ by the condition.

819. If Γ` ν↔Pr(pνq), then Löb’s theorem gives Γ` ν.

820. (a) By Löb’s theorem all fixed points of Pr(x) are derivable from Γ, thus
Γ` ν1 ↔ ν2.

(b) By Problem 810 all fixed points of ¬Pr(x) are provably equivalent to
¬Pr(p⊥q), thus they are provably equivalent to each other.

821. By Problem 817(b), Γ`Pr(pµq) →Pr(pϕq). Thus Γ` µ→ (Pr(pϕq)→ϕ)
as µ is a fixed point. The other direction is similar using Problem 817(a).

822. a ∈ω is prime iff NÍ a > 1 ∧ (∀x<a)(∀y<a)(x · y = a → x = 1 ∨ y = 1).

823. Using the collection principleNÍ (
(∀x<y)∃z ψ

)↔∃u(∀x<y)(∃z<u)ψ.

824. Let ϕ(x,~y), ψ(x,~y) ∈∆0. Closedness of Σ1 under disjunctions follows
from

NÍ∃xϕ(x,~y) ∧∃xψ(x,~y) ↔ ∃x
(
(∃u<x)ϕ(u,~y) ∧ (∃v<x)ψ(v,~y)

)
,

and similarly for conjunction. For bounded universal quantifier see Problem
823, otherwise use the equivalences

NÍ (∃y∃z ϕ) ↔∃u(∃y<u)(∃z<u)ϕ,

NÍ (∃x<y)∃zϕ↔∃u(∃x<y)(∃z<u)ϕ.

825. Similarly to Problem 824 Σn and Πn formulas are closed under ∧ and ∨,
from which the first claim follows. Observe that the negation of a Σn formula
is Πn , which implies the second claim.

826. By induction on n using the definition of Σn and Πn formulas.
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827. (a) A is an end-extension of N, thus N is a substructure of A and
evaluations of the terms in bounded quantifiers are the same in N and in A.

(b), (c) Existential formulas are preserved under extensions, while universal
formulas are preserved under taking substructures.

828. As N is a model of Q, the ⇐ implication holds. To show the converse,
Problem 827(b) claims that (∃yϕ)[π~a] holds in every end-extension of N. As
every model of Q is such an end-extension by Problem 721, this formula holds
in every model of Q. To complete to proof use the completeness theorem
10.14.

829. For any closed ∆0-formula we have either Q ` ϕ or Q ` ¬ϕ. This is
because NÍϕ iff Q `ϕ by Problem 828.

Enumerate all the proofs from Q. Eventually, either ϕ or ¬ϕ pops up, and
thus we have a derivation of either ϕ or ¬ϕ. Let b(pϕq) be the code of this
derivation.

830. Both A and its complement are Σ1. By Problem 826 there are ∆0-for-
mulas ϕ(~a, y) and ψ(~a, z) such that ~a ∈ A iff NÍ∃yϕ(~a, y) iff N 6Í ∃zψ(~a, z).
Put

ϑ(~a) ≡ ∃y
(
ϕ(~a, y) ∧ (∀z<y)¬ψ(~a, z)

)
.

This is clearly Σ1, we claim that it works. First, if ~a ∈ A, then A Í ϑ(π~a) for
each end-extension A of N since such an x can be found even in N, and ∆0

formulas evaluate in N and in A equivalently, see Problem 827(a). Second, if
~a ∉ A, then

AÍ∀y
(
ϕ(π~a , y) → (∃z<y)ψ(π~a , z)

)
,

since if AÍϕ(π~a , y), then this y cannot be in N (~a ∉ A so N 6Í ∃y ϕ(π~a , y)), so
the z witnessing NÍ∃zψ(π~a , z) is smaller than y .

Therefore AÍϑ[π~a] (or AÍ¬ϑ[π~a] if ~a ∉ A) for each end-extension of N,
so we get, as in Solution 828, that these formulas can be derived from Q.

831. Let ϕ(x, y, z) ∈ ∆0 witness that the graph of f is Σ1, i.e., f (a) = b iff
NÍ∃zϕ(a,b, z). Since f is a function, for each a ∈ωn there exists a unique
b ∈ ω for which N Í ϕ(a,b,c) with some c ∈ ω. So if f (a) = b, then N Í
∀y∀z(ϕ(a, y, z) → y = b), and conversely, if this holds then necessarily b ∈ω

is that unique element. This shows that the graph of f is also Π1.

832. (a) y =β(m,b, i ) iff (∃q ≤ m)m = y +q(b(i +1)+1) ∧ y < b(i +1)+1.
(b) The graphs of functions K (u) and L(u) are clearly ∆0, thus the claim

for Len(u) and Elem(u, i ) follows from (a). The value of the function u _z is
v if the triplet 〈u, z,v〉 satisfies the ∆0 formula expressing that v has length
one more than u, has the same elements as u up to Len(u) (using a universal
quantifier bounded by u) and its last element is z, while no v′ < v has this
property (a bounded universal quantifier). This is clearly ∆0.

833. By Problem 832(a), β(m,b, i ) = j can be treated as a ∆0 formula, and
t1 = t2 can be replaced by ∃x(t1 = x ∧ t2 = x).
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(a) This formula expresses that some sequence starts with 1 and each
element is x times the previous one, and z is its last element:

∃m∃b
(
β(m,b,0) = 1 ∧ (∀i<y)β(m,b, i +1) = x ·β(m,b, i ) ∧ β(m,b, y) = z

)
.

(b) Similarly to (a), but use β(m,b, i +1) = (i +1) ·β(m,b, i ) in the middle.

834. Structural induction on bounded formulas using that primitive recur-
sive relations are closed under the Boolean operations and bounded quan-
tification, see Problem 104.

835. By induction on the construction of primitive recursive functions using
that the graphs of Len(u) and Elem(u, i ) are ∆0. The fastest way is to look at
the faithful representation of primitive recursive functions (Definition 10.12),
and conclude that it provides the requested Σ1 formula.

836. Kleene’s normal form theorem 4.16 says that there is a primitive recur-
sive function Hn(e,~x,u) such that f (~x) =↓ iff Hn(e,~x,u) = 0 for some u ∈ω.
By Problem 835 Tn = {〈e,~a〉 :NÍ∃u(Hn(e,~a,u) = 0)} is Σ1.

837. We show first that every Σ1-set is recursively enumerable. Suppose
A ⊆ωn is a Σ1-subset represented by the formula ∃yϕ(~x, y), where ϕ(~x, y) is
∆0. Then ϕ(~x, y) represents the set S ⊆ωn+1 by

〈~a,b〉 ∈ S ⇔ NÍϕ[~a,b]

The characteristic function χS of S is primitive recursive by 834. Let f
be defined as f (~a) = µ(x : χS (~a, x) = 1). Then f is partially recursive and
dom( f ) = A, therefore A is recursively enumerable.

For the converse assume A ⊆ωn is recursively enumerable. By Problem
169, A is the domain of an n-variable partial recursive function f . Take the
Si g ma1 relation Tn from Problem 836. Now, there is an index e such that
~a ∈ A iff 〈e,~a〉 ∈ Tn , thus A is also Σ1.

838. A set A is recursive iff both A and its complement Ā are recursively
enumerable (Problem 157). By 837, A is recursive iff both A and Ā are Σ1. The
complement of a Σ1 set is a Π1 set. Thus a set A is recursive iff A belongs to
Σ1 ∩Π1 which is ∆1.

839. (a) Kleene’s T (Problem 836 gives us such a set U , but it is not guaranteed
to be primitive recursive (only Σ1). Another problem is the uniformity: we
need the index to be the code of the formula, and not just the existence of a
good index.

Mimic the proof of Kleene’s normal form theorem 4.16. The sequence u is
a justified evaluation if every element of u is a triplet 〈α(ϕ),e,v〉 where ϕ is a
∆0 formula, e assigns natural number to the free variables of ϕ, and v tells
whether ϕ[e] is true or not, and every element of u is justified: either it is an
atomic formula whose truth is checked, or for each direct subformulas of ϕ
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there are earlier triplets in u which compute their validity, and the validity of
this formula is computed from those values.

As this is a course-of-value recursion using primitive recursive functions,
being a justified evaluation is a primitive recursive relation. Given ϕ(x)
and nω, α(ϕ[πn]) is a primitive recursive function of α|phi ) and n, thus
we are done if we can put a primitive recursive upper bound on a justified
computation of ϕ[πn] as a function of α(ϕ[πn]). If b(m) is such a bound,
then one can take b(m) = mmb(m −1) corresponding to the case when all
evaluations indicated by a bounded quantifier must appear earlier. But this
b(m) is clearly primitive recursive.

(b) A = {a ∈ω : 〈a, a〉 ∉U } is primitive recursive but cannot be ∆0.

840. ϕ(x, y) can be written equivalently as ∃zψ(x, y, z) where ψ is ∆0, see
Problem 826. The assumption says that for every n ∈ ω there are a,b ∈ ω

such that NÍψ(πn ,πa ,πb). The ∆0 set A ⊂ω3 determined by ψ is primitive
recursive by Problem 834, thus h(n) =µ{u ∈ω : 〈n, (u)0, (u)1〉 ∈ A} is recursive
(as such a u exists for every n). Then (h(n))0 is also recursive and it gives
NÍ∃zψ(πn ,π f (n), z), as required.

841. (a) By Problem 835 the graph of a primitive recursive function is Σ1,
and, of course, the graph represents the function. For recursive functions in
general observe that its graph is recursively enumerable, thus Σ1 by Problem
837.

(b) Immediate from Problem 840 as in this case there is a unique z with
NÍ∃zπ(πn , z) for each n, and the recursive function returns such a z.

842. Since NÍ Γ and Γ`∀x∃yϕ(x, y), we have NÍ∃y∃zψ(πn , y, z) for each
n ∈ ω, thus there are k,` ∈ ω such that N Í ψ[n,k,`]. By Problem 839 the
relation

U = {〈α(ψ),n,k,`〉 :NÍψ[n,k,`]}

is primitive recursive. As Γ is primitive recursive, the provability predicate
PPΓ (Definition 10.8) is also primitive recursive. Define the function f (n)
as follows. For each u ≤ n check whether 〈u,α(Φ)〉 ∈ PPΓ, where Φ is of
the form ∀x∃y∃zψ(x, y, z) with ψ ∈∆0. If no, let ku = 0, otherwise take the
minimal pair 〈ku ,`u〉 such that 〈α(ψ),n,ku ,`u〉 ∈U , such a pair exists by the
discussion above. Let f (n) = 1+max{ku : u ≤ n}.

This f is recursive as PPΓ is primitive recursive, and if 〈u,α(Φ)〉 ∈PPΓ then
α(Φ) must be smaller than u. The relation U is also primitive recursive, and
the minimum always exists.

To show that f dominates every provably recursive function, let g be such
a function witnessed by the formula ∃zψ(x, y, z). Then N Í ∃zψ[n,k, z] iff
k = g (n) for each n ∈ ω (as this formula represents g in N), thus the only
k ∈ω which satisfies 〈α(ψ),n,k,`〉 ∈U is k = g (n). Let Φ≡∀x∃y∃zψ(x, y, z).
As Γ ` Φ by assumption, there is an u ∈ ω such that 〈u,α(Φ)〉 ∈ PPΓ. For
n ≥ u the formula Φ is handled, ensuring f (n) > g (n).
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843. (a) The set Tk ⊆ ωk+1 form Problem 836 is such a Σ1 set. Indeed, by
Problem 837 Σ1 sets are recursively enumerable, so let A = dom( f ) for a k-
variable partial recursive function. Then there is an e ∈ω such that 〈e,~a〉 ∈ Tk

iff f (~a) =↓ iff ~a ∈ A, as required.
(b) For if Σ1 were closed under negation, then take A = {i ∈ω : (i , i ) ∉U 1

1 }.
By (a) there is an integer e such that A = {i ∈ ω : (e, i ) ∈U 1

1 }. But then with
i = e we get a contradiction.

(c) The complement of Σ1 is Π1, thus Π1 6=Σ1 by (b). But then ∆1 =Σ1 ∩Π1

is a proper subset of both Σ1 and Π1.

844. The set {a ∈ω : 〈a, a〉 ∉U } would also be recursive.

845. (a) By induction on n. The complement of a universal Σn set is a uni-
versal Πn set, so assume, as an induction hypothesis, that V n

k+1 is a universal

Πn set. By definition, A ⊆ωk is Σn+1 iff there is a Πn set B ⊆ωk+1 such that
A = {~a : ∃b〈~a,b〉 ∈B}. Consequently

U n+1
k = {〈e,~a〉 : ∃b〈e,~a,b〉 ∈V n

k+1}

is a universal Σn+1 set.
(b), (c) Same as for Problem 843

846. The claim for n = 1 was covered in Problem 839(a). In general use
induction on the more general statement that for every recursive function f ,
the set {〈 f (α(ϕ)),~a〉 :NÍϕ[~a]} is Σn as ϕ(~x) runs over the Σ∗

n formulas.

847. Assume by contradiction, that there is a formula Φ(x) such that for
every closed ν, NÍ ν iff NÍΦ(pνq). By the fixed point theorem 10.7 there is
a closed formula ν such that NÍ ν↔¬Φ(pνq), a clear contradiction.

848. The idea is to enumerate the closed formulas as ϕ0, ϕ1, . . . Start with
Γ= PA. At the i -th step add ϕi to Γ only if Γ,ϕi 0⊥. In the other case Γ`¬ϕi ,
thus ϕi will not be true in any model of Γ. At the end Γ will be a maximal
consistent extension of PA, and when we encounter ϕi we know whether it
holds (if it was added), or does not hold (otherwise) in any model of Γ.

Let ProvPA(u, x) be a representation of the provability predicate PPPA, and
PrPA(x) be ∃uProvPA(u, x). For any closed formula ϕ, NÍPrPA(pϕq) iff PA `
ϕ. The formula Φ(x) will be true in N if x is a code of a closed formula and
it was added to Γ in the above procedure. The sequence u maintains the
conjunct of formulas added so far. Thus

Φ(x) ≡ ∃u
(
Len(u) = x +2 ∧ (u)0 = p>q ∧

(∀i≤x)
(

if i is a code of a closed formula, and
¬PrPA(p(u)i ∧ i →⊥q), then (u)i+1 = p(u)i ∧ iq,

(u)i+1 = (u)i otherwise
)

∧ (u)x+1 6= (u)x
)
.

By the remarks above, NÍΦ(pϕq) exactly when ϕ is a closed formula and
is true in any model of Γ.
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12.11 SELECTED APPLICATIONS

849. Let {U j : j ≥ k} be relation symbols not in the finite Boolean com-
bination ϕ(x). By assumption all the combinations ϕ(x) ∧ Uk (x), ϕ(x) ∧
¬Uk (x) ∧Uk+1(x), ϕ(x) ∧¬Uk (x) ∧¬Uk+1(x) ∧Uk+2(x), etc. are satisfied by
some element, but clearly all of them must be different.

850. Let A= 〈κ2, UA
i 〉i<κ be such that

UA
i = {

x ∈ κ2 : x(i ) = 1
}
.

Then AÍ Γ as each finite Boolean combinations of finitely many of the Ui ’s
are realized by 2κ elements.

851. Solution 1. Let τ′ ⊂ τ contain finitely many relation symbols. Then A�τ′

is an elementary substructure of B�τ′ by Problem 483: there are 2|τ′| many
equivalence classes in B�τ′, each is infinite, thus there is an automorphism
which moves the new element into an old one and keeps finitely many other
elements fixed.

For a formula ϕ let τϕ ⊂ τ contain the relation symbols in ϕ. Then AÍϕ[~a]
for some ~a ∈ A iff A�τϕ Íϕ[~a] iff B�τϕ Íϕ[~a] (as τϕ is a finite subtype of τ)
iff BÍϕ[~a]. Thus A is an elementary substructure B.

Solution 2. Γ admits quantifier elimination (Problem 855) thus the condition
in the Tarski–Vaught test 8.3 holds trivially.

852. Let the universe A of A be the set of sequences a : ω→ {0,1} that are
eventually zero and let

UA
i = {

a ∈ A : a(i ) = 1
}
.

Then A is countable and A Í Γ. Note that there is no element in A that
realizes all the UA

i ’s. Let B be the structure obtained from Problem 851. Then
A,BÍ Γ but A 6∼=B.

853. For notational simplicity we give a solution for the κ = ω case. The
general solution is analogous. We need to find models Ai 6Í Γ such that∏

i∈I Ai /U Í Γ for some ultrafilter U over I .
For n ∈ω let An be such that for any I , J ⊂ n, I ∩ J =; there is an a ∈ A such

that a satisfies
∧

i∈I UA
i ∧∧

j∈J ¬UA
j , but for k ≥ n we have UA

k =;. Clearly
there are such structures An , and An 6Í Γ.

Let A = ∏
n∈ωAn/U for a non-principal ultrafilter over ω. We claim that

AÍ Γ. Indeed, for finite subsets I , J ⊂ω with I ∩ J =;, we have{
n ∈ω : An Í∃v

( ∧
i∈I

Ui (v) ∧ ∧
j∈J

¬U j (v)
)} ∈U

as the complement of this set is finite. Łoś’s lemma 9.3 implies that AÍ Γ.
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854. Pick disjoint subsets I , J ⊂ω and for n ∈ω let

Xn = {
a ∈ A : AÍ ( ∧

i∈I∩n
Ui ∧

∧
j∈J∩n

¬U j
)
[a]

}
Each Xn is infinite. Let X =∏

n∈ω Xn/U . The cardinality of X is continuum
(see Problem 609). We claim that each a ∈ X satisfies

⋂
i∈I Ui ∩⋂

j∈J ¬U j in
B. Indeed, for a ∈ X and k ∈ω we have that{

n ∈ω : a(n) ∈ ⋂
i∈I∩k

UA
i ∩ ⋂

j∈J∩k
¬UA

j

}
belongs to U as the set is co-finite. By Łoś’s lemma 9.3 we get then

BÍ ∧
i∈I

Ui [a] ∧ ∧
j∈J

¬U j [a]

for any a ∈ X .

855. As the only closed quantifier-free formulas are the > and ⊥, quantifier
elimination implies completeness. By Problem 535 it is enough to show that
each formula ϕ of the form ∃y(`1 ∧ ·· · ∧ `n), where `i is a literal, is equivalent
to a quantifier-free formula. Literals are of the form xi = x j , xi 6= x j , Ui (x j ),
and ¬Ui (x j ). The formula ϕ can be grouped as β1(x1) ∧ ·· · ∧βn(xn) ∧β(y) ∧
ε, where each βi (xi ) is a conjunction of literals in the variable xi only, not
including xi = xi or xi 6= xi among its conjuncts; and ε is a conjunction
whose only conjuncts are of the form (¬)(xi = x j ) and (¬)(y = x j ). Let us
write

ϑ(~x, y) ≡ β1(x1) ∧ ·· · ∧βn(xn) ∧β(y) ∧ ε

We can eliminate quantifiers from ϕ ≡ ∃yϑ(~x, y) as follows. If ϑ is incon-
sistent with Γ, then replace ∃yϑ(~x, y) with ⊥. If ϑ is consistent with Γ and
ε contains y = xi for some i , then replace all instances of y in ϑ with xi .
Observe that ∃yϑ(~x, y) is equivalent modulo Γ to the quantifier-free ϑ(~x, xi ).
Finally, if ϑ is consistent with Γ and no y = xi appears in ε, then eliminate all
conjuncts from ϑ which involve y . The resulting formula is quantifier-free
and it equivalent modulo Γ to ∃yϑ(~x, y). To see this, note that in any model
AÍ Γ, for any tuple ~a ∈ A which satisfies the prescriptions given by the βi ’s
and ε, there is always an element c distinct from ~a such that c satisfies the
same prescriptions. (We used here that any Boolean-combinations of the
Ui ’s are realized by infinitely many elements).

856. Suppose κ=ω and define A and B as follows. Let A = ω2 and write

UA
i = {

a ∈ A : a(i ) = 1
}
.

Let B be the set of sequences a ∈ ω2 that are eventually zero and write

UB
i = {

a ∈ B : a(i ) = 1
}
.

Then A,BÍ Γ, thus A≡B by Problem 855.
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Observe that no element of B realizes all the UB
i ’s, while there is such an

element a in A. While playing the Ehrenfeucht–Fraïssé game EF(A,B, N ), I
can always choose a as his first pick, blocking II to reply with an element that
satisfies all the Ui ’s (thus blocking the existence of a partial isomorphism).

857. If 2λ < κ, then Γ has no model of cardinality λ because the interpreta-
tions of the Uα’s are distinct sets.

Suppose 2λ ≥ κ. By Problem 6 there is an independent family 〈Eα : α< 2λ〉
of size 2λ on the set A = λ. For α< κ write UA

α = Eα. Then A= 〈A,UA
α 〉α<κ

is a model of Γ and the construction in 6 ensures that A has no element
that belongs to all UA

α . Let B be the extension of A with a new element that
satisfies each Uα. Then BÍ Γ and as Γ is complete (see Problem 855) A and
B are elementarily equivalent. But A and B are not isomorphic, hence Γ is
not λ-categorical.

Remark. Suppose κ is finite. ThenΓ is ω-categorical, but not λ-categorical
for any λ > ω as there are models A,B Í Γ with |A| = |B| = λ such that
|UA

1 | 6= |UB
1 |.

858. Solution 1. Define a graph as follows: the set of vertices is ω. Set ¬E (i , i )
for all i ∈ω, otherwise suppose j > i . Then set E(i , j ) if and only if the i -th
digit in the base 2 expansion of j is 1. This defines a graph.

Suppose now that x1 . . . xn , y1 . . . ym are distinct elements for some n,m ∈ω.
Then let z be the number whose base 2 expansion is 1 at the xi -th digits and
0 at the y j -th digits. Clearly then z is connected to all the xi ’s but none of the
y j ’s.

Solution 2. We start with the following statement: for each finite graph
G there is a finite graph G′ which is an extension of G (i.e. G ⊂ G′) and
which has the property, that whenever one picks two disjoint (finite) subsets
X ,Y ⊂ G of vertices, then there is a vertex z ∈ G ′ that is connected to all
vertices in X but none in Y . To construct such G′ is easy: as G is finite, there
are finitely many possible ways to pick two disjoint subsets. For all such
choices add a new vertex with the required property.

Now, starting from the one-vertex graph G0, define by recursion Gn+1 =
G′

n . Then G = ⋃
n∈ωGn is as desired. For, select X ,Y ⊆ G with |X | = n,

|Y | = m for some n,m ∈ω. Then there is k such that X ,Y ⊆Gk and thus one
finds an element z ∈Gk+1 such that E(z, x) holds for all x ∈ X and ¬E(z, y)
for all y ∈ Y .

Solution 3. Let 〈M ,∈〉 be a countable model of set theory. Define 〈M ,E M 〉 to
be the graph with E M (x, y) if and only if x ∈ y or y ∈ x.

Solution 4. For infinite κ take a bijection f :κ→ [κ]<ω and for a,b ∈ κ draw
an edge iff a ∈ f (b) or b ∈ f (a). Given distinct vertices x0, . . ., xn−1, y0, . . .,
ym−1 ∈ κ, let Y = f (y0)∪·· ·∪ f (ym−1)∪ {y0, . . . , ym−1}. Y is a finite set, and
there are infinitely many z ∈ κ such that f (z) ⊃ {x1, . . . , xn−1} and f (z) ∩
{y1, . . . , ym−1} =;, thus there is such a z ∉ Y . For such z we have E(xi , z) for
i < n and ¬E(y j , z) for j < m.
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859. If the graph A is finite, then ϕ|A|,0 cannot be satisfied in A.

860. Suppose u is connected to members of the finite set B . By universality
there is a v connected to all of {u}∪B . This v cannot be in B as no vertex is
connected to itself.

861. We prove the countably infinite case only, the finite case is similar.
Let A = {ai : i ∈ ω} be the universe of the countable graph A and denote
the i -th initial segment of A by Ai = {a0, . . . , ai−1}. Let f0 = ; and define
by recursion an increasing sequence of partial isomorphisms fn such that
An ⊆ dom( fn). Suppose fn has already been defined. Take an and let us
denote the neighbors of an in An

N = {
ak : ak ∈ An ,AÍ E(ak , an)

}
.

Then N is a finite set and G satisfies the formula ϕ|N |,|AnàN | ∈ Γ. Therefore
there is some z ∈G with the property

GÍ ∧
ai∈N

E( fn(ai ), z) ∧ ∧
ai∈AnàN

¬E( fn(ai ), z)

Put fn+1 = fn ∪ {〈an , z〉}.
This construction can be carried out for all n ∈ω. Finally, let f =⋃

n∈ω fn .
Then f : A →G is an embedding of A into G.

862. Standard back and forth argument (cf. Solution 365). We modify Solu-
tion 861. Let A = {ai : i <ω} and B = {bi : i <ω}. Ai and Bi denote the initial
segments as before.

Build partial isomorphism fn as before, such that An ⊂ dom( fn) and with
the additional requirement that Bn ⊂ ran( fn). In Solution 861 we found an
image z for an . With the same method applied backwards we can find an
inverse-image z ′ for bn . Then let fn+1 = fn ∪ {〈an , z〉}∪ {〈z ′,bn〉}.

At the end, define f =⋃
n∈ω fn . Then f : A → B is an isomorphism between

A and B.

863. ℵ0-categoricity of Γ is immediate from 862. As Γ has infinite models
only (859) and is ℵ0-categorical, the Łoś–Vaught theorem 8.7 implies com-
pleteness. The last statement follows form Problem 543 trivially.

864. The subgraph is also universal by Problem 860. Γ admits quantifier
elimination so it is model complete (Problem 544). Thus every universal
subgraph of a universal graph is an elementary submodel.

865. Enumerate the vertices of G as {vα : α<ω1}, and assume that each vα

has countable degree. Let h0 =ω, and hi+1 = sup{β ∈ω1 : vαvβ is an edge for
some α < hi }. As hi+1 is the sup of countably many countable ordinals, it
is below ω1. Take h = limi hi . If v0vα is a vertex, then α< h, and if vhvα is a
vertex, then h <α. Thus there is no vertex which would be connected to both
v0 and vh , a contradiction.
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866. Let K be the complete graph on ω vertices. By 861, K can be embedded
into G, therefore we might assume that K is a subgraph of G. We claim that
ωK /U is a complete subgraph of ωG/U . Indeed, for any a,b ∈ ωK /U we have

{n ∈ω : a(n) is connected to b(n)} ∈U .

By Problem 609, the cardinality of ωK /U is 2ℵ0 (for which ℵ1 ≤ 2ℵ0 holds).

867. (a) Take a countable universal graph G. The ultrapower ωG/U con-
tains a complete subgraph of cardinality ℵ1 (see 866), let this be K . The
Löwenheim–Skolem theorem 8.5 implies that ωG/U has an elementary sub-
structure of cardinality ℵ1 that contains K .

(b) Take a bijection f :ℵ1 → [ℵ1]<ω and for a,b ∈ ℵ1 draw an edge iff a ∈ f (b)
or b ∈ f (a). The resulting graph G f is a model of Γ (see Solution 858) and
|G f | = ℵ1. We claim G f does not contain a complete subgraph of cardinality
ℵ1. Suppose on the contrary X ⊂G f , |X | = ℵ1 induces a complete subgraph
of G f . Define vertices xn by induction on n as follows. Let x0 ∈ X be arbitrary.
If xi for i < n has already been defined, then let xn be any point from X à(

{xi :
i < n}∪∪i<n f (xi )

)
. Write Y = {xi : i <ω}∪∪i<ω f (xi ). Y is a countable set,

thus X àY is uncountable. Pick any a ∈ X àY . Then a is connected to all
the xi ’s, but a does not belong to any of the f (xi )’s, hence it must be the case
that xi ∈ f (a) for all i <ω. This contradicts f (a) being finite.

868. Take the set of ordinals {α<ω1}, and let F be an independent family
of subsets of the first ω elements. As there is such a family of size continuum
(see Problem 5), we can pick a subfamily of size ω1 as F = {Xβ : β<ω1}. We
can also assume that picking finitely many of them, taking the complement
of some of them, the intersection is not only non-empty, but actually infinite
(by replacing each element in the base set by a countable set). Define the
graph on ω1 such that for α<β there is an edge between them if α<ω and
α ∈ Xβ. As the family F is independent, it is clearly a universal graph on ω1,
moreover except for the first ω vertices, every other vertex has countable
degree.

869. (a) Let Sn be the set of all tournaments on n vertices. Clearly, |Sn | = 2
(n

2

)
.

Consider the uniform distribution over Sn . Call a k-element set X bad if no
element dominates each member of X . Write Y (T) for the number of bad k-
element sets in T. Then the expected value E (Y ) equals

(n
k

)
(1−(1/2)k )n−k . As

E(Y ) → 0, by Markov’s inequality P (Y ≥ 1) → 0. That is, a randomly chosen
tournament on n vertices satisfies χk with probability tending to 1 as n tends
to infinity. Therefore, for sufficiently large n there is a tournament on n
vertices that satisfies χk .

(b) Take 〈Z,<〉.
870. No finite T can satisfy ψ|T|,0.
Solution 1. We construct a countable model of Γ by recursion. Start with
an arbitrary finite tournament T0 and suppose Tn has already been defined.
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For each pair (A,B) of disjoint non-empty subsets of Tn let v(A,B) be a new
vertex such that v(A,B) dominates each element of A and is dominated by
every element of B . Let Tn+1 be the tournament that extends Tn with the
new vertices v(A,B). Then T =⋃

n<ω Tn is a universal tournament.

Solution 2. We construct for every infinite κ a universal tournament of
cardinality κ. The set of vertices is κ. Take a bijection f :κ→ [κ]<ω and for
α < β < κ draw an edge α→ β if β ∈ f (α), otherwise draw the edge β→ α.
The resulting structure is a tournament on κ vertices. We claim that it is
universal. For, pick finite disjoint A,B ⊆ κ. The number of finite subsets of κ
which contain A but exclude B is κ, and A∪B is not cofinal in κ, therefore
there must exists an α < κ that is larger than any of the elements in A ∪B ,
and f (α) ⊇ A, f (α)∩B =;. But then α dominates A and is dominated by B .

871. Same proof as in Solution 861.

872. ℵ0-categoricity can be shown using the same back and forth argument
presented in Solution 862. (Cf. also Solution 365).

Since Γ has infinite models only (Problem 870), completeness of Γ follows
from ℵ0-categoricity and the Łoś–Vaught theorem 8.7.

873. Let K be a countable transitive tournament. By Problem 871, K can
be considered as a substructure of T. We claim that ωK /U is a transitive
subtournament of ωT/U . Pick a,b,c ∈ ωK /U and suppose a dominates b
and b dominates c. Then

{n ∈ω : (a(n),b(n)) ∈ E , (b(n),c(n)) ∈ E } ∈U .

As K is transitive, it follows that {n ∈ω : (a(n),c(n)) ∈ E } ∈U , hence a domi-
nates c. By Problem 609, the cardinality of ωK /U is 2ℵ0 (for which ℵ1 ≤ 2ℵ0

holds).

874. By Problem 626 every structure can be embedded into an appropriate
ultraproduct of its finitely generated substructures. Finitely generated sub-
structures of (X ,<) are just finite suborderings, let us denote these structures
by (Xα,<α). For suitable κ and U we have (X ,<) ,→ ∏

α∈κ(Xα,<α)/U . By
Problem 871 each (Xα,<α) can be embedded into T, therefore (X ,<) embeds
into κT/U .

875. (a) Let T0 be a transitive tournament of cardinality ℵ1. Define by trans-
finite recursion a sequence of tournaments 〈Tα : α<ℵ1〉 such that the fol-
lowing stipulations hold.

(i) Tβ ⊆Tγ whenever β≤ γ≤ℵ1.

(ii) |Tβ| ≤ ℵ1 for all β≤ℵ1.

(iii) For each β< γ≤ℵ1 and for any disjoint finite subsets A,B ⊆ Tβ there is
z ∈ Tγ which dominates A and is dominated by B .

Suppose Tβ has been defined for β<α. If α is limit, then let Tα =⋃
α<βTβ.

If α is successor, say α = β+1, then for each finite disjoint pair of subsets
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A,B ⊆ Tβ add a new vertex v(A,B) which dominates A and is dominated by
B . Tβ+1 is the extension of Tβ with these new vertices. As |Tβ| ≤ ℵ1, there
are only [ℵ1]<ω =ℵ1 new vertices, and thus the inductive hypothesis remains
true for Tβ+1. Finally, Tℵ1 is the desired universal tournament.

876. (a) Prob(Mn Íϑ) = 1 iff Prob(Mn 6Íϑ) = 0 for all n.
(b) Use that for all n we have

Prob(Mn Íϑ∧ϕ) ≤ Prob(Mn Íϕ), Prob(Mn Íϑ),

and
Prob(Mn Íϑ)+Prob(Mn Íϕ)−Prob(Mn Íϑ∧ϕ) ≤ 1.

877. Exactly half of the n-element τ-structures satisfy U (c), thus Prob(Mn Í
U (c)) = 1/2 for all n > 0, thus the limit is 1/2.

878. Prob(Mn Í∀x( f (x) 6= x)) = (n−1)n

nn = (1− 1
n )n → 1

e .

879. By completeness of Γ we have either ΓÍϕ or ΓÍ¬ϕ. Suppose the first
is the case. By compactness, there is a finite Σ= {γ0, . . . ,γn−1} ⊆ Γ such that
ΣÍϕ. As Prob(Mn Íϑ) = 1−Prob(Mn 6Íϑ) holds for any closed ϑ, it follows
that

Prob(Mn 6ÍΣ) ≤ Prob(Mn 6Í γ0)+·· ·+Prob(Mn 6Í γn−1) → 0,

that is, Prob(Mn ÍΣ) → 1 as n →∞. Since Prob(Mn ÍΣ) ≤ Prob(Mn Íϕ) we
obtain Prob(Mn Íϕ) → 1.

The case ΓÍ¬ϕ is similar.

880. We prove the two statements in tandem. A pair of k and ` element sets
(A,B) is said to be bad in the graph (tournament) G on vertex set n if there is
no g ∈G which is connected to (dominates) every element of A and is not
connected to (dominated by) each element of B . Let N (G) be the number of
bad pairs in G . Then the expected value of N is

En(N ) =
(

n

k +`

)(
k +`

k

)(
1− 1

2k+`

)n−k−`.

Calculus shows En(N ) → 0 so Prob(N ≥ 1) → 0.

881. Take Γ from Definition 11.1 (Definition 11.3 in case of tournaments). By
Problem 863 (Problem 872), Γ is complete, thus combining Problem 880 and
Problem 879 completes the proof.

882. That G is a subgraph can be described by a formula ϑ. By Problem
881, ϑ is either almost surely true or false depending on whether ϑ is a con-
sequence of the theory Γ of universal graphs. But every G is a subgraph of
the countable universal graph (Problem 861), therefore ΓÍϑ, and thus the
asymptotic probability that a randomly chosen finite simple graph contains
G as a subgraph is one.
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883. There are 2(n2) relations over an n-element set and 2n2−n of them have

no loops, thus Prob(Mn Í∀x¬E(x, x)) = 2n2−n

2n2 = 1
2n → 0.

Prob(Mn Í∀x∀y(E(x, y) → E(y, x))) = 2n(n+1)/2

2n2 → 0.

884. The property expresses that for any finite subset B and a prescription a
new element could be related to them, there is such an element. For R ∈ τ

and PR ⊆ {x1, . . . , xn , y}k (k is the arity of R) consider the formula

∀x1 . . . xn
( ∧

i 6= j
xi 6= x j → ∃y

(∧
i

y 6= xi ∧
∧

R∈τ

( ∧
~a∈PR

R(~a) ∧ ∧
~a∉PR

¬R(~a)
)))

Let Γτ consists of all possible such formulas.

885. Let the domain be ω and for each R ∈ τ and tuple ~a decide R(~a) with
probability 1/2. For any finite B ⊆ω and prescriptions PR there is a suitable
y with probability 1.

886. Γτ clearly has no finite models, thus ℵ0-categoricity implies complete-
ness. Showing that any two countable models of Γτ are isomorphic can be
done by a standard back and forth method as in Problem 863.

887. Consider the prescriptions PR for R ∈ τ an n ∈ω and a formula ϕ of the
form

∀x1 . . . xn
( ∧

i 6= j
xi 6= x j → ∃y

(∧
i

y 6= xi ∧
∧

R∈τ

( ∧
~a∈PR

R(~a) ∧ ∧
~a∉PR

¬R(~a)
)))

Let ~a be a sequence of distinct elements, and a be an additional element.
Let p be the probability that a is related to ~a exactly the way the sets PR

prescribe. Then p > 0. Let M be the class of all τ-structures. Then Prob(Mk 6Í
ϕ) ≤ k !

n! (1−p)k−n . Taking the limit as k →∞ this probability converges to 0.

888. Γτ is complete by Problem 886, thus combining Problem 887 and Prob-
lem 879 completes the proof.
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Symbols
[X ]κ, [X ]<κ—family of subsets, 1
�—back and forth, 84
pϕq, 112
µ—operator, 19, 27
Ω—set of functions, 19
Ω∗—partial functions, 27
℘(X )—powerset, 1
Σ∗—set of words over Σ, 13
Σn , Πn , ∆n—arithmetical

hierarchy, 120
α(o)—code of an object, 29, 50, 63
β—Gödel’s β function, 23
≡—elementary equivalence, 77
∃n—formula, 78
∀n—formula, 78
κ-almost disjoint, 2
κ-categorical, 80
κ-compact, 100
κ-saturated, 100
Í—semantical consequence, 42,

55
ω-complete, 76
ω-consistent, 76
ω-model, 76
ω-rule, 76
ωC K

1 —Church–Kleene ordinal, 37
ϕi (x)—i -index function, 32
≺—elementary substructure, 78
`R —resolution method, 45
`—derivation, 47

A
Ackermann function, 21, 25, 36
Ackermann model, 228

admissible substitution, 55
almost disjoint, 1
almost surely true/false, 126
alphabet, 13
append function, 24
arithmetical hierarchy, 120
arithmetical set, 120
arithmetization, 29
asymptotic probability, 126
atomic diagram, 81
atomic formula, 53
automorphism, 57
axiomatizable, 102
axioms, 46

B
back-and-forth system, 84
Beth theorem, 72
Boolean function, 40
bounded minimization, 20
bounded product, 20
bounded quantifiers, 20, 108
bounded sum, 20

C
Carroll, Lewis, 46
categorical theory, 80
chain, 63
chain (in ordered set), 1
Church theorem, 111
Church–Kleene ordinal, 37
clause, 45, 69
closed formula, 54
code, 23, 29, 50
collection principle, 82
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Comp—composition operator, 19,
27

compact, 100
compactness theorem, 41, 42, 70,

96
complete, 47
complete (theory), 80
completeness of resolution, 45
completeness theorem, 48, 49, 67,

68
ConΓ—consistency formula, 113
concatenation, 13
congruence, 41
conjunctive normal form, 44, 180
connected automaton, 16
conservative extension, 85
consistent, 48, 56, 66
context-free language, 16
contradictory, 39
course-of-values recursion, 25
Craig’s interpolation theorem, 72
Craig, William, 109

D
decidable, 34, 109
Dedekind (cut, complete), 104
deduction lemma, 45, 48, 55, 65
definable subset, 73
definitional expansion, 245
dense, 4
dense (ordering), 62
derivable, 45
derivation, 47
deterministic finite automata, 14
DFA, 14
diagonal halting problem, 35
diagram, 81
discrete (ordering), 62
disjunctive normal form, 180
dominating function, 34

E
EF(A,B, N )—Ehrenfeucht–

Fraïssé game,
83

Ehrenfeucht–Fraïssé game, 83

Elem—sequence coding, 23, 24
elementary class, 102
elementary embedding, 81
elementary equivalence, 77
elementary substructure, 78
embedding, 81
end extension, 82
enumerable, 26
equality axioms, 66
Erős–deBruijn theorem, 43
evaluation, 39, 54
existential formula, 78
explicit definition, 72

F
R. Fagin, 127
field (structure), 59
filter, 4, 5
finite automata, 14, 15
finite intersection property, 2
finitely axiomatizable, 103
FIP, 2
first-order definable subsets, 73
Fix—set of fixed points, 35
fixed point set, 35
fixed point theorem, 35, 113
formal language, 13
formula (first order), 53
Fraïssé’s theorem, 84
free algebra, 41
free variables, 54
functionally complete, 180
fundamental theorem of

ultraproducts, 94

G
Gödel’s β function, 23
Gödel’s completeness theorem,

67, 68
Gödel’s first incompleteness

theorem, 112
Gödel’s fixed point theorem, 113
Gödel’s second incompleteness

theorem, 119
generalization, 65
generated substructure, 56
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Gentzen-style derivation, 46
Gomoku, 10
graph (first-order), 57
graph of a function, 26
group (structure), 58

H
halting problem, 35
Henkin theory, 66
Herbrand structure, 69
Hilbert-type derivation, 47, 65

I
implicit definition, 72
incompleteness theorem, 112,

119
inconsistent, 56
independent (formulas), 102
independent (set system), 2
index, 21, 32
index property, 36
indiscernible, 90
induction axiom, 115
inference rules, 46
initial segment, 82
interpolation theorem, 42
interpretation, 54
isolated type, 75
isomorphic (structures), 57

J
justified computation, 30

K
k-valued logical function, 41
Karp’s theorem, 84
Keisler–Shelah theorem, 96
Kleene T , 121
Kleene star, 13
Kleene’s normal form theorem, 31
Kleene’s theorem, 15, 32

L
Löb’s theorem, 120
Löwenheim–Skolem theorem, 79
language, 13

Len—sequence coding, 23, 24
Limit point of ultrafilter, 6
Lindenbaum algebra, 43
literal, 45, 69
locally finite (graph), 88
Łoś lemma, 94
Łoś–Vaught theorem, 80

M
maximal set system, 2
model (of a theory), 54
model complete theory, 86
modus ponens, 47, 65

N
N—natural numbers, 1
natural deduction, 46
NFA, 15
non-deterministic finite

automata, 15
normal filter, 4
normal form, 31

O
omitting types theorem, 75
operators on function set, 19
ordered (structure), 58
ordered field, 99
overspill principle, 117

P
partial function, 27
partial isomorphism, 82
partial recursive, 27, 31
partially ordered (structure), 58
Peano arithmetic, 115
positional strategy, 9
powerset, 1
PrΓ—provability predicate, 113
prenex normal form, 68
Presburger arithmetic, 88
primal algebra, 180
primitive recursive, 19, 30
primitive recursive relation, 20
principal filter, 5
product of graphs, 11
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propositional formulas, 39
PrRec—primitive recursion, 19
pumping lemma, 14, 17

Q
Q—rational numbers, 1
quantifier elimination, 85
quotient automaton, 16

R
R—real numbers, 1
Ramsey theorem, 8, 162
Rasiowa–Sikorski Theorem, 4
real closed field, 205
Rec—recursive operator, 25
recursive, 22, 25, 109
recursive ordinal, 37
recursively enumerable, 26, 109
refutable, 39, 44, 45
regular expression, 13, 29
regular language, 13, 29
regular ultrafilter, 8
representation theorem for

recursive functions, 111
resolution method, 44, 45, 68
resolvent, 45
Rice’s theorem, 36
Robinson arithmetic, 107
Robinson’s consistency theorem,

72
J. B. Rosser, 114

S
Sm

n —s-m-n theorem, 32
s-consistent, 66
satisfiable, 39, 45
saturated, 100
semantical consequence, 42, 55
semantical interpretation, 73
sequence, 63
sequence coding, 23
sequent, 46
Sheffer stroke, 182
similarity type, 53
Skolem function, 68, 79
sorosites, vi, 46

sound, 47
stabilizer, 5
Stone’s representation theorem, 6
strategy, 9
strong induction, 116
structure (first order), 54
substitution, 69
substitution lemma, 55
substructure, 56
Svenonius, L, 72
syntactic deduction lemma, 48
syntactically consistent, 66

T
Tarski’s theorem, 122
Tarski–Vaught test, 78
tautology, 39, 63
term (first order), 53
theory (of a structure), 56
torsion group, 98
total function, 27
tournament, 44
trace, 6
type, 75, 100

U
U -index, 21, 32
U (i ,~x)—universal recursive

function, 32
ultrafilter, 5, 6
ultrafilter on groups, 7
ultralimit, 7
ultraproduct, 94
undecidable, 34, 109
undefinability of truth, 122
uniform ultrafilter, 8
universal closure, 54
universal formula, 78
universal function, 21, 32
universal graphs, 124
universal language, 18
universal tournament, 125
unnested formula, 82

V
voting scheme, 11
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W
weight (ordering), 62
well founded, 70
well-ordering, 62
word, 13

Z

Z—integers, 1

zero-one law, 126

zorn’s lemma, 1
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