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a b s t r a c t 

The problem of sequentially transferring a data-predictive probability distribution from a source to a tar- 

get Bayesian filter is addressed in this paper. In many practical settings, this transfer is incompletely 

modelled, since the stochastic dependence structure between the filters typically cannot be fully speci- 

fied. We therefore adopt fully probabilistic design to select the optimal transfer mechanism. We relax the 

target observation model via a scale-mixing parameter, which proves vital in successfully transferring the 

first and second moments of the source data predictor. This sensitivity to the transferred second moment 

ensures that imprecise predictors are rejected, achieving robust transfer. Indeed, Student- t state and ob- 

servation models are adopted for both learning processes, in order to handle outliers in all hidden and 

observed variables. A recursive outlier-robust Bayesian transfer learning algorithm is recovered via a local 

variational Bayes approximation. The outlier rejection and positive transfer properties of the resulting al- 

gorithm are clearly demonstrated in a simulated planar position-velocity system, as is the key property of 

imprecise knowledge rejection (robust transfer), unavailable in current Bayesian transfer algorithms. Per- 

formance comparison with particle filter variants demonstrates the successful convergence of our robust 

variational Bayes transfer learning algorithm in sequential processing. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Transfer learning [1] is one of the fundamental paradigms of

rtificial intelligence, addressing knowledge transfer between two

or more) learning tasks, known as the source task(s) and the tar-

et task(s), respectively [2,3] . This research direction is of substan-

ial interest in the statistical machine learning community [4,5] ,

nd applications have been reported in protein folding [6] , self-

riving cars [7] , natural language processing [8] , biomedical image

nalysis [9] , etc. This paper is specifically interested in Bayesian

ransfer learning—the transfer of knowledge expressed as probabil-

ty distributions—and in the development of a consistent algorithm

or networks of Bayesian filtering nodes. 

In Bayesian transfer learning [10] , the challenge is to update the

re-prior distribution, prescribed via Bayesian foundations [11] , by

onditioning on a probability distribution made available by the

ource learning task [12,13] Fig. 1 c. Standard Bayesian calculus re-

ies on a complete specification of the stochastic dependence be-

ween the quantities of the target and source tasks, which we re-

er to as complete modelling . This may be practicable if the source
� The research has been supported by GA ̌CR grant 18-15970S. 
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nowledge takes the form of raw, stochastically modelled, data (i.e.

 random process realization). Recently, an axiomatically justified

pproach based on fully probabilistic design (FPD) [14,15] —which

s rooted in the minimum cross-entropy principle for optimal prior

esign [16] —has emerged. FPD provides a principled and optimal

ay for designing a probability distribution that conditions on an-

ther probability distribution. This approach—in contrast to com-

lete modelling—facilitates transfer in the form of a probability

istribution and thus admits more general expressions of source

nowledge. The main advantage lies in the fact that there is no

onger the need to specify dependence assumptions between the

arget and source tasks Fig. 1 b. We refer to this evolved setting as

ncomplete modelling . 

Recent work on FPD-based Bayesian transfer learning has been

oncerned with static [17,18] and dynamic [19] knowledge trans-

er between a pair of Kalman filters. However, the fragile assump-

ions of Gaussianity adopted by the Kalman filter are rarely met in

ractical applications. We want to consider scenarios where out-

iers are present (i.e. outlierness or heavy-tailedness), so that the

ominal noise values (inliers) of the state and observation pro-

esses are additionally contaminated by large, impulsive, and occa-

ional disturbances. This happens, for example, in unreliable sen-

ors or when tracking quickly manoeuvring targets. The perfor-

ance and stability of the Kalman filter can be severely under-

ined in such situations. This has led to an increased interest in

https://doi.org/10.1016/j.sigpro.2020.107624
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2020.107624&domain=pdf
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Fig. 1. (a) No interaction : an isolated Bayesian filter, with a complete depdence structure between the variables, ( z i , x i ); (b) complete interaction model : a joint Bayesian filter, 

with complete modelling of all variables, ( z S, i , z i , x S,i , x i ); (c) incomplete interaction model : source and target Bayesian filters, with isolated models of variables, (z S ,i , x S ,i ) and 

( z i , x i ), respectively. No stochastic interaction model is specified. The source filter can only provide its observation predictive distribution, F S . The target filter utilizes this 

source knowledge to improve its performance. 
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a  
robustifying the Kalman filter against outliers [20] . Most of the re-

cently proposed approaches rely on the heavy-tailed properties of

the Student- t distribution to model only the observation process,

involving optimization techniques that utilize expectation maxi-

mization [21] and variational approximations [22–27] . The design

of filtering algorithms that adopt the Student- t distribution also to

model the state process leads to tractability problems. However, ig-

noring such heavy-tailed state behaviours can have a significantly

negative impact on estimation performance, in applications such

as those mentioned above. To address this challenge, maximum

likelihood-based techniques were proposed in [28,29] . More re-

cently, heavy-tailed state process assumptions were imposed indi-

rectly by modelling the one-step-ahead state predictor as Student-

t , rather than directly modelling the state transitions as Student- t

[30–32] . Alternatives to Student- t modelling of heavy-tailed state

and observation processes have recently been proposed in [33] . 

Therefore, in this paper, we provide the following contributions:

1. We develop an online FPD-based static Bayesian transfer

learning algorithm that accepts knowledge in the form of an

observation predictor provided by a source filter. 

2. Both the source and target filters are susceptible to outliers

in both their state and observation processes. We propose a

novel robust Student- t filter that is based on (i) modelling

the heavy-tailed nature of both the state and observation

processes with infinite Gaussian scale mixtures (consistent

with Student- t modelling), and (ii) performing approximate

inference using the coordinate ascent mean-field variational

approach [34,35] , in order to recover a recursive algorithm. 

3. We show that the introduction of a suitable auxiliary vari-

able overcomes previous problems in achieving robust trans-

fer , i.e. in rejecting imprecise source information. This vari-

able augmentation now successfully transfers the second

moment information of the source. 

4. We provide extensive simulation results in the context of a

planar position-velocity system, demonstrating that the re-

ported Student- t transfer learning algorithm is more resis-

tant to outliers than its Gaussian counterparts. 

5. We also implement particle filtering variants of our varia-

tional Student- t algorithm, as well as of the classical mea-

surement vector fusion (MF) algorithm [36] . This allows us

to demonstrate the close tracking of our variational algo-

rithm and these expensive stochastic variants, supporting

the claims for convergence of our algorithm. 

In reference to contribution 2 above, note that our method

shares similarities with [31,33] but adopts a novel second-order ex-

tension in order to avoid informal model adaptations necessitated

in that previous work. This leads to a new computational flow

for suppressing outliers in the state process. In our previous work

[17,19] , we designed FPD-based static and dynamic Bayesian trans-

fer learning strategies between a pair of Kalman filters. However,
s stated in contribution 3, they could not achieve robust transfer,

nd it is a key contribution of this current work to design a robust

ransfer scheme. 

The rest of this paper is organized as follows: Section 2 speci-

es the Bayesian transfer learning problem, and its general solution

ia the FPD-based framework, which transfers the source observa-

ion predictive distribution to the target Bayesian filter in incom-

letely modelled scenarios. Section 3 instantiates Section 2 in the

tudent- t filtering context, introducing a novel solution for han-

ling outliers in the state process, and the essential scale-mixture

elaxation which ensures robust transfer learning. Tractable and

ecursive processing is recovered via a local variational Bayes ap-

roximation at each step. Section 4 studies the key aspects of the

roposed approach via a simulated planar position-velocity sys-

em, focusing on the robustness of the transfer, and its rejection

f outliers. Detailed experimental comparisons with particle filter

ariants reveal the convergence properties of our sequential vari-

tional Bayesian transfer learning algorithm. Section 5 discusses

he mechanism behind robust transfer learning and provides more

omments on the newly developed Student- t filter. Section 6 offers

oncluding remarks. 

. Static FPD transfer of an observation predictor between a 

air of Bayesian filters 

We consider a state-space model of the form 

 i ∼ F (x i | x i −1 ) , (1a)

 i ∼ F (z i | x i ) , (1b)

here the state variable x i ∈ x ⊆ R 

n x is indirectly (noisily) mea-

ured through the observation variable z i ∈ z ⊆ R 

n z , with i =
 , . . . , n being the discrete-time index (and x 0 ≡ ∅ in the condi-

ion). The model (1) is specified by the state transition and ob-

ervation probability distributions (1a) and (1b) , respectively. The

nitial state variable is distributed according to x 1 ∼ F (·) . All prob-

bility models are assumed to be expressed by distributions in this

ork. We use F to denote fixed-form (specified) distributions, and

 and Q to denote variational (unspecified) distributions. 

The fundamental and complete inferential object required to

evise inference algorithms for the state-space model (1) is the

oint model 

 (z i , x i , x i −1 | z i −1 ) = F (z i | x i ) F (x i | x i −1 ) F (x i −1 | z i −1 ) 

= F (z i | x i ) F (x i , x i −1 | z i −1 ) , (2)

here F (x i −1 | z i −1 ) is the posterior distribution at the previous

ime step and z i −1 = (z 1 , . . . , z i −1 ) is the past observation record

ith z 0 ≡ ∅ . The central aim of this paper is to design an al-

orithm for transferring knowledge from a source to a target

ayesian filter, see Fig. 1 c. In line with Bayesian principles, we

ssume that the source filter provides knowledge in the form of
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(  
 probability distribution, F S . Therefore, the target filter does not

ave access to the source observations, z S ,i , themselves. The infer-

ntial objective is to extend the basic setting (2) of the (isolated)

arget filter to condition also on this source distribution, F S , i.e. to

licit the distribution, 

 (z i , x i , x i −1 | F S , z i −1 ) . (3)

The approach (3) provides notable benefits, including the fol-

owing: (i) there is no need to specify explicit—and hard to elicit—

ependence assumptions between the source (z S ,i , x S ,i ) and target

 z i , x i ) quantities; (ii) F S facilitates more general expressions of

he source knowledge beyond crisp realizations, z S ,n ; and (iii) the

egrees-of-freedom (dofs) of F S —i.e. its sufficient statistics—are in-

ependent of n in dimension (and typically low-dimensional) in

onjugate Bayesian systems [11] . The form of (3) is unknown in

he absence of a complete model, and we therefore need to adopt

 mechanism for conditioning (2) on F S in this case. 

In this paper, we transfer the observation predictor, F S , of the

ource filter. This is achieved by restricting the functional form of

he unknown joint model (3) according to 

 (z i , x i , x i −1 | F S , z i −1 ) ≡ F S (z i | z S ,i −1 ) M (x i , x i −1 | F S , z i −1 ) , (4)

here “≡” denotes “is defined to be equal to”. More specifically,

e constrain the F S -conditioned model of the target observations

o be the observation predictor of the source filter evaluated at

target) z i ∈ z : 

 (z i | x i , x i −1 , F S , z i −1 ) ≡ F S (z S ,i | z S ,i −1 ) 
∣∣

z S ,i = z i 
. 

ixing the transferred F S (z i | z S ,i −1 ) in (4) , and admitting

 (x i , x i −1 | F S , z i −1 ) as the only variational quantity, the knowledge-

onstrained set of admissible models is defined to be 

 ∈ M ≡ { models (4) with F S (z i | z S ,i −1 ) fixed 

and M (x i , x i −1 | F S , z i −1 ) variational } . (5) 

he joint model (2) is the complete knowledge specification for the

elected (target) filter in the absence of knowledge transfer. There-

ore, we choose it as the ideal (reference) model, 

 I (z i , x i , x i −1 | z i −1 ) ≡ F (z i , x i , x i −1 | z i −1 ) . (6) 

FPD chooses the optimal model, M 

o , for an unknown model,

 , by searching for it within the knowledge-constrained set, M ∈
 (5) , and expressing preferences about M via the (pre-specified) 

deal model, M I (6) . Specifically, the FPD-optimal design, M 

o ∈ M ,

s chosen as the distribution that is closest to M I in the minimum

ullback-Leibler divergence (KLD) sense: 

 

o (z i , x i , x i −1 | F S , z i −1 ) ≡ argmin 

M ∈ M 

D(M || M I ) , (7)

here the KLD from M to M I is given by 

(M || M I ) = E M 

[ 
log 

(
M 

M I 

)] 
, 

nd E M 

denotes the expected value under M . 

roposition 1. If the unknown augmented model is a member of

he knowledge constrained set, M ∈ M (5) , and the ideal augmented

odel, M I , is given by (6) , then the FPD-optimal augmented model—

nd the solution of (7) —is 

 

o (z i , x i , x i −1 | F S , z i −1 ) = F S (z i | z S ,i −1 ) M 

o (x i , x i −1 | F S , z i −1 ) , (8) 

here 

 

o (x i , x i −1 | F S , z i −1 ) ∝ F (x i , x i −1 | z i −1 ) 

× exp 

{ 

∫ 
log F (z i | x i ) F S (z i | z S ,i −1 ) dz i 

} 

. (9) 

roof. See Appendix A . �
The FPD-optimal second-order state prior (9) processes the

ource observation predictor in the incompletely modelled case.

t is the optimal update from the pre-prior F (x i , x i −1 | z i −1 ) to the

rior M 

o (x i , x i −1 | F S , z i −1 ) , and is subsequently adopted by the tar-

et filter in (2) by assigning 

 (x i , x i −1 | F S , z i −1 ) ≡ M 

o (x i , x i −1 | F S , z i −1 ) . 

he FPD-optimal source-knowledge-constrained variant of (2) then

ecomes 

 (z i , x i , x i −1 | F S , z i −1 ) ≡ F (z i | x i ) M 

o (x i , x i −1 | F S , z i −1 ) . (10) 

he joint augmented model (10) is now sufficient for designing the

arget filter. 

. Static FPD transfer of an observation predictor between a 

air of Student- t filters 

Outliers are defined as sudden disturbances or anomalies that

re inconsistent with the assumed process model. Outlierness can

e modelled via a linear mixture of the (clean) process model and

nother component with large variance. Examples include the ε-

ontamination model [30] and the spike-and-slab model [23] . In

his paper, we opt to use the Student- t distribution, St (·;μ, �, η) ,

hich models the outliers via tails that are heavier than those

f the standard Gaussian distribution, N (·;μ, �) . Here, μ is the

ean vector, � is the scale matrix (or covariance matrix for the

aussian distribution), and η > 0 is the dof parameter. The tails

f the Student- t distribution are tuned by the degrees-of-freedom

dof) parameter, η. If η = 1 , the tails are heavy, thus modelling

arge outliers. For increasing η, the tails become lighter. Indeed,

im η→∞ 

St (·;μ, �, η) = N (·;μ, �) , in which case outlierness is not

xplicitly modelled. 

The conventional Kalman filter adopts a state-space model

1) in Gaussian form [37] , and thus fails to model outlierness,

ignificantly undermining its performance in outlier-present en-

ironments. In order to increase robustness to outliers, we relax

 (·;μ,�) to its Student- t generalization, St (·;μ, �, η) , via the fol-

owing specification of the state-space model (1) : 

 (x i | x i −1 ) ≡ St (x i ; Ax i −1 , Q, ω) , (11a)

 (z i | x i ) ≡ St (z i ;Cx i , R, ν) , (11b)

here A, Q , and ω are, respectively, the state transition matrix,

tate noise scale matrix, and state dof parameter; and C, R , and

are, respectively, the observation matrix, observation noise scale

atrix, and observation dof parameter. It is typical for observation

rocesses to contain outliers when using poor-quality sensors, sen-

ors with sudden short-time failures, or sensors that interfere with

 nearby device. Specific outlier contexts include multipath fading

n satellite positioning applications [22] and electromagnetic wave

eflections in radar applications [38] . Separately, the state process

s susceptible to outliers in contexts such as the tracking a rapidly

anoeuvring target or the processing corrupted observations from

n inertial measurement unit [27,39] . 

We ensure, by construction, that the posterior state

istribution—i.e. the filtering distribution—at time i − 1 is 

 (x i −1 | z i −1 ) ≡ N (x i −1 ; x i −1 | i −1 , P i −1 | i −1 ) , (12)

here N (·;μ, �) denotes the Gaussian distribution with mean

ector, μ, and covariance matrix, �. Specifically, x i −1 | i −1 and

 i −1 | i −1 are the state estimate and covariance matrix at step i − 1 ,

espectively. It was shown in [31] that (12) enhances estimation

erformance in the context of (11) , when compared to adoption of

 Student- t distribution. 

The conditional and marginal distributions of the joint model

10) are intractable under (11) and (12) , as there is no closed-form
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F

expression for a joint distribution constructed either from Student-

t distributions with different dof parameters [40] , or from a combi-

nation of Student- t and Gaussian distributions. To simplify the sub-

sequent design of the (approximate) inference algorithm, we use

the fact that (11) can alternatively be expressed as infinite Gaus-

sian scale mixtures: 

F (x i | x i −1 ) = 

∫ ∞ 

0 

N 

(
x i ; Ax i −1 , ξQ 

)
i G 

(
ξ ; ω 

2 
, ω 

2 

)
dξ , (13a)

F (z i | x i ) = 

∫ ∞ 

0 

N 

(
z i ;Cx i , λR 

)
i G 

(
λ; ν

2 
, ν

2 

)
dλ, (13b)

where i G 
(
·; a, b 

)
denotes the inverse-Gamma distribution with

shape and scale parameters, a and b , receptively; and ξ and λ are

scalar mixing variables. This allows us to reformulate the state-

space model (11) hierarchically as follows: 

F (x i | ξ , x i −1 ) ≡ N 

(
x i ; Ax i −1 , ξQ 

)
, (14a)

F (ξ ) ≡ i G 
(
ξ ; ω 

2 
, ω 

2 

)
, (14b)

F (z i | λ, x i ) ≡ N 

(
z i ;Cx i , λR 

)
, (14c)

F (λ) ≡ i G 
(
λ; ν

2 
, ν

2 

)
. (14d)

For the purposes of robust knowledge transfer, we augment the

conditional observation model (14c) with the further auxiliary vari-

able, κ , as follows: 

F (z i , λ, κ| x i ) ≡ F (z i | κ, x i ) F (λ) F (κ) , 

F (z i | κ, x i ) ≡ N 

(
z i ;Cx i , κR 

)
, 

F (κ) ≡ i G 
(
κ; α

2 
, 

β
2 

)
, (15)

and F (λ) is given by (14d) . Consequently, the joint model (10) is

augmented in the following way: 

F (z i , λ, κ, ξ , x i , x i −1 | F S , z i −1 ) ≡
F (z i | λ, x i ) M 

o (λ, κ, ξ , x i , x i −1 | F S , z i −1 ) , (16)

where 

M 

o (λ, κ, ξ , x i , x i −1 | F S , z i −1 ) ∝ F (λ, κ, ξ , x i , x i −1 | z i −1 ) 

× exp 

{ 

∫ 
log F (z i | κ, x i ) F S (z i | z S ,i −1 ) dz i 

} 

. (17)

The central inference objective of this paper is to compute the

joint augmented posterior model 

F (λ, κ, ξ , x i | F S , z i ) . (18)

The normalizing constant of (18) is analytically intractable, which

prevents us from finding an exact closed-form expression for com-

puting (18) . Therefore, we are forced to rely on approximate in-

ference techniques. We adopt coordinate ascent mean-field varia-

tional inference (variational Bayes) [35] as a local approximation in

each step of Bayesian filtering, since—as we shall see—it recovers

a computationally efficient recursive filtering algorithm with good

performance. In our current approach, we opt to approximate the

second-order model, 

F (λ, κ, ξ , x i , x i −1 | F S , z i ) , (19)

which is proportional to (16) . This extension will engender second-

order interactions in the resulting approximate distribution, which

will prove vital in outlier suppression. We will discuss this point

further in Section 5 . Specifically, we seek an optimal posterior dis-

tribution from the mean-field variational class, as follows: 

Q (λ, κ, ξ , x i , x i −1 | F S , z i ) ≡ Q (κ| F S , z i ) 
× Q (λ| F S , z i ) Q (ξ | F S , z i ) Q (x i , x i −1 | F S , z i ) . (20)
 M  
he joint factor, Q (x i , x i −1 | F S , z i ) , is the key element in correctly

andling the outliers in the state process. After marginalizing

 i −1 , it yields the required F S -conditioned state filtering factor,

 (x i | F S , z i ) . 
Coordinate ascent mean-field variational inference seeks a local

ptimum of the variational objective function—the evidence lower

ound [35] —by iteratively optimizing every independent (free) fac-

or, 

 

o 
(
θ j 

)
∝ exp 

{
E −θ j 

[ log F ( 
) ] 
}
, (21)

hile keeping the complementary ones, 

 

o 
−θ j 

= 

∏ 

l 
 = j 
Q 

o ( θl ) , (22)

xed. Here, 
 ≡ (θ1 , . . . , θm 

) , and E −θ j 
denotes the expected value

ith respect to the complementary factors (22) . 

roposition 2. If the joint augmented model (16) is specified by

14) and (15) , and the source observation predictor is 

 S (z i | z S ,i −1 ) ≡ Q 

o 
S (z i | z S ,i −1 ) = N (z i ; z S ,i | i −1 , R S ,i | i −1 ) , (23)

hen the optimal variational factors of (20) are 

 

o (ξ | F S , z i ) = i G 
(
ξ ; a ξ

2 
, 

b ξ
2 

)
, (24a)

 

o (λ| F S , z i ) = i G 
(
λ; a λ

2 
, 

b λ
2 

)
, (24b)

 

o (κ| F S , z i ) = i G 
(
κ; a κ

2 
, b κ

2 

)
, (24c)

Q 

o ( x i , x i −1 | F S , z i ) = 

N 

([
x i 

x i −1 

]
;
[

x i | i 
x i −1 | i 

]
, 

[
P i | i P i | i L � 

LP i | i LP i | i L � + P i −1 | i 

])
, (24d)

nd, specifically, the FPD-optimal state predictor is 

 

o (x i | F S , z i −1 ) = N (x i ; x̄ i | i −1 , P̄ i | i −1 ) . (25)

he shape and scale hyperparameters of (24a) –(24c) are: 

a ξ = ω + n x , 

 ξ = ω + tr 
{
E 

[
(x i − Ax i −1 )(x i − Ax i −1 ) 

� ]Q 

−1 
}
, (26)

a λ = ν + n z , 

 λ = ν + tr 
{
E 

[
(z i − Cx i )(z i − Cx i ) 

� ]R 

−1 
}
, (27)

a κ = α + n z , 

 κ = β + tr 
{(

R S,i | i −1 + E 

[(
z S,i | i −1 − Cx i 

)(
z S,i | i −1 − Cx i 

)� ])
R 

−1 
}
. 

(28)

he shaping parameters of (24d) and (25) are given by 

 i −1 | i = x i −1 | i −1 + L (x i | i − x i | i −1 ) , 

P i −1 | i = (I n x − LA ) P i −1 | i −1 , (29)

 i | i = x̄ i | i −1 + K(z i − z̄ i | i −1 ) , 

P i | i = (I n x − KC) ̄P i | i −1 , (30)

¯
 i | i −1 = x i | i −1 + M(z S ,i | i −1 − z i | i −1 ) , 

P̄ i | i −1 = (I n x − MC) P i | i −1 . (31)

urthermore, the gain terms are 

K = P̄ i | i −1 C 
� R̄ 

−1 
i | i −1 

, 

L = P i −| i −1 A 

� P −1 
i | i −1 

, 

 = P i | i −1 C 
� R 

−1 
i | i −1 

. (32)
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he remaining statistics are 

x i | i −1 = Ax i −1 | i −1 , 

P i | i −1 = AP i −1 | i −1 A 

� + E [ ξ−1 ] −1 Q, 

z̄ i | i −1 = C ̄x i | i −1 , 

¯
 i | i −1 = C ̄P i | i −1 C 

� + E [ λ−1 ] −1 R, 

z i | i −1 = Cx i | i −1 , 

 i | i −1 = C P i | i −1 C 
� + E [ κ−1 ] −1 R. (33) 

roof. See Appendix B . �

The shaping parameters of the variational factors (24) are cou-

led, and so there is no closed-form algebraic solution to up-

ate them directly. Instead, the computation of these factors is

erformed using a fixed-point iterative approach with N consec-

tive iterations per filtering step. Having expressed the required

xpected values in Proposition 2 in terms of the induced statistics,

e obtain the iterative variational Bayes scheme summarized in

lgorithm 1 . Notice that (26, 29) , (27, 30) , and (28, 31) are repre-

Algorithm 1: Student- t static variational Bayesian transfer 

learning. 

Input : x i −1 | i −1 , P i −1 | i −1 , z i , z S ,i | i −1 , R S ,i | i −1 , 

A , C, Q , R , ω, ν , α, β , N 

1 Initialize x (0) 
i | i = x i −1 | i −1 , P 

(0) 
i | i = P i −1 | i −1 , x 

(0) 
i −1 | i = x i −2 | i −1 , and 

P (0) 
i −1 | i = x i −2 | i −1 

2 for k = 0 , . . . , N − 1 do 

3 Time-and-smoothing step: 

4 � = (I n x − AL ) P (k ) 
i | i (I n x − AL ) � + AP (k ) 

i −1 | i A 

� 

5 ( x (k +1) 
i −1 | i , P (k +1) 

i −1 | i , x i | i −1 , P i | i −1 )= B ( ω, ω, x (k ) 
i | i , A , Q , x (k ) 

i −1 | i , �, 

x i −1 | i −1 , P i −1 | i −1 , n x ) 

6 Transfer learning step: 

7 � = C P (k ) 
i | i C � + R S ,i | i −1 

8 ( ̄x i | i −1 , P̄ i | i −1 , z̄ i | i −1 , R̄ i | i −1 )= B ( α, β , z S ,i | i −1 , C, R , x (k ) 
i | i , �, x i | i −1 , 

P i | i −1 , n z ) 

9 Data step: 

10 � = C P (k ) 
i | i C � 

11 ( x (k +1) 
i | i , P (k +1) 

i | i , z i | i −1 , R i | i −1 )= B ( ν , ν , z i , C, R , x (k ) 
i | i , �, x̄ i | i −1 , 

P̄ i | i −1 , n z ) 

12 Set x i | i =x (N) 
i | i , P i | i =P (N) 

i | i , x i −1 | i =x (N) 
i −1 | i , and P i −1 | i =P (N) 

i −1 | i 
Output : x i | i , P i | i 

( ̂  x , ̂ P , ̂  y , ̂  S )= B ( c, d, y , H, S, μ, �, x , P , n ) 

13 a = c + n 

14 b = d + tr 
{

[(y − Hμ)(y − Hμ) � + �] S −1 
}

15 ̂  y = Hx 

16 ̂  S = H P H 

� + 

b 
a S 

17 N = P H 

� ̂ S −1 

18 ̂  x = x + N(y − ̂ y ) 

19 ̂ P = P − N ̂

 S N 

� 

ented by the same algebraic structure, which we therefore encode

ia the subroutine B . The latter is invoked three times per iteration

or each step of the algorithm, namely the time-and-smoothing

tep, the transfer learning step, and the data step. 

emark 1. The isolated Student- t filter is obtained by approximat-

ng the second-order model, F (λ, ξ , x i , x i −1 | z i ) , c.f. (19) , via an op-

imal posterior distribution from the mean-field variational class, 

 (λ, ξ , x i , x i −1 | z i ) ≡ Q S (λ| z i ) Q (ξ | z i ) Q (x i , x i −1 | z i ) . 
his is accomplished by a simple adaptation of the proof of

roposition 2 (which we do not present here for brevity). The iso-

ated source Student- t filter Fig. 1 c is designed in exactly the same

ay. Consequently, the source filter provides the observation pre-

ictor, F S , in the Gaussian form (23) . 

. Experiments 

This section presents an extended simulation context in order

o demonstrate the main features of the proposed method: (i)

onvergence of the local—variational Bayes—approximate inference

cheme, (ii) robust and versatile transfer learning properties in

he outlier-free setting, (iii) resistance to outliers of varying inten-

ity, and (iv) estimation performance for various qualities of source

nowledge in outlier-present settings. In all our experiments, we

onsider the linear state-space model with the following struc-

ure: 

 i +1 = Ax i + w i , w i ∼ St (w i ; 0 , Q, ω) , 

z i = Cx i + v i , v i ∼ St (v i ; 0 , R, ν) , 

z S ,i = Cx i + v S ,i , v S ,i ∼ St (v S ,i ; 0 , R S , νS ) , (34) 

here w i ∈ x , v i ∈ z , and v S ,i ∈ z are the target state, target ob-

ervation, and source observation noise variables, respectively. We

tudy the position-velocity model for tracking a highly manoeu-

ring target in the plane ( R 

2 ). The parameters of (34) are therefore

pecified as [43] : 

 = 

[
1 �
0 1 

]
� I 2 , Q = q 

[
�3 

3 
�2 

2 

�2 

2 
�

]
� I 2 , 

 = 

[
I 2 O 2 

]
, R = rI 2 , R S = r S I 2 . 

Here, the state vector is x i ≡ ( p x, i , p y, i , v x, i , v y, i ), where p x,i and

 y,i are position coordinates in the x and y axes, respectively, and

 x, i and v y, i are the velocities in the x and y axes, respectively.

nly the positional states are (noisily) observed. The matrices of

his model result from the discretization of the standard kinematic

quations (see, for example, Section 6.2 [44] ). We set the sampling

eriod, state noise power spectral density, source observation vari-

nce, and target observation variance as � = 0 . 1 s , q = 1 m 

2 / s 3 ,

 S = 10 m 

2 and r = 100 m 

2 , respectively. The initial posterior state

stimate and covariance matrix are x 1 | 0 = 0 and P 1 | 0 = I 4 , respec-

ively. The dof parameters of the target filter (14) are taken as

 = 4 , ν = 1 , and the associated parameters of the inverse gamma

rior (15) as α → 0, β → 0. The dof parameters of the source filter

re (also) taken as ω S = 4 and νS = 1 . Note that the correct param-

ter values are adopted in the generative model (34) , and so we do

ot allow any model misspecification in these simulations. (34) im-

lies that the common state process, x i , is observed (with outlier-

ess) via the conditionally independent source and target observa-

ion processes, z S ,i and z i , respectively. The state estimation perfor-

ance is evaluated via the mean-norm error (MNE) between the

rue state and its posterior estimate, i.e. MNE = 

1 
n 

∑ n 
i =1 || x i − x i | i || ,

here || · || is the Euclidean norm and n = 100 . We compare the

lgorithms listed in Table 1 . 

emark 2. The (target) SNT filter is the isolated Student- t ( Fig. 1 a)

lter without any source information ( Remark 1 ). It can readily be

btained from Algorithm 1 by omitting the transfer learning step

lines 6–8) and setting x̄ i | i −1 ≡ x i | i −1 and P̄ i | i −1 ≡ P i | i −1 in the data

tep. This filter acts as the datum for all the transfer learning algo-

ithms. 

emark 3. The SST filter ( Algorithm 1 ) receives the source obser-

ation predictor, F S (23) , of the isolated source SNT filter Fig. 1 c.

 S is an inference from learning the hidden state process from the
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Fig. 2. The position MNE versus the number of iterations, N , for the NT filters (left), MF filters (middle), and ST filters (right). The results are averaged over 100 independent 

simulation runs, with the solid line being the median and the shaded area delineating the interquartile range. 

Table 1 

The list of algorithms compared in the simulation study. 

Algorithm Description 

S tudent- t filter with N o T ransfer ( SNT ) Remark 2 

S tudent- t S tatic Bayesian T ransfer learning ( SST ) Remark 3 

S tudent- t M easurement vector F usion ( SMF ) Remark 4 

G aussian filter with N o T ransfer ( GNT ) [41] 

G aussian S tatic Bayesian T ransfer learning ( GST ) [17] 

G aussian M easurement vector F usion ( GMF ) [36] adapted with [17] 

P article filter with N o T ransfer ( PNT ) [42] 

P article S tatic Bayesian T ransfer learning ( PST ) Remark 5 

P article M easurement vector F usion ( PMF ) Remark 6 
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history, z S ,i , of the source observation process, and so validly con-

stitutes ‘transfer learning’, i.e. we learn about the state process via

the source task and use this knowledge to enhance the target task.

Remark 4. The SMF filter is the implied Student- t version of the

measurement vector fusion (MF) algorithm [36] , being a specific

case of Fig. 1 b. It is obtained by applying (the product of) the

observation models (34) in the target SNT filter ( Remark 2 ). The

algorithm then follows from a simple adaptation of the proof of

Proposition 2 . The main disadvantage of this classical MF approach

is the requirement for complete specification of the explicit depen-

dence assumptions between the source and target tasks (i.e. com-

plete modelling), which is—importantly—not required by our SST

filter (see Section 1 ). 

Remark 5. The PST filter follows from an application of sequen-

tial importance sampling and resampling [42] in the context of

Proposition 1 . We directly use the Student- t state-space model

(11) without its scale mixture decomposition. To implement the

exponential term in (9) , the PST filter receives the source observa-

tion predictor, F S , in the form of an empirical distribution provided

by the isolated source PNT filter. 

Remark 6. The PMF filter follows from application of sequential

importance sampling and resampling [42] in the MF context de-

scribed in Remark 4 . 

4.1. Convergence properties 

Although rigorous treatment of the convergence properties of

non-sequential variational Bayes methods has recently been pro-

posed [45] , similar results on sequential variational Bayesian filter-

ing are still elusive. On the other hand, particle filters [42] con-

stitute a theoretically well supported stochastic approximation for

the sequential Bayesian filtering problem. The essential feature of

particle filters is that—with certain regularity assumptions—the ap-

proximation of the expected value of an unbounded function un-
er the filtering distribution converges in the L 

p -norm (for p ≥ 2)

o the exact solution as the number of particles approaches infin-

ty [46] . We adopt particle filters in our current simulation study

n order to analyse the convergence properties of our proposed al-

orithm, whose tractability has been arranged via sequential local

ariational Bayes approximation at each step. 

In Fig. 2 , we present the position MNE of the SNT, SMF, and SST

lters as the function of the number of (variational Bayes) itera-

ions, N . The PNT, PMF, and PST filters run with 500 particles, the

ootstrap proposal distribution, and multinomial resampling [42] ,

elineating a sufficient lower MNE level in the present example.

ncreasing the number of particles extends this level only insignifi-

antly, since the state-space model does not contain nonlinearities.

he GNT, GMF, and GST filters provide an upper MNE level, which

e seek to outperform. We see that the proposed Student- t filters

ndeed have lower MNEs than the upper MNE of the Gaussian fil-

ers, for as little as N = 1 . Moreover, when increasing the number

f iterations, the Student- t filters converge close to the lower MNE

f the particle filters with no further improvements for N > 16.

his experiment illustrates that our variational Student- t algorithm

onverges close to the stable solution provided by the particle fil-

ers, as the number of iterations, N , increases. 

.2. Robust transfer learning 

The key feature of any transfer learning algorithm is its abil-

ty to reject poor-quality source knowledge, i.e. to achieve ro-

ust transfer. We demonstrate that the proposed method not only

rovides robust transfer but also allows us to tune the amount

f transferred knowledge when processing high-quality source

nowledge. We show this in the important special case of trans-

er between Kalman filters, and so we consider the outlier-free

egime with the dof parameters of the source and target filters set

o ω → ∞ and ν → ∞ ( 14b,14d ). Under this setting, the tails of the

tudent- t distributions (34) correspond to the tails of the Gaussian

istributions. Our earlier treatments of this situation—without the

augmentation—failed to reject high-variance source knowledge

17,19] . 

Fig. 3 illustrates how the MNE of the target filter depends on

he quality of the source knowledge, by fixing the target observa-

ion variance, r , and varying the source observation variance, r S .

he GNT filter is isolated (i.e. it does not accept any source knowl-

dge), and therefore it delineates the baseline MNE performance.

he GST and SST filters accept source knowledge, and their MNE

hus depends on the ratio of r to r S . We say that these filters de-

iver positive or negative knowledge transfer if their MNE is below

r above the performance level of the GNT filter, respectively. We

ee that the GST filter developed in Foley and Quinn [17] yields
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Fig. 3. The position MNE versus the source observation variance, r S for α and β varying (left), and α fixed and β varying (right). The results are averaged over 10 0 0 

independent simulation runs, with the solid line being the median and the shaded area delineating the interquartile range. 
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ositive transfer for r S < 10 , but negative transfer for r S > 10 . Ac-

ordingly, since the MNE of the GST filter does not saturate at the

aseline MNE level of the GNT filter, we say that the GST filter is

ot robust , i.e. it does not reject poor-quality source knowledge. 

Fig. 3 (left) shows how different values of α = β = δ (15) in-

uence the transfer learning properties of the developed SST fil-

er for poor-quality source knowledge ( r S > 10 ). We observe that,

or δ → ∞ , the SST filter recovers the performance of the GST fil-

er. A key result is that—as δ decreases—the ability to reject poor-

uality source knowledge improves. Specifically, for δ = 1 , the SST

lter provides positive transfer for r S < 10 and robust transfer for

 S > 10 . This investigation demonstrates that δ can be set by the

odeller to enable any amount of rejection of poor-quality source

nowledge, via δ → ∞ (no rejection) to δ = 1 (complete rejection),

espectively. 

Fig. 3 (right) demonstrates how the parameters α and β of

15) influence the transfer learning properties of the developed

ST filter in the interval of high-quality source knowledge, r S < 10 .

pecifically, we set α = 10 −8 and change β from 10 −8 to 10 8 . This

llows us to utilize all, or no, available high-quality source infor-

ation, for β = 10 −8 , or β = 10 8 , respectively. For r S > 10 , and

or any setting of β , the SST filter achieves robust transfer. Impor-

antly, for β → 0, the proposed SST filter surpasses the GST filter.

e offer more comments on these regimes in Section 5 . 

.3. Robustness to state and observation outliers 

Another principal purpose of the developed Student- t -based

ransfer learning algorithm—apart from robust transfer (above)—is
ig. 4. The position MNE versus the outlier intensity in the common states (left), source o

0 0 0 independent simulation runs, with the solid line being the median and the shaded 
o provide improved estimation performance in applications that

uffer from outliers. Therefore, we compare the Student- t filters

ith the Gaussian filters when changing the outlier intensity (the

of parameters) in the state, source observation, and target obser-

ation noise variables (34) . 

Fig. 4 (left) shows the position MNE versus the state dof pa-

ameter, ω. The source and target observation dof parameters are

et to νS → ∞ and ν → ∞ . In this case, the Student- t source

nd target observation distributions approach the Gaussian distri-

ution ( Section 3 ). For ω = 1 —corresponding to substantial outlier

ntensity—the difference between the Student- t and Gaussian fil-

ers is significant. When increasing ω (i.e. approaching Gaussian-

ty), the MNE of the Student- t filters approaches the MNE of the

aussian filters, eventually reaching the same values as ω → ∞ . 

To assess how the outliers affect the transfer learning proper-

ies of the proposed SST filter, we present Fig. 4 (middle) which

epicts the position MNE while changing the source observation

of parameter, νS . The target state and observation dof parameters

re set to ω → ∞ and ν → ∞ . In this case, there is obviously no

ifference between the GNT and SNT filters, since they are not in-

uenced by the source knowledge, and—as before—the Student- t

oise distributions coincide with the Gaussian noise distributions.

or large outliers in the source observations, νS = 1 , we see that

he Student- t filters offer increased performance compared to the

aussian filters. Again, as the source observation dof parameter ap-

roaches infinity, νS → ∞ , we obtain a performance equivalent to

he Gaussian filters. 

The results in Fig. 4 (right)—where ω → ∞ and νS → ∞ —

emonstrate that all methods behave in a similar way compared to
bservations (middle), and target observations (right). The results are averaged over 

area delineating the interquartile range. 
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Fig. 5. The MNE of the target filter versus the observation variance r S of the source filter for position (left) and velocity (right). The results are averaged over 10 0 0 indepen- 

dent simulation runs, with the solid line being the median and the shaded area delineating the interquartile range. 
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Fig. 4 (left). Overall, the results in Fig. 4 confirm that the Student- t

filters provide a lower MNE than the Gaussian filters when there

are (even small) departures from the Gaussian modelling assump-

tions. Since the source and target observation variances, r and r S ,

are set differently, we can notice the performance differences be-

tween the filters with and without transfer learning abilities. 

4.4. Influence of source observation variance, r S , on transfer 

Fig. 5 illustrates the contrast between filters with and without

the heavy-tailed assumptions on the state and observation pro-

cesses while considering the presence of outliers and changing the

quality of the source knowledge, controlled by r S . Similarly as be-

fore, the GNT and SNT filters do not, of course, receive source

knowledge, but they do provide a reference MNE level against

which the transfer-based Gaussian and Student- t filters, respec-

tively, can be compared. The clear difference between these two

MNE levels demonstrates that the SNT filter provides increased re-

sistance to outliers. The performance of the remaining filters de-

pends on the ratio of r to r S . The filters deliver positive or negative

knowledge transfer whenever their MNE falls below or rises above

the reference level, respectively. In particular, the GST filter offers

positive transfer for r S < 10 , but negative transfer for r S > 10 since

the MNE does not saturate at the reference level of the GNT fil-

ter and thus does not reject imprecise source knowledge (i.e. it

is not robust). The SST filter, on the other hand, provides posi-

tive transfer for r S < 10 and successfully rejects imprecise source

knowledge by staying at the reference level of the SNT filter for

r S > 10 (i.e. it is robust). Similarly, both the GMF and SMF filters—

hich imply a completely specified stochastic dependence struc-

ture between source and target processes—provide positive transfer

and reject imprecise source knowledge (again, robust transfer). An

overall look at the MNE and the associated interquartile ranges in

Fig. 5 shows that the Gaussian filters are significantly more prone

to outliers than the Student- t filters. 

5. Discussion 

Recall that the principal objective of the current paper is to

achieve robust Bayesian knowledge transfer, i.e. the rejection of

imprecise external knowledge. This was previously done only by

an informal adaptation of FPD-optimal algorithms in the context

of Kalman filters [17,19] . The non-robustness is seen in the GST fil-

ter performance in Fig. 5 . The problem arises from the fact that

the FPD-optimal transfer is insensitive to the second moment of

the source observation predictor in the Gaussian case [47] . The in-

formal adaptation which was necessitated in order to achieve ro-

bust Gaussian transfer is obviated in the formal approach of this
aper. The key progression in the current work has been the intro-

uction of the auxiliary variable, κ (15) . This allows the successful

ransfer of the source predictive covariance, R S ,i | i −1 , as seen in (28) .

quivalently, in the resulting Algorithm 1 , � in line 7 successfully

rocesses this second-order source statistics, entering the subrou-

ine B as the seventh input variable. The framework reported in

he current paper generalizes the hyperparameter-based relaxation

or FPD-optimal robust transfer between Kalman filters [47] , by al-

owing for Student- t outlierness in all the involved processes. Tech-

ically, the framework in the current paper specializes to [47] by

etting ω → ∞ and ν → ∞ in (26) and (27) , respectively. 

We have shown that the prior relaxation of κ via (15) is vital

o the success of transferring higher-order moments of the source

bservation predictor, in that the transfer fails at high δ ( Fig. 3 ). In

his regime, b κ approaches δ (28) and the sensitivity on R S ,i | i −1 is

ost. 

This augmentation—at the cost of tractability in the exact FPD-

ptimal transfer learning algorithm—fails to preserve fixed func-

ional forms sequentially. We have shown that the variational

ayes approximation, introduced as a local approximation at each

ime i , achieves functional closure of the parametric classes pro-

osed in (23) –(25) , recovering the recursive Algorithm 1 . Note,

owever, that there are no guarantees in respect of the distribu-

ional accuracy achieved after sequential application of a local ap-

roximation such as variational Bayes [48] . 

The local variational Bayes approximation has previously been

pplied in Bayesian filtering [48] , and, specifically, in filtering with

utlier robust Student- t models [31,33] . In the latter, the variational

ayes approximation proves to be intractable, and the authors

vercome this problem via an informal adaptation of the one-step-

head state predictor. We have circumvented this requirement in

he current paper by approximating the second-order model (19) ,

ather than the first-order model (18) which was adopted in Huang

t al. [31,33] . The resulting benefit for our algorithm is best seen in

33) , where the dependence on state auxiliary variable ξ (13a) is

ngendered in the second term on the right-hand side, effectively

odulating the nominal state-noise scale matrix, Q , instead of the

ovariance matrix of the one-step-ahead state predictor, P i | i −1 , as

n Huang et al. [31,33] . 

. Conclusion 

The sequential FPD-optimal Bayesian transfer learning algo-

ithm developed in this paper has provided an important ad-

ance beyond previously available variants. The scale-mixture re-

axation of the target observation process has allowed the transfer

f higher-order moments of the source distribution, and we have

een that this ensures robust transfer. The reported framework
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xplicitly models outliers in the source and target processes via the

eavy-tailed Student- t distribution. In this respect, we proposed a

ovel and formal approach for dealing with outliers in the state

rocess, which was previously unavailable in the literature. The

imulation results in Section 4.4 show clearly that the algorithm

ejects state and observation outliers when the isolated Kalman fil-

er cannot. 

The comparisons with MF-based algorithms reveal that the lat-

er can still outperform our FPD-optimal Bayesian transfer, but they

equire a complete model of the dependence between the source

nd target state processes, which ours does not. Real-process en-

ironments that depart from these assumptions which, anyway,

re hard to elicit in practice will undermine the MF performance.

hese problems are resisted by our FPD-optimal approach, which

s, intrinsically, an optimal model completion strategy, and so does

ot depend on these fragile assumptions. 
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ppendix A. Proof of Proposition 1 

Applying (4) and (6) in (7) leads to 

(M || M I ) = 

∫ 
F S (z i | z S ,i −1 ) M (x i , x i −1 | F S , z i −1 ) 

× log 

(
F S (z i | z S ,i −1 ) M (x i , x i −1 | F S , z i −1 ) 

F (z i | x i ) F (x i , x i −1 | z i −1 ) 

)
× d z i d x i d x i −1 

= 

∫ 
M (x i , x i −1 | F S , z i −1 ) 

×
(

log 
M (x i , x i −1 | F S , z i −1 ) 

F (x i , x i −1 | z i −1 ) 
− E F S [ log F (z i | x i )] 

)
× d z i d x i d x i −1 − H F S 

= 

∫ 
M (x i , x i −1 | F S , z i −1 ) 

×
( 

log 
M (x i , x i −1 | F S , z i −1 ) 

F (x i , x i −1 | z i −1 ) exp 

{
E F S [ log F (z i | x i )] 

}) 

× d z i d x i d x i −1 − H F S + log c M 

o − log c M 

o 

= 

∫ 
M (x i , x i −1 | F S , z i −1 ) 

× log 

(
M (x i , x i −1 | F S , z i −1 ) 

M 

o (x i , x i −1 | F S , z i −1 ) 

)
d x i d x i −1 

− H F S − log c M 

o , 

here 

 F S = −
∫ 

F S (z i | z S ,i −1 ) log F S (z i | z S ,i −1 ) dz i 

s the differential entropy of F S , and 

 M 

o = 

∫ 
F ( x i , x i −1 | z i −1 ) exp 

{
E F S [ log F ( z i | x i ) ] 

}
d x i d x i −1 

s the normalizing constant. 
ppendix B. Proof of Proposition 2 

We start the proof by finding an expression for the logarithm

f (16) , which—under (14) and (15) —yields 

log F (z i , λ, κ, ξ , x i , x i −1 | F S , z i −1 ) = 

−n z 

2 

log λ − 1 

2 

(z i − Cx i ) 
� λ−1 R 

−1 (z i − Cx i ) 

−ν + 2 

2 

log λ − ν

2 λ

−n z 

2 

log κ − 1 

2 

(z S ,i | i −1 − Cx i ) 
� κ−1 R 

−1 (z S ,i | i −1 − Cx i ) 

−α + 2 

2 

log κ − β

2 κ
− 1 

2 

tr { R S ,i | i −1 κ
−1 R 

−1 } 

−n x 

2 

log ξ − 1 

2 

(x i − Ax i −1 ) 
� ξ−1 Q 

−1 (x i − Ax i −1 ) 

−ω + 2 

2 

log ξ − ω 

2 ξ

−1 

2 

(x i −1 − x i −1 | i −1 ) 
� P −1 

i −1 | i −1 
(x i −1 − x i −1 | i −1 ) + c, (B.1) 

here c contains the constant terms. After using (21) with (B.1) ,

e gather the ξ -dependent terms as 

og Q 

o ( ξ | F S , z i ) = −n x 

2 

log ξ

− 1 

2 ξ
tr 

{
E −ξ

[
( x i − Ax i −1 ) ( x i − Ax i −1 ) 

� ]Q 

−1 
}

−ω + 2 

2 

log ξ − ω 

2 ξ
+ c ξ , 

ith c ξ being a ξ -independent constant. This can be rearranged

s 

og Q 

o (ξ | F S , z i ) = 

a ξ + 2 

2 

log ξ − b ξ

2 ξ
+ c ξ = log i G 

(
ξ ; a ξ

2 
, 

b ξ
2 

)
+ c ξ ,

here the shaping parameters are given by (26) . Applying (21) and

B.1) allows us to gather the λ-dependent terms as 

og Q 

o ( λ| F S , z i ) = −n z 

2 

log λ

− 1 

2 λ
tr 

{
E −λ

[
( z i − Cx i ) ( z i − Cx i ) 

� ]R 

−1 
}

−ν + 2 

2 

log λ − ν

2 λ
+ c λ, 

here c λ is a λ-independent constant. This leads to 

og Q 

o (λ| F S , z i ) = 

a λ + 2 

2 

log λ − b λ
2 λ

+ c λ = log i G 
(
λ; a λ

2 
, 

b λ
2 

)
+ c λ,

here the shaping parameters are presented in (27) . Utilizing

21) with (B.1) reveals the κ-dependent terms 

og Q 

o ( κ| F S , z i ) = −n z 

2 

log κ

− 1 

2 κ
tr 

{
E −κ

[(
z S,i | i −1 − Cx i 

)(
z S,i | i −1 − Cx i 

)� ]
R 

−1 
}

−α + 2 

2 

log κ − β

2 κ
− 1 

2 κ
tr 

{
R S,i | i −1 R 

−1 
}

+ c κ , 

ith c κ being a κ-independent constant. Hence: 

og Q 

o (κ| F S , z i ) = 

a κ + 2 

2 

log κ − b κ

2 κ
+ c κ = log i G 

(
κ; a κ

2 
, b κ

2 

)
+ c κ

here the shaping parameters are summarized by (28) . 
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Adopting (21) and (B.1) , the (x i , x i −1 ) -dependent terms are 

log Q 

o ( x i , x i −1 | F S , z i ) = − 1 

2 
( z i − Cx i ) 

� E −x 

[
λ−1 

]
R −1 ( z i − Cx i ) 

− 1 

2 

(
z S,i | i −1 − Cx i 

)� 
E −x 

[
κ−1 

]
R −1 

(
z S,i | i −1 − Cx i 

)
− 1 

2 
( x i − Ax i −1 ) 

� E −x 

[
ξ−1 

]
Q 

−1 ( x i − Ax i −1 ) 

− 1 

2 

(
x i −1 − x i −1 | i −1 

)� 
P −1 

i −1 | i −1 

(
x i −1 − x i −1 | i −1 

)
+ c x , (B.2)

where x ≡ (x i , x i −1 ) . It can be seen that (B.2) is—up to the additive

constant c x —equivalent to the logarithm of the joint density of the

variables (z i , x i , x i −1 ) . Therefore, we have 

Q 

o (z i , x i , x i −1 | F S , z i −1 ) = N (z i ;Cx i , E [ λ−1 ] −1 R ) 

×N (z S ,i | i −1 ;Cx i , E [ κ−1 ] −1 R ) N (x i ; Ax i −1 , E [ ξ−1 ] −1 Q ) 

×N (x i −1 ; x i −1 | i −1 , P i −1 | i −1 ) . (B.3)

To find a closed-form expression for the F S -conditioned joint

smoothing density, we invoke the chain rule: 

Q 

o (x i , x i −1 | F S , z i ) = Q 

o (x i −1 | x i , F S , z i −1 ) Q 

o (x i | F S , z i ) . (B.4)

The filtering density in (B.4) is derived using 

Q 

o (x i | F S , z i ) ∝ Q 

o (z i | x i ) Q 

o (x i | F S , z i −1 ) . (B.5)

After marginalizing x i −1 in (B.3) , we choose 

Q 

o (z i | x i ) =N (z i ;Cx i , E [ λ−1 ] −1 R ) 

Q 

o (x i | F S , z i −1 ) ≡N (z S ,i | i −1 ;Cx i , E [ κ−1 ] −1 R ) N (x i ; x i | i −1 , P i | i −1 ) 

=N (x i ; x̄ i | i −1 , P̄ i | i −1 ) , 

where { x i | i −1 , P i | i −1 } and { ̄x i | i −1 , P̄ i | i −1 } are given in (33) and (31) ,

respectively. Using these distributions, (B.5) leads to 

Q 

o (x i | F S , z i ) = N (x i ; x i | i , P i | i ) , (B.6)

where { x i | i , P i | i } is given in (30) . 

The backward transition kernel in (B.4) is computed as 

Q 

o (x i −1 | x i , F S , z i −1 ) ∝ Q 

o (x i | x i −1 ) Q 

o (x i −1 | F S , z i −1 ) . 

From (B.3) , taking 

Q 

o (x i | x i −1 ) = N (x i ; Ax i −1 , E [ ξ−1 ] −1 Q ) , 

Q 

o (x i −1 | F S , z i −1 ) = N (x i −1 ; x i −1 | i −1 , P i −1 | i −1 ) , 

we can write 

Q 

o (x i −1 | x i , F S , z i −1 ) = N (x i −1 ; ˜ x i −1 | i , P i −1 | i ) , (B.7)

where 

˜ x i −1 | i = x i −1 | i −1 + L (x i − x i | i −1 ) , 

P i −1 | i = P i −1 | i −1 − LP i | i −1 L 
� , 

with L given in (32) . Finally, inserting (B.6) and (B.7) in (B.4) yields

(24d) . 
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