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Prescriptive Inductive Operations On Probabilities
Serving to Decision-Making Agents

Miroslav Kárný

Abstract—Approximation, extension and merging of proba-
bility distributions support inductive reasoning. They serve to
modelling, knowledge and preference elicitation as well as to a
soft cooperation within various decision-making (DM) scenarios.
The theory dubbed as fully probabilistic design of DM strategies
unifies the design of these operations on distributions. The
unification decreases a danger of their improper choice and
use. Still there is an uncertainty how the gained tools should be
wielded. The paper diminishes it by spelling out conditions ruling
their exploitation. The paper serves as an updated description
of these tools, provides examples of their use and guides their
tailoring to diverse scenarios.

Keyword dynamic decision making, uncertainty, relative en-
tropy (RE), approximation, merging, extension

I. INTRODUCTION

The fully probabilistic design of decision strategies (FPD,
[1], [2], [3], [4]) is a prescriptive theory of dynamic DM
under uncertainty. It serves us as a unifying DM framework
for solving the problems addressed in this paper.

DM is broadly understood as a targeted choice among
given options, [5], [6]. It aims to influence behaviour of the
closed loop formed by the DM agent and its environment.
The behaviour means the collection of all observed, opted
and thought of random variables within the closed loop. Their
joint probability density (pd) models the behaviour. FPD non-
traditionally uses an opted ideal joint pd for specifying the
desired behaviours. The ideal pd quantifies DM aims by
assigning high values to desired behaviours and small to
undesired ones. With these joint pds, FPD deals with their,
deductively derived, marginal and conditional pds (called slice
pds) modelling behaviour slices. They serve to the knowledge
accumulation (learning) and the optimal-strategy design.

A. Paper Topic and Aims

The paper cares about agents that intend to exploit a
prescriptive DM theory. Any such agent needs quantitative DM
elements of the employed DM theory for solving learning and
strategy-design problems. A mapping of real-life induced DM
knowledge and aims on them is a collection of hard problems
addressed by domain-specific modelling, knowledge [7], [8]
and preference [9], [10] elicitation as well as by designs
of quantitative cooperation and negotiation tools [11], [12],
[13]. In spite of permanent progress, the mapping is far from
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being fully matured and sufficiently unified. It is extremely
costly both in design and application phases. The current paper
contributes to overcoming this state within FPD, which covers
standard DM under uncertainty [4], has been non-trivially used
[14], [15] and quantifies beliefs and preferences in a unified
probabilistic way [2] suitable for cooperation [13], [16], [17].

The pair of joint pds forms DM elements of the adopted
FPD. A real agent quantifies them only partially. Their in-
evitable completion is a DM task on its own. The completion
must be based on inductive reasoning due to the generic non-
uniqueness [18], even non-existence [19], of a joint pd compat-
ible with the practically accessible information. Obviously, the
adopted inductive reasoning strongly influences the final DM
quality. This calls for deductive solutions of common inductive
tasks. Their construction and use form the central topic of the
paper. The inspected approximation, extension and merging1

of pds are such basic tasks. All of them are DM tasks as
they opt among possible inductive reasoning ways. These DM
meta-tasks have often been addressed, see comments within
the text and Sec. IV. The work [20] is the most advanced
one in the FPD framework. Even within it, solutions differ
[13] and their assumptions meagerly guide how to opt among
them. The paper aims to: (i) correct this state; (ii) improve past
solutions of DM meta-tasks; and (iii) add practical, insight-
offering, examples of their use.

B. Layout

The rest of this section provides notation, notions and basic
relations. Sec. II builds an approximator of a given pd as a
minimiser of the DM-relevant proximity measure of pds. It
gives an example of its use and discusses its (non)ambiguity.
Sec. III similarly deals with extensors of a partial information.
The examples indicate their wide usability in modelling,
merging, cooperative learning and soft cooperative DM. The
width is unsurprising as any inductive reasoning essentially
extends a partial information. The text refers to the related
works gradually and in Sec. IV, where extra comments on
predecessors [13], [20] exploit knowledge of the technical
paper’s content. Sec. V lists achievements and open problems.

Propositions can be characterised as follows: Prop. 1 re-
flects methodological basis and other propositions are its
applications. Its axiomatic basis is in [3], [4]. Approximation
principle, given by Prop. 2, guides how to approximate a given
pd by a pd from a given set. Prop. 3 shows that the popular
moment fitting is an application of Prop. 2. Minimum relative-
entropy principle, described by Prop. 4, serves as universal tool

1Aka combining [16], pooling, representing etc.
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for a completion (extension) of the information provided by a
real agent. It is used for aligning domains of processed pds,
Prop. 5, as well as for their merging Prop. 6. It and its variant
Prop. 7 covering a different scenario provide efficient tools for
soft agents’ cooperation.

C. Notation, Notions and Basic Relations

Calligraphic fonts mark functionals and san serif fonts
denote mappings. Mathfrak superscripts o, i, c, and e mark
optimality, an ideal object, complement and extension, respec-
tively. Small letters, as z, label elements of the underlying
deductive DM task2. The set of z’ is {z}. Sets are fully spec-
ified only if need be. Mostly, they are either subsets of finite-
dimensional real space or sets of probability densities (pds).
|{z}| is the cardinality3 of {z}. ∝ means proportionality,
≡ stresses the definition by equality. The action a ∈ {a},
|{a}| > 1, opted in a one-shot DM, splits the behaviour
b ∈ {b} on which DM operates as follows

b ≡ (g, a, k) ≡ (1)
(ignorance during a choice, action, knowledge for a choice).

The considered DM under uncertainty and incomplete knowl-
edge makes the behaviour a multivariate random variable [3],
[21]. This implies that all models are probabilistic distributions
given here by their pds. The behaviour model ba, a joint pd of
behaviours b ∈ {b}, depends on the DM rule4 a : {k}→ {a}.
The chain rule for pds [23] factorises the pd

ba(b)

(1)︷︸︸︷
= ba(g, a, k) (2)
= ba(g|a, k)ba(a|k)ba(k) ≡ g(g|a, k)a(a|k)k(k).

The pd g models how the ignorance g ∈ {g} depends on
the action a ∈ {a} under the given knowledge k ∈ {k}
modelled by the pd k. The dropping of the superscript a at
g and k respects that the DM rule a influences these pds at
most indirectly via the generated actions. The knowledge also
includes a description of DM goals. FPD describes them by
an ideal behaviour model, a pd bi on {b}. It assigns a large
value bi(b) to a desired behaviour b ∈ {b} and a small value
bi(b) to an undesired b ∈ {b}. The ideal pd bi factorises

bi(b)

(1)︷︸︸︷
= bi(g, a, k) (3)
= bi(g|a, k)bi(a|k)bi(k) ≡ gi(g|a, k)ai(a|k)ki(k).

Single action has no impact on the handled knowledge. This
motivates the use of the leave to fate option (LFO, [14]) for
the knowledge model. LFO on ki sets the ideal knowledge
model ki equal to the model k, ki = k on {k}.

FPD employs relative entropy R(y.z) (RE, aka cross en-
tropy [24] or Kullback-Leibler divergence [25]). RE measures

2DM solved in a deductive way, which exploits complete, inductively
created, DM elements.

3Mnemonic ties, like z(z), z ∈ {z}, |{z}| < ∞ expressing that the
mapping z operates on the variable z from the set {z} of a finite cardinality
|{z}|, are preferred.

4Aka an act [21] or a decision function [22]. Specific DM areas use specific
names as estimator or control law. This paper proceeds alike.

proximity of pds y and z acting on a set {z}. The RE
functional R(y.z) reads

R(y.z) ≡
∫
{z}

y(z) ln

(
y(z)

z(z)

)
dz = E

[
ln
(y

z

)]
.

It is the expectation E , given by the pd y, of ln(y/z). Its
unusual notation stresses its asymmetry and allows us to
indicate the condition in the conditional RE

R(y.z|k) ≡
∫
{z}

y(z|k) ln
(

y(z|k)
z(z|k)

)
dz = E

[
ln

(
y(·|k)
z(·|k)

) ∣∣∣k].
Next Summary 1 fixes notions, defines FPD, extends the

notation to meta-tasks and fixes a simplifying assumption on
the behaviour-set cardinality.

Summary 1 (FPD; FPD Elements; Finiteness Assumption):

• Tab. I collects the DM elements serving to one-shot FPD.

TABLE I
DM ELEMENTS OF ONE-SHOT FPD

Meaning Characterisation
{g} an ignorance set g ∈ {g} is unavailable for ana choice.
{a} an action set The DM options at disposal.
k a knowledge realisation The pds g, gi, ai are in it. One-shot

FPD deals with the realised k, Prop. 1.
g an ignorance model The factor of ba that models g ∈ {g}.
a DM rule a : k → {a} The optimised factor of ba.

{a} a DM-rules set The optimal DM rule ao is found there.
gi an ideal ignorance model The factor of bi co-specifies DM goals.
ai an ideal DM rule The factor of bi co-specifies DM goals.

The FPD-optimal DM rule is ao ∈ Argmina∈{a}R(ba
.bi) (4)

• The inductive DM meta-tasks5 operate on the same types
of DM elements as the deductive DM. Capital versions
of letters in Tab. I denote them.

• A slice pd s ∈ {s}, a marginal or conditional pd, models
behaviour slices s ∈ {s}

{b} = {sc}× {s}, {sc} complements {s} to {b}. (5)
• Leave to fate option (LFO) for a slice s means that for

b(b) = b(sc, s) = b(sc|s)s(s)
bi(b) = bi(sc, s) = bi(sc|s)si(s) (6)

the slice ideal pd si = s on {s} is opted.
The next assumption and agreement simplify our text.
• DM meta-tasks concern deductive DM tasks with be-

haviours having a finite amount of realisations6, {b} =
{g}× {a}× {k} has cardinality |{b}| <∞.

• The obligatory k-parts g, gi, ai are mostly implicit.
Proposition 1 (Solution of One-shot FPD): The FPD-opti-

mal DM rule (4) uses the knowledge realisation k (not the set
{k}). It reads

ao(a|k) ∝ ai(a|k) exp[−R(g.gi|a, k)] (7)

R(g.gi|a, k) =

∫
{g}

g(g|a, k) ln
(

g(g|a, k)
gi(g|a, k)

)
dg.

5They mean meta-tasks supporting DM based on inductive reasoning.
6The employed smooth numerical representation of preferences’ order

requires existence of the behaviour-space topology with a countable basis
[26]. Thus, the finiteness assumption is unrestrictive and admits unbounded
growth to countability. It helps us to avoid subtleties of measure theory and
also those of ε-optimality as it guarantees the existence of extremes.
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Under LFO (6) for the DM rules, ai = a on {a}, the optimal
DM rule is deterministic. It selects the optimal action ao =
ao(k) ∈ Argmina∈{a}R(g.gi|a, k). This action maximises
the DM rule ao (7) for the uniform ideal DM rule ai.
Proof It uses chain rule for pds [23], Fubini’s theorem on
multiple integration [27] and properties RE [25]. For details,
see [28], [2] �

II. APPROXIMATION

This section formulates and solves the approximation of a
given slice pd s ∈ {s} by a pd ŝ ∈ {ŝ} as a one-shot FPD
meta-task. It specifies the DM elements7 of this DM meta-
task, see Summary 1, and uses Prop. 1. It illustrates a use of
the gained DM rule, called approximator, and discusses it.

The approximator is designed before observing the be-
haviour slice s ∈ {s}. Thus, the ignorance G is s ∈
{s} = {G}. The pd ŝ ∈ {ŝ}, approximately modelling slices
s ∈ {s}, is opted. Thus, the action A is ŝ ∈ {ŝ} = {A}. The
knowledge K contains the approximated pd s and the set {ŝ}
of approximations. The approximators are conditional pds

A ∈ {A} ≡ {A(̂s|K) : (K → A) ≡ ((s,{ŝ})→ ŝ)} .

The ignorance model within this FPD meta-task has the
unambiguous form

G(G|A,K) = G(s|̂s, (s,{ŝ})) = s(s), G = s ∈ {s}. (8)

It respects that the approximator ŝ ∈ {ŝ} and the implicitly-
present ideal factors Gi,Ai have no influence on slice real-
isations s ∈ {s}, while the given pd s models them by its
definition. The ideal ignorance model, a factor of the meta-
version of (3), is also unambiguous

Gi(G|A,K) = Gi(s|̂s,K) = ŝ(s), G = s ∈ {s}. (9)

It expresses the primary goal of this meta-task: to choose the
pd ŝ ∈ {ŝ}, which ideally describes slices s ∈ {s}. The ideal
approximator Ai(ŝ|K), a factor in the meta-version of (3), has
to guarantee the existence of the FPD-optimal approximator.
Thus, its support supp

[
Ai
]
≡ {ŝ : Ai(̂s|K) > 0} has to fulfill

supp [A] = {ŝ} ⊂ supp
[
Ai
]
. (10)

Proposition 2 (Approximation Principle): The FPD-optimal
approximator, using the knowledge K = (s,{ŝ}), is the pd

Ao(̂s|K) ∝ Ai(̂s|K) exp[−R(s.ŝ)], ŝ ∈ {ŝ}.

Under LFO (6) for the approximators Ai = A on {ŝ}, the
FPD-optimal approximator is deterministic and chooses

ŝo ∈ Arg min
ŝ∈{ŝ}

R(s.ŝ) = Arg min
ŝ∈{ŝ}

∫
{s}

s(s) ln

(
s(s)

ŝ(s)

)
ds.

(11)
Proof Prop. 1 for (8) - (10) gives the solution as R(s.ŝ) =
R(s.ŝ|̂s, (s,{ŝ})). �

7The omission of the “meta-” prefix is harmless due to the capitals use.

A. Use of Approximation Principle

This part applies the approximation principle, Prop. 2, to
recursive approximate learning. The presentation first outlines
how a non-standard universally approximating observation
model arises. Then, Bayes’ rule “naturally” appears as the
proper learning tool and the need for its approximation arises.
Then, the used set of approximating models and the approxi-
mation principle dictate the approximation way.

Learning extends the knowledge k by the data d = (o, a) ∈
{d} = {o} × {a}. The observation o ∈ {o} is made on the
closed DM loop after applying the action a ∈ {a}. Learning
needs an observation model, the pd o relating o to (a, k). The
next sketch motivates its widely useable parametric form.

The set {d} can be covered by a countable amount of open
subsets, see Note 6. The logarithm of any smooth data pd
can be arbitrarily-well approximated by linear expansions on
a finite selection of these subsets (indexed by j ∈ {j}). This
indicates the universal approximation property [29] of the non-
standard finite-mixture ratio [30], |{j}| <∞,

o(o|a, p) =
∑
j∈{j} exp 〈uj(o, a),wj(pj)〉j∑

j∈{j}
∫
{o} exp 〈uj(o, a),wj(pj)〉j do

. (12)

There, wj(pj) are basis functions used for the expansion
within the jth subset. They are parameterised by a finite
dimensional parameter8 pj ∈ {pj}. The expansion coefficients
are uj(o, a) and the real-valued mappings 〈u,w〉j are linear in
u. This outline indicates richness of the parametric model

o(o|a, p) = f(exp 〈u(o, a),w(p)〉). (13)

It generalises (12) to a smooth function f and denotes w(p) =
(wj(pj))j∈{j}, p = (pj)j∈{j}, u = (uj(o, a))j∈{j}, and
〈·, ·〉 = (〈·, ·〉)j∈{j}. The adequate, case-dependent, value of
the parameter p ∈ {p} is a priori unknown. Its presence
extends the ignorance to the pair g = (unused observation o,
unknown parameter p ∈ {g} = {o} × {p}. The ignorance
model factorises9

g(g|a) = g(o, p|a) = o(o|a, p)× p(p) (14)
= parametric observation model× prior pd of parameter.

The knowledge k determines the parametric observation model
of a fixed functional form (13) and is to provide the prior
pd p(p) (14). The learning updates the prior pd p(p) to the
posterior pd p(p|d). Conditioning by the observed data d,
called Bayes’ rule, deductively provides this updating

p(p|d) ∝ g(g|a) = o(o|a, p)× p(p). (15)

It is well-implementable when the function f (13) is identity

o(o|a, p) = exp 〈u(o, a),w(p)〉 , (16)

8The discussion may apply to a hidden evolving state. It leads to stochastic
filtering area. The exposition simplicity makes us to deal with the parameter
estimation only. It also relies an implicit presence of the knowledge k.

9The equality p(p|a) = p(p) reflects the assumption (natural conditions of
control [23]) that the parameter p belongs to ignorance g and is unused by
the DM rule yielding a ∈ {a}.
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when these models belong to the exponential family (EF,
[31]). They admit the feasible conjugate prior pds

p(p) = p(p|v) ≡ exp 〈v,w(p)〉
J (v)

, where v ∈ {v} (17)

{v} = {v’s in the range of u giving J (v) ∈ (0,∞)}.

Bayes’ rule preserves the form (17) of the conjugate pd. This
reduces the functional updating (15) to the algebraic one

v(d) = v + u(d), d = (o, a). (18)

EF practically exhausts observation models reducing Bayes’
rule to algebraic updating (18) of values of a finite-dimensional
sufficient statistic [32]. EF is, however, quite narrow. In the
generic case (13), the prior pd p(p) of the form (17) maps by
(15) on the p(p|d) of another form. The wish to stick with a
feasible algebraic updating calls for an approximation.

The unknown parameter p plays the role of behaviour slice
p = s. Its posterior pd p(p|d) = s(s) (15) is known. Pds of the
form (17) offer as its approximation p̂(p|v(d)) = ŝ(s). Prop.
2 provides the optimal approximator.

Proposition 3 (Moment Fitting): Under LFO for approxima-
tors, the optimal (“point”) approximation (11) of the posterior
pd p(p|d) among pds p̂(p|v(d)) of the conjugate form (17) is
given by the optimal statistic value

vo(d) ∈ Arg min
v∈{v}

[
ln(J (v))−

〈
v,

∫
{p}

p(p|d)w(p) dp

〉]
.

Proof A simple direct use of Prop. 2 is omitted. �
The found vo(d) optimally weights the moments, the ex-

pectation of w(p) with respect to p(p|d).

B. Discussion of the Approximation Principle

The choice of the ideal approximator Ai is the only freedom
left in the approximation task. The pd Ai, restricted now
by (10), can express, for instance, preferences for simpler
approximations. This newly recognised possibility is yet un-
elaborated and the approximation (11), gained under LFO,
dominates. It was derived in [33] via a different reasoning
while employing more restrictive assumptions. All other meta-
DM elements have no meaningful alternatives.

Importantly, the approximation principle recommends
R(s.ŝ) as the preferred proximity measure. The subsequent
DM meta-tasks heavily depend on this choice. Both the use
of R and the order of R-arguments matter. The arguments’
order is opposite to that in the popular variational Bayes’
approximation [34]. The evaluation feasibility, balancing the
“improper order”, is the decisive argument for its extensive
use. It may be dearly paid by the reached quality as the
following example demonstrates.

a) Influence of the RE-arguments order: Monte Carlo
simulation generated 10000 samples of joint pds s of data
pairs s = (o, a), each having 3 possible values. In the
standard version, values s(a, b) were sampled from uniform
pd on the interval [0, 1]. In the difficult version, just the value
s(1, 1) = 1e − 6 was enforced. In both cases, values s were
properly normalised. Each joint pd s(o, a) was approximated
by pds with independent o and a, i.e. ŝ(o, a) = ô(o)â(a).

The approximation principle, Prop. 2, recommends ô, â be
marginal pds of s. The opposite order of RE leads to standard
equations of the variational Bayes. They can be simply solved
to get ŝ(o, a) = ô(o)â(a). Fig. 1 shows histograms of absolute
approximation errors∑

o∈{o},a∈{a}

abs(s(o, a)− ŝ(o, a)). (19)

This loss judges the deviation of the expected utility caused
by the approximation. It prefers none of the compared ways.

In the difficult simulation version, the order implied by
the approximation principle visibly outperforms the alternative
order. In the standard simulation version, the approximation
quality is similar for both argument orders.
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Fig. 1. Histograms of absolute approximation errors (19). Blue columns
correspond to the order implied by the approximation principle, red ones
to the opposite order. The upper figure corresponds with the difficult version
specific by s(1, 1) ≈ 0. The lower figure shows standard version with entries
of s mostly well within (0,1). �

Let us stress that the example resulting into Prop. 3 confirms
the desirable methodological parsimony: the processed DM
elements vary, not the processing method. For instance, finite
mixtures of Dirac’s type pds serving as the set of approxi-
mating pds result in the updating used in Monte-Carlo based
estimation [35]. The parsimony removes the danger brought by
an ad hoc choice of the inductive method. The use of deductive
DM meta-tasks guarantees that possible unsatisfactory results
are not caused by a wrong choice of the inductive method.

III. EXTENSION

This section formulates and solves the extension of an
incomplete information about the slice pds s ∈ {s} acting
on {s} as a one-shot FPD meta-task. The incompleteness
means that the slice pd belongs to a set {s} containing more
than one element. Similarly as in Sec. II, the solution selects
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appropriate meta-DM elements, see Summary 1, and uses
Prop. 1. The presentation illustrates uses of the gained DM
rule, called extensor. It discusses extensors both generally and
in connection with their respective applications.

The extensor is designed before observing the behaviour
slice s ∈ {s}. Thus, the ignorance G is s ∈ {s} = {G}. The
extension s ∈ {s} of the agent’s information, a pd on s ∈ {s},
has to be opted. Thus, the action A is the pd s ∈ {s} = {A}.
The optimised extensors are conditional pds in the set

A ∈ {A} ≡ {A(s|K) : supp [A] = {s}} . (20)

The ignorance model has the unambiguous form

G(G|A,K) = G(s|s,K) = s(s) (21)

as the opted A = s models the slice s ∈ {s} by its definition.
The ideal ignorance model is an, a priori best, slice model si

Gi(G|A,K) = Gi(s|s,K) = si(s). (22)

It respects that the a priori best choice the slice description si

is uninfluenced by the chosen extension A = s. Generically
si /∈ {s}. The ideal extensor Ai has to guarantee existence of
the FPD-optimal extensor, see Prop. 1,

{s} ⊂ supp
[
Ai
]
. (23)

Proposition 4 (Extension by MRE Principle,): The FPD-
optimal extensor Ao: (a) describing the extensions s ∈ {s},
which contains slice pds compatible with the agent’s informa-
tion about them, and (b) reflecting the a priori chosen si and
Ai with {s} ⊂ supp

[
Ai
]
, reads

Ao(s|K) ∝ Ai(s|K) exp[−R(s.si)]. (24)

Under LFO (6) for extensors, Ai = A, the FPD-optimal
extensor is deterministic. It chooses the optimal extension

so ∈ Arg min
s∈{s}

R(s.si|s, si) ≡ Arg min
s∈{s}

R(s.si). (25)

The choice (25) is known as the minimum relative-entropy
(MRE) principle [24]. Under LFO (6) for ignorance models,
si = s, the FPD-optimal extensor is

Ao ∈ Arg min
A∈{A}

R(A.Ai) (26)

{A} = {A = A(s|K) : supp [A] = {s}}.

The choice (26) is called the generalised MRE principle [20].
Proof Prop. 1 applied with (21) – (23), directly solves the
extension task. �

A. Discussion of MRE Principle

The examples that follow indicate the potential of the MRE
principle. Each has its discussion so that this subsection makes
just general comments.

The MRE principle (25) was derived in [24] by a different
technique. Its specific case with uniform si is known as the
maximum entropy principle [36].

The generalised MRE principle (26) was derived in a
slightly different way in [20]. The neglected version (24) is
the novel outcome of the current “polishing”.

The set {s} is the vital part of the processed knowledge K.
The smaller {s} is, while still compatible with the knowledge
supplied by the agent, the better. The ideal-defining pds si, Ai

are only free options of the MRE principle. Specific, but still
general cases, Sec. III-B, reduce even this freedom.

The opted extension s is the first argument of RE unlike the
opted approximation ŝ of the known pd, Prop. 2. It equips a
RE use with the rule of thumb

The 1st argument of RE is believed to describe reality. (27)

B. Use of MRE Principle

This part illustrates the MRE-principle potential and gives
practical results.

1) Modelling: Modelling dominates the use of the MRE
principle. A domain knowledge10 provides, mostly determin-
istic, approximate relations of the ignorance to action and
knowledge realisations. The need to extend this agent’s infor-
mation to the probabilistic environment model was the primary
impetus leading to the maximum entropy principle [36] and the
MRE principle [24]. A typical problem and its solution follow.
It reveals general, rarely addressed, problems stemming from
non-identical domains of treated pds and their incompatibility.

The modelling, cf. Sec. II-A, deals with the ignorance g =
(o, p) = (unused observation, unknown parameter) ∈ {g} =
{o} × {p}. The ignorance model (14) factorises g(g|a, k) =
g(o, p|a, k) = o(o|p, a, k) × p(p|k) = observation model ×
prior pd. The observation o ∈ {o} is scalar. The vector case
boils down to scalar-observation models via the chain rule.

The processed information relating the observation to the
opted action and the employed knowledge has the typical form

o− fj(pj , aj , kj) ≈ 0, j ∈ {j}, |{j}| <∞. (28)

The agent provides the functions (fj)j∈{j}. They depend on
finite-dimensional, instance-dependent, unknown parameters
(pj ∈ {p}j)j∈{j}. The parameter pj may also characterise
deviations, which make the equality (28) approximate.

For any fixed j ∈ {j} and (pj , aj , kj), the observation o is
the modelled slice. The set of observation models o compatible
with (28) is the set {o} of slice pds. The relation (28), taken
as equality with deviations of zero expectation, gives

{o} ≡
{

o(o|pj , aj , kj) :
∫
{o}
oo(o|pj , aj , kj)do (29)

= E [o|pj , aj , kj ] = fj(pj , aj , kj)
}
.

With a chosen ideal observation model11 oi
j , MRE (25) has

the solution [36]

oo
j (o|pj , aj , kj) ∝ oi

j(o|pj , aj , kj) exp[−oλ(pj , aj , kj)]. (30)

There, the Lagrangian multiplier λ(pj , aj , kj) meets the con-
straint (29). The pd (30) is also the mode of the extensor (24)
with the uniform ideal extensor.

10It means knowledge originating in theoretical or experimental physics,
chemistry, technology, economy, biology, social sciences, etc.

11For instance, the uniform pd covering tightly the set {o} of observations
o and having the expectation equal fj(pj , aj , kj).
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The solution applies ∀j ∈ {j}. Mapping of the pds
(oo
j )j∈{j} (30) on single model respecting agent-supplied

information (28) is then the crucial final modelling step. The
solution of this merging problem is in Sec. III-B5.

2) Discussion of Modelling: The outlined modelling is
powerful as it may combine theoretical, data-based, semi-
experimental or expert supplied information. Merging of the
gained models is hard due to the next obstacles.

a) Problem of Different Domains: A jth knowledge
source, typically another agent, operates on data dj =
(o, aj) ∈ {dj} = {o} × {aj}. As a rule, {aj} 6= {aι} for
j 6= ι. Merging of observation models oo

j and oo
ι is non-trivial

and rarely explicitly addressed.
b) Incompatibility Problem: Even when domains of

sources j 6= ι are the same, their supports may differ up to
supp [oj ]∩supp [oι] = ∅. This incompatibility is more the rule
rather than the exception and a priori it is rarely avoidable.

Both obstacles are also faced when merging knowledge
about unknown parameters, within the knowledge elicitation
[7], [8], or when merging pds for cooperation purposes [13],
[15]. They drive the next domain extension and merging.

3) Domain Extension: Merging of pds, whose need is
revealed in Sec. III-B1, is to cope with different domains of
pds to be merged, Sec. III-B2. The section resolves this.

A finite collection of pds indexed by j ∈ {j} is considered.
A jth pd to be merged sj operates on the behaviour slice
sj ∈ {sj}. Generically,

{sj} ( {se} ≡ ∪j∈{j}{sj}. (31)

Each pd sj , with the domain {sj}, has to be extended on a
pd sej modelling slices se ∈ {se} (31). For the pd s = sj with
a fixed j ∈ {j}, the analogy of (5) with se = (sc, s) gives the
set {se} of possible extensions se of the given pd s on {s}

{se} ≡
{

se(se) = se(sc, s) = se(sc|s)s(s)
}
. (32)

This set is the only but vital specific choice in the construction
of the extensor called domain extensor. The next application
of Prop. 4 provides it.

Proposition 5 (Optimal Domain Extensor): With the given
ideal domain extensor Ai, meeting (23), and the pd si, de-
termining the ideal ignorance model (22), the MRE principle
provides the optimal domain extensor of the form (24).

Under LFO (6) for the domain extensor, Ai = A on {s},
the optimal domain extension (25) is deterministic and reads

so(sc, s) =
si(sc, s)∫

{s}c si(sc, s) dsc
s(s) = si(sc, s)

s(s)

si(s)
. (33)

This domain extension maximises the domain extensor (24) for
the uniform Ai.
Proof It directly follows from assumptions on involved DM
elements and the fact that RE reaches its minimum for equal
arguments. �

4) Discussion of Domain Extension: The optimal domain
extension so(sc, s) (33) replaces in the pd si(sc, s) its marginal
pd si(s) by the given pd s(s). The result was derived in [13].

Mostly, the ideal pd si /∈ {se} (32) as its marginal
si(s) 6= s(s) on s ∈ {s}. This freedom is vital as the merging,

Sec. III-B5, deals jointly with the sets (32) assigned to the
respective pds (sj)j∈{j} and we have to cope with the fact
that mostly sj 6= sι for j 6= ι.

The ideal domain-extensor Ai is to have support covering
{se}, cf. (20). No other general guide of its choice has been
recognised. LFO Ai = A used in Prop. 5 seems to be better
than the insufficient-reasons-motivated uniform choice.

The ideal domain extension si has a universal choice in
merging. Its description in Sec. III-B7 exploits the solution of
the merging problem, see Sec. III-B5.

5) Merging of PDs: Modelling, Sec. III-B1, calls for merg-
ing of a finite collection of given pds

s|{j}| ≡ (sj)j∈{j} having a common domain {s}. (34)

Prop. 5 makes this assumption unrestrictive.
The pd sj originates in jth information source, cf. Sec.

III-B1, interpreted as the jth agent. The addressed merging
aims to extract the information provided by all agents to
benefits of an agent ι ∈ {j}. The built DM rule, merger
A(s|K), offers to the ιth agent the merged pd s on {s}. The
merger knowledge K includes pds (34). The merged pd s is
the action A ∈ {A} opted before observing a slice s ∈ {s},
which forms the ignorance G of this DM meta-task.

The formulation fits the MRE principle, Prop. 4. It needs
to choose the set {s} = {A} of the merged pds s, the ideal
merger Ai and the ideal pd si.

a) The choice of {s} = {A}: A merged pd s extracts
well the information in pds s|{j}| (34) iff it well approximates
all of them. The approximation principle, Prop. 2, implies the
ιth agent expects that the optimal merger prefers small values
(R(sj.s))j∈{j}. This motivates the choice of the set of well-
merged pds

{s} ≡ {s : R(sj.s) ≤ γj , ∀j ∈ {j}} (35)

with (γj)j∈{j} as small as possible. This verbally expressed
vectorial wish converts into the scalar optimisation parame-
terised by a probabilistic vector c = (cj)j∈{j} ∈ {c} and by
an optional κ > 0

γj ≡ cjκ. (36)

The known pd c expresses the creed of ιth agent into informa-
tion provided by respective agents. It can be a priori chosen
as uniform pd and gradually learnt in the Bayesian way12.

The set (35) shrinks with the optional κ. The smallest κo,
which keeps {s} 6= ∅ is clearly preferred. The desired mergers
A have supports covering {s}. Thus, their set {A} meets

{A} ⊂
{

A :

∫
{s}

A(s)R(sj.s) ds ≤ cjκ,∀j ∈ {j}
}
. (37)

b) The choice of the ideal mergers Ai: It is chosen as
Dirichlet’s pd [37] Ai = D(s|vi). This simplifies evaluations

12All treated DM elements should have a pointer to the agent to which the
merging serves. Its simplifying omission has to be kept in mind. The merging
of the same information by another agent gives a different merger as it uses
a different (private) creed pd c.
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without a generality loss13 [40]. The ideal degrees of freedom
vi = (vi(s) > 0)s∈{s} parameterise the pd D(s|vi) as follows

D(s|vi) ∝
∏
s∈{s}

[s(s)]v
i(s)−1. (38)

The ideal degrees of freedom vi of the pd (38) can be
expressed as a scaled slice pd s0, vi(s) = λ0s0(s), λ0 > 0.
Then the pd s0 enters evaluations exactly as the pds in s|{j}|.
By including s0 into the collection s|{j}| (34), the ideal merger
coincides with the improper Dirichlet’ pd D(s|vi → 0+).

Prop. 6, describing below the optimal merger Ao, uses
digamma function ψ, derived from Euler’s gamma function
Γ(z) ≡

∫∞
0
xz−1 exp(−x) dx, [41],

ψ(z) ≡ d ln(Γ(z))

dz
, z > 0. (39)

The proposition proof wields the formula [14] for s ∈ {s}∫
{s}

D(s|v) ln(s(s)) ds = ψ(v(s))− ψ
( ∑
s∈{s}

v(s)
)

(40)

and the entropy definition14 H(s) ≡ −
∑
s∈{s} s(s) ln(s(s)).

c) The choice of si: LFO si = s is used. Nothing is lost
as it suffices to include si into the collection of pds s|{j}| (34)
if the agent has a firm idea about si.

Proposition 6 (Merging via MRE Principle): Let: (a) the
creed pd c in (36) be given; (b) the improper conjugate ideal
merger Ai(s|K) = D(s|vi → 0+) be used; (c) LFO (6) be
applied to the ignorance model, si = s; (d) the set {s} 6= ∅ (35)
with the active bounds γj = cjκ (36) and the smallest κ be
considered; (e) the knowledge-expressing pds s|{j}|, defined
on common slices s ∈ {s} but having arbitrary supports, be
merged. Then, the optimal merger Ao(s) = D

(
s
∣∣∣vλo

)
respects

(37). It is given by, see (39), (40),

vλ
o

≡
(

vλ
o

(s)
)
s∈{s}

, vλ(s) ≡
∑
j∈{j}

λjsj(s) with

λo ∈ Arg min
λ∈{λ}

[
ψ
( ∑
j∈{j}

λj

)
−
∑
s∈{s}

s1(s)ψ(v
λ(s))

]
.

The set {λ} contains |{j}|-vectors with entries (λj ≥ 0)j∈{j}
meeting, ∀j ∈ {j}, c1H(sj)− cjH(s1) =

(c1 − cj)ψ
( ∑
j∈{j}

λj

)
+
∑
s∈{s}

[cjs1(s)− c1sj(s)]ψ
(
vλ(s)

)
.

Proof The wish to make bounds in (35) as tight as possible
activates at least some constraints. The same holds for (37).
Minimisation respecting (37) reduces to that of the Kuhn-
Tucker functional given by multipliers λ = (λj ≥ 0)j∈{j}

Arg min
A∈{A}

[
R(A.Ai) +

∑
j∈{j}

λj

∫
s

A(s)R(sj.s)ds
]

= Arg min
A∈{A}

∫
{A}

A(s) ln
( A(s)

D(s|vλ)

)
ds.

13A finite mixture of Dirichlet’s pds is generally needed [38] but [39] shows
that its use is unnecessary in the inspected context.

14A finite amount of behaviours makes the number of slices finite.

The attained bounds are γj =
∫
{s} D(s|vλ)R(sj.s) ds

= −H(sj)−
∑
s∈{s}

sj(s)

∫
{s}

D(s|vλ) ln(s(s)) ds

(40)︷︸︸︷
= −H(sj) + ψ

( ∑
j∈{j}

λj

)
−
∑
s∈{s}

sj(s)ψ(v
λ(s)).

The wish (γj = cjκ)j∈{j} gives |{j}| equations for λ with
|{j}| entries

(c1 − cj)ψ
( ∑
j∈{j}

λj

)
+
∑
s∈{s}

[cjs1(s)− c1sj(s)]ψ(v
λ(s))

= c1H(sj)− cjH(s1), j ∈ {j}. They constrain
λ ∈ Arg min

λ∈{λ}
[κ] = Arg min

λ∈{λ}
[γ1]

= Arg min
λ∈{λ}

[
ψ
( ∑
j∈{j}

λj

)
−
∑
s∈{s}

s1(s)ψ(v
λ(s))

]
�

6) Discussion of Merging: The search for the merged s that
puts together information quantified by pds (34) is motivated
here by modelling, Sec. III-B1. It is also needed in knowledge
elicitation [8] and serves to a soft cooperation of agents [13],
[17], [42]. Within the soft cooperation, the agents offer both
environment and ideal slice pds to their neighbours. They use
the merged pds for designing their DM rules. The merged
pds, and thus the learning and strategy design, take at least
partially into account the influence of other neighbours. In this
way, each agent reaches a higher DM quality measured by the
RE to the unchanged agent’s ideal pd. This cooperation way
respects limited deliberation resources of the agent. It needs
no mediator as the algorithm using Prop. 6 needs none. It is
scalable unlike mediator-driven schemes [43], [12], [11].

The solution avoids the incompatibility problem revealed
in Sec. III-B2. It exploits all information resources qualified
by their creed pd c. Importantly, the creed pd can be gained
operationally via Bayes’ rule. It is worth stressing that the
creed pd is private to the merged-pd-using agent, see Note 12.

The preceding research, represented by [17], is oriented on
equalising REs of knowledge sources to the merged pd. It
corresponds with the uniform creed pd c but allows any c.
The solution given by Prop. 6 avoids the inherent need for
information, which can hardly be provided by the cooperating
agents. The expectation Eo[s] = so of the optimal merger,
Prop. 6, may serve as the point estimate of the merged pd15

so =
∑
j∈{j}

αo
j sj , αo

j ≡
λoj∑

j∈{j} λ
o
j

. (41)

Its form coincides with a linear merging (pooling, [16]), which
would use αo = c. The merging with the weight αo given by
Prop. 6 is expected to be better. The weights (41) reflect both
the creed pd c and the collection s|{j}| of slice pds.

Samples of simulations reflected in Fig. 2 confirms this
expectation. In all cases, three slice pds with |{s}| = 18
and the uniform creed pds were merged according to Prop. 6.
Importantly, Ao = D

(
s|vλo)

assigns to so (41) its precision

15The merged pds can be sampled from the optimal merger Ao, Prop. 6,
which brings the exploration [44] into strategies exploiting it.
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Fig. 2. Merging through Prop. 6. Dashed lines mark slice pds. Red circles
mark the merged pd (41). The black stars mark mean of the merged pds
enforcing αo = c. Reading top-down: (1) the figure shows the case with αo ≈
c; (2) the figure confirms that merging becomes Bayes’ rule for crisp data; (3)
the figure shows the entropy influence: the slice pd with the highest entropy
almost coincides with the merged pd; (4) the figure confirms the “conservative
nature” of the merger that suppresses the outlying slice probability. �

via the degrees of freedom vλ
o

. They strongly influence
sensitivity of the merged pd to a further enrichment of the
already processed collection s|{j}|. The values vλ

o

may also
control exploration extent, see Note 15. The predecessors of
the presented merging lack these properties.

Technically, the used generalised MRE is preferable against
the standard one. The latter needs a nontrivial numerical
optimisation without a priori clear benefit. This and fact that
the standard solution is maximiser of (24) leaves almost no
freedom in choosing of the MRE principle version.

The solution in Prop. 6 cleans up that in [39].
7) Ideal Slice Model for Domain Extension: The domain

extension (33), Sec. III-B3, depends on the chosen ideal slice

model si. The merged pd so (41) directly offers to this purpose.
Plugin the domain extensions (33) of s|{j}|-members into the
merged pd so gives the implicit optimal merged pd

so(se) =
∑
j∈{j}

αo
j

so(scj , sj)sj(sj)

so(sj)
, ∀se ∈ {se}. (42)

There, (sj(sj))j∈{j} are the given pds of the slices sj ∈
{sj} ⊆ {se} = ∪j∈{j}{sj} with individual complements16

scj giving se = (scj , sj). The implicit relation (42) was
proposed in [13]. Successive approximations offer to its non-
unique but always existing solution as analysis and experi-
ments with simpler predecessors shown. The equation (42)
waits for its full analysis.

8) Collective Extension: This section applies the MRE
principle to a particular case, which is important for knowledge
transfer [45] and information fusion [46]. It is an intermediate
case of the domain extension, Sec. III-B3, and merging, Sec
III-B5. The studied, practically useful, scenario illustrates the
potential of the MRE-principle use.

A parametric observation pd o0 ≡ (o0(o|p, k))o∈{o},p∈{p}
and a prior pd p0 ≡ (p0(p|k))p∈{p} of an unknown pa-
rameter p ∈ {p} are given. This knowledge k extends to
the knowledge K by a collection of observation models
o|{j}| ≡ (oj(o))o∈{o},j∈{j} gained independently of the o0’s
structure. The collective extension A = p = (p(p|K))p∈{p}
is the opted action. It extends observation models to the joint
pds of the observation and parameter (ojp)j∈{j}∪{0} on the
ignorance G = (o, p) ∈ {o}×{p} = {G}. The unambiguous
ignorance model is

G(G|A,K) = G(o, p|p, o0, p0, o
|{j}|, k) = o0(o|p, k)p(p|K)

(43)
as only the pd p0(o|p, k) relates the observation o ∈ {o} to the
parameter p ∈ {p} and the action A = p describes p ∈ {p}
by its definition. The ideal ignorance model

Gi(G|A,K) = o0(o|p, k)p0(p|k) (44)

expresses the intention to respect the prior knowledge k given
by o0 and p0. The collective extensions respecting (27) and
Prop. 2 delimit the action set {A} ≡

{p} ≡
{

p(p|K) : R(ojp.o0p0) ≤ γj = cjκ, j ∈ {j}
}
. (45)

The learnable creed pd c is given and the smallest κ guarantee-
ing {p} 6= ∅ is chosen, as in Sec. III-B5. DM rules, collective
extensors A(p|K), are constrained by their supports. They have
to guarantee the expected version of (45) {A} ≡{
A(p|K) :

∫
{p}

A(p|K)R(ojp.o0p0) dp ≤ γj = cjκ
}
. (46)

Proposition 7 (Collective Extensions): Let: (a) the creed pd
c in (45) be given; (b) LFO 6 be applied to collective extensors
Ai = A; (c) the set {p} 6= ∅ (45) with the bounds γj = cjκ
for the smallest κ be considered.

16Practically, it is important that when two agents model the same variable
the merging is to express it in the same units to make domains of combined
slice pds compatible. This comment applies for all cases facing this situation.
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Then, the optimal collective extensor deterministically gen-
erates the optimal collective extension, cf. EF (16),

po(p|K) = pα
o

(p|K) =
p0(p|k) exp 〈αo,w(p, k)〉

J (αo)

〈αo,w〉 =
∑
j∈{j}

αo
jwj (47)

wj ≡ wj(p, k) ≡
∫
{o}

oj(o) ln(o0(o|p, k)) do.

The optimal non-negative weight αo is

αo ∈ Arg min∑
j∈{j} αj≤1

[
− ∂J (α)

∂α1
+ lim
ζ→1

∂ ln(J (ζα))
∂ζ

]
for c1

∂J (α)
∂αj

− cj
∂J (α)
∂α1

[cj − c1] lim
ζ→1

∂ ln(J (ζα))
∂ζ

= c0H(oj)− cjH(o1), j ∈ {j}.

Proof The form (47) of pα(p|K) with αj =
λj

1+
∑

j∈{j} λj
> 0

to be chosen follows from Ai = A and a rearrangement of the
Kuhn-Tucker functional with multipliers λ = (λj ≥ 0)j∈{j}
respecting bounds in (46). Some bounds are active and give
λj > 0. For j ∈ {j}, the RE in (45) gets the form, with H(oj)
given by (40) and expressed via the normalising J in (47),

R(ojpα.o0p0) = −H(oj)−
∂J (α)
∂αj

+ lim
ζ→1

∂ ln(J (ζα))
∂ζ

The wish (γj = cjκ)j∈{j} for active bounds in (45)
gives |{j}| equations for α with |{j}| entries. The identity
Argminα[κ] = Argminα[γ1] closes the proof. �

9) Discussion of Collective Extensors: The solution makes
Bayes’ rule applicable to probabilistic information about ob-
servations. This fact motivated its detailed inspection [47]
and has led to important applications [48], [8]. Unlike its
predecessors, the discussed version: (a) jointly handles several
predictors; (b) is independent of the interpretation of o and
p; (c) “naturally” introduces and optimises the weights α of
w(p, k); (d) exploits the optional, but learnable, creed pd c;
(e) avoids an undesirable ambiguity in the merging way [16].

IV. RELATED WORK

The paper [20] we base on exploits FPD to a unified
derivation and generalisation of approximation and minimum
RE principles. As a first presentation of this novel way it
lacks elaborated argumentation, exploitation, discussion and
numerical examples. Our paper tries to remove these weak
points. The paper [20] builds, among others, on outcomes
of the paper [13], which mainly focuses on merging pds
formulated as Bayesian estimation of an optimal merger. It
uses an ad hoc meta-model and represents reasonable heuristic
solutions that cannot serve as prescriptive ones. The adept for
a prescriptive merging [39] is exploited in this text.

Other reference samples are mentioned on the fly. Text-
books, author’s and his co-workers works dominate as we refer
about a systematic process of building a unified solution. We
are well aware, appreciate and (often, indirectly) exploit the
related research. The next sketch just indicates it.

The paper falls into the research stream addressing deduc-
tively dynamic DM. Subjectively, seminal works related to

Bayesian DM are [49], [21], [22], to cybernetics [50], [51], to
artificial intelligence [52], [53] and to control [54].

The use of RE (KL) is already a part of folklore. Its
exploitation in dynamic DM (control) can be tracked to [55].
DM meta-tasks based on it are in [33], [36], [24]. RE-
based FPD was proposed in [1], generally elaborated in [2]
and axiomatised in [3], [4]. An independently developed KL
control [56], [57] or KL-constrained optimisation, [58], [59]
and KL regularisation [60] have a significant overlap with
FPD. The concept of random utilities [61] also has a lot of
common with FPD but its extent and “language” differ.

The addressed problems have been repeatedly solved by va-
riety inductive ways having natural overlaps with the proposed
methodology. For instance, differing domains of sources can
be formulated as the problem of missing data addressed by
many methods, e.g. [62]. Our solution avoids the need to go
through their rich collection. The paper [63] indicates how
hard such a choice can be.

V. CONCLUDING REMARKS

a) Main Achievement: Methodologically, the inevitable
inductive parts of DM are addressed as deductive DM meta-
tasks solved in the way, which minimizes the extent of extra
choice of methods and their optional parameters.

b) Some Open Problems: In re theory: (a) The assump-
tion that the behaviour set is specified beforehand should
be relaxed. It seems inevitable for a systematic knowledge
transfer and life-long learning [64]. (b) A systematic, broadly
accepted, conceptual support of autonomous agents acting in
an open environment [65] still does not exist. (c) A deductive
(?) inclusion of computational complexity aspects into the
problem formulation and solution, which would lead to truly
universal artificial intelligence [52], is highly desirable.

In re applications: (a) The indicated optimisations call for
algorithmic and software solutions. (b) The creed learning
needs a detailed elaboration. (c) Simulation studies are needed
and case-based experience is to be accumulated.
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[4] M. Kárný, “Axiomatisation of fully probabilistic design revisited,”
Syst. & Con. Lett., 2020, 104719.

[5] D. Bell, H. Raiffa, and A. Tversky, Decision Making: Descriptive,
Normative, and Prescriptive Interactions. Cambridge Univ. Press, 1988.

[6] N. Hawes, “A survey of motivation frameworks for intelligent systems,”
Artificial Intelligence, vol. 175, pp. 1020–1036, 2011.

[7] P. Garthwaite, J. Kadane, and A. O´Hagan, “Statistical methods for elic-
iting probability distributions,” J. of the American Statistical Association,
vol. 100, no. 470, pp. 680–700, 2005.



10
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[39] M. Kárný, “Implementable prescriptive decision making,” in Proc. of
the NIPS 2016 Workshop on Imperfect Decision Makers, T. Guy and
et al, Eds., vol. 58. JMLR, 2017, pp. 19–30.

[40] T. Ferguson, “A Bayesian analysis of some nonparametric problems,”
The Annals of Statistics, vol. 1, pp. 209–230, 1973.

[41] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions.
N.Y.: Dover Publications, 1972.
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and R. Meo, Eds. Springer, 2014, vol. LCNS 8724, pp. 482–497.

[60] M. Fellows, A. Mahajan, T. Rudner, and S. Whiteson, “VIREL: A
variational inference framework for reinforcement learning,” in Adv. in
Neur. Inf. Proc. 32, H. Wallach and et al, Eds. Curran Associates, Inc.,
2019, pp. 7120–7134.

[61] H. Soufiani, “Revisiting random utility models,” 2014, phD Thesis, The
School of Eng. and Applied Sci., Harward Uni., Cambridge, MA.

[62] M. Scanagatta and et al, “A survey on Bayesian network structure
learning from data,” Progress in AI, vol. 8, p. 425439, 2019.

[63] K. Lang and T. Little, “Principled missing data treatments,” Prevention
Science, vol. 19, no. 3, pp. 284–293, 2018.

[64] D. Abel, Y. Jinnai, S. Guo, G. Konidaris, and M. Littman, “Policy and
value transfer in lifelong reinforcement learning,” in Proc. of the 35th
Int. Conf. on Machine Learning, ser. Proc. of MLR, J. Dy and A. Krause,
Eds., vol. 80, Stockholm Sweden, 2018, pp. 20–29.

[65] S. Albrecht and P. Stone, “Autonomous agents modelling other
agents: A comprehensive survey and open problems,” Artificial
Intelligence, vol. 258, pp. 66 – 95, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370218300249
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