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Conditional Independence Structures Over Four
Discrete Random Variables Revisited:

Conditional Ingleton Inequalities
Milan Studený

Dedicated to the memory of František Matúš

Abstract— The paper deals with linear information inequalities
valid for entropy functions induced by discrete random variables.
Specifically, the so-called conditional Ingleton inequalities are
in the center of interest: these are valid under conditional
independence assumptions on the inducing random variables.
We discuss five inequalities of this particular type, four of which
has appeared earlier in the literature. Besides the proof of the new
fifth inequality, simpler proofs of (some of) former inequalities
are presented. These five information inequalities are used to
characterize all conditional independence structures induced by
four discrete random variables.

Index Terms— Entropy function, discrete random variables,
conditional information inequalities, conditional independence,
polymatroids.

I. INTRODUCTION

THE motivation for this paper is explained and its structure
is described.

A. Motivation

The concept of conditional independence (CI) has been
studied in probability theory [13, § 25.3] and statistics
[6], [24] for many years. This concept has a key theoretical
role in probabilistic reasoning [27] and graphical statistical
models [12]. This is because the implications between CI
statements are interpreted in this context as substantial abstract
properties of (= “axioms” for) the respective (probabilistic)
conditional irrelevance relation. The first attempts to describe
abstract properties of probabilistic CI in terms of (a finite
number of) elementary CI implications occurred in the end of
the 1970s [6], [32]. It was shown in the 1990s that probabilistic
CI structures cannot be characterized by means of a finite
number of CI implications of this kind [35] while some
important substructures of probabilistic CI structures can be
characterized in this way [16].
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One of the goals motivated by this idea was to characterize
CI structures induced by four discrete random variables. Note
in this context that, for a theoretical reason, the CI structures
over a fixed number of random variables can be characterized
by means of a finite number of such elementary CI implica-
tions but the number of these CI implications (= “axioms”
for CI) grows rapidly with the number of random variables.
The goal has been achieved in the end of 1990s by Matúš in a
series of three papers [19]–[21]; the author of this article was
a co-author of the first paper in the series. The final solution
was the result of Matúš’s enormous efforts: it took him more
than five years to reach his goal. Note in this context that the
number of CI structures over four discrete random variables is
very high, in fact, one has 18 478 standard such CI structures.

To prove the validity of elementary CI implications (= of
“axioms” for CI) Matúš [20], [21] used a number of methods
that he has developed. Some of the CI implications were
derived as consequences of considerations within a wider
framework of σ-algebras, some of them followed from the
non-negativity of the Kullback-Leibler divergence of specially
constructed probability distributions and a few of them were
based on the characterization of CI in terms of factorization
of probability density. In the last paper in the series two
remaining CI implications were derived as consequences of
conditional information inequalities. That last method was
inspired by then recent paper by Zhang and Yeung [42] in
which they revealed the first (non-Shannon) conditional infor-
mation inequality; Matúš in [21] proved the second conditional
inequality. Thus, one can say, with a little exaggeration, that
each of the found CI implications from [20], [21] has its
own specific proof. The interest in conditional information
inequalities has been restored some years later when Kaced
and Romashchenko [10] found other such inequalities and
introduced the ways to classify them.

The source of motivation for this paper was the following
simple question: could it be the case that all the CI implications
that were revealed in case of four discrete random variables
can be derived using only one procedure? The surprising
answer is “yes”: it appears that all these CI implications can
really be derived as consequences of conditional information
inequalities valid for (entropy functions induced by) discrete
random variables. These inequalities are special in a certain
sense: they can be viewed as conditional Ingleton inequalities
and only five of them are enough to cover all 19 necessary CI
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implications. Note in this context that there are also further
valid CI implications/equivalences which, however, can be
verified even easier. Another remark is that this paper, unlike
the original series of papers [19]–[21], deals with standard
CI structures, which means that the functional dependences
among the considered random variables are not taken into con-
sideration. This is not a substantial difference because every
augmented CI structure (= the one with functional dependence
statements involved) can be viewed as an extension of a
unique standard CI structure (= the one without functional
dependences).

The contribution of this paper is a new (= the fifth)
conditional Ingleton inequality, simpler proofs of two former
such inequalities from [10], [21] and the derivation of all
elementary CI implications over four discrete random variables
using these five conditional Ingleton inequalities. For sake of
completeness we also recall, or perhaps reinterpret, the proofs
of two remaining inequalities so that the reader interested in
the characterization of CI structures over four discrete random
variables has a complete proof at disposal. Thus, altogether,
we present a simpler proof of the characterization of CI
structures over four variables than was the original one from
[19]–[21]. There was also another conjectured conditional
Ingleton inequality (= the sixth one), whose validity
would not have been in contradiction with the validity
of 19 above-mentioned elementary CI implications, but that
one appeared not to be true. Thus, a counter-example to its
validity is also given.

B. Structure of the Paper

Basic concepts of the paper are introduced in Section II.
We formally define the concepts of CI, entropy function,
polymatroid, and Ingleton inequality there; we also recall a
few fundamental facts used later. Section III then provides
the reader with an overview of related former results; it
can be viewed as a kind of extended introduction and can
be skipped without losing understanding of the rest of the
paper. Specifically, we recall the results on characterization
of CI structures over 4 discrete random variables (in more
details), on representations of polymatroids, and on informa-
tion inequalities. Section IV is then devoted particularly to
conditional Ingleton inequalities. We present 5 inequalities
of this type there, whose proofs, however, are moved to
Appendix (Section A). Additionally, five counter-examples
to the (probabilistic) validity of the Ingleton inequality are
given in Section IV and a few open tasks are formulated
there. Section V then brings an elegant application of the
results from Section IV: we characterize all (standard) CI
structures induced by four discrete random variables there.
In Conclusions (Section VI) we comment further potential
applications of the presented results.

II. PRELIMINARIES

Throughout the paper a finite non-empty basic set N will
be considered; its elements will index (= correspond to)
discrete random variables. To avoid the trivial case we assume
|N | ≥ 2. Shortened notation for some subsets of N will often

be used: union of two subsets X, Y ⊆ N may be denoted
by a juxtaposition of respective symbols: XY := X ∪ Y .
Analogously, the symbol for an element i ∈ N will also serve
to denote the respective singleton subset of N : i := {i}. The
power set of N will be denoted by P(N) := {S : S ⊆ N}.

A. Discrete Random Vector Over a Basic Set

A discrete random variable is a measurable function ξ from
a probability space (Ω,A, P ) to a non-empty finite set X,
called the sample space for ξ. The density (for ξ) is then a
function p on X defined by

p(x) := P ({ω ∈ Ω : ξ(ω) = x }) for x ∈ X.

Note that the probability space is only an auxiliary tool
here, the object of interest is, in fact, the induced probability
distribution on the sample space and this object is fully
described by the density. Observe that p is a density (for a
random variable with sample space X) iff p : X → [0, 1] and�

x∈X p(x) = 1.
By a discrete random vector over N will be understood

an indexed collection ξ = [ξi]i∈N of random variables on a
shared probability space (Ω,A, P ) with each ξi taking values
in its individual non-empty finite sample space Xi.

Given such a random vector ξ over N , we introduce a
symbol XA :=

�
i∈A Xi for any ∅ �= A ⊆ N , to denote the

set of all possible configurations of values for the (random)
sub-vector ξA := [ξi]i∈A. Each sub-vector ξA of ξ can thus be
interpreted as a random variable with sample space XA; the
random vector ξ itself can thus be viewed as a single random
variable as well, with values in the joint sample space XN .
Given a configuration x ∈ XA and i ∈ A, the symbol xi will
denote the respective component of x, that is, x = [xi]i∈A,
where xi ∈ Xi.

The marginal density for A ⊆ N is defined by the formula

pA(x) :=
�
{ p(y) : y ∈ XN with xi = yi for all i ∈ A },

whenever x ∈ XN .

We have intentionally introduced it as a function on XN

depending on the components from A. The special cases are
then the joint density pN and the density p∅ for the empty
set, which is a constant function on XN taking the value 1.
Nevertheless, if appropriate, one can view the marginal density
pA as a function on the respective marginal sample XA

(provided A �= ∅).

B. Probabilistic Conditional Independence

Probabilistic CI structure induced by a random vector ξ over
N is a discrete mathematical structure describing stochastic
independence (and dependence) relations among (random)
sub-vectors of ξ. Having three subsets X, Y, Z ⊆ N of the
basic set we say that ξX is conditionally independent of ξY

given ξZ and write ξX⊥⊥ ξY | ξZ if

∀x ∈ XN pXY Z(x) · pZ(x) = pXZ(x) · pY Z(x) . (1)

An alternative notation is X⊥⊥Y |Z [ξ]. The respective
ordered triplet of sets will also be denoted by (X, Y |Z); we
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use a bar to separate the third component interpreted as the
conditioning variable set Z .

Note that the definition (1) works for any triplet of sets
X, Y, Z although these three sets are typically assumed to
be pairwise disjoint. The case Z = ∅ corresponds to clas-
sic (unconditional) stochastic independence, denoted also by
ξX⊥⊥ ξY , alternatively by X⊥⊥Y [ξ]. The case Y = X
corresponds to functional dependence of ξX on ξZ : the reader
can easily deduce from (1) that ξX⊥⊥ ξX |ξZ is equivalent
to the existence of a function f : XZ → XX such that
ξX = f(ξZ).

There is a number of equivalent definitions of probabilistic
CI, one of them in terms of conditional density, which is
formally defined by the ratio

pX|Z(x) :=
pXZ(x)
pZ(x)

for x ∈ XN such that pZ(x) > 0,

with disjoint X, Z ⊆ N . The reader can verify easily that, in
case of pairwise disjoint X, Y, Z ⊆ N with X �= ∅ �= Y , one
has ξX⊥⊥ ξY | ξZ iff

pX|Y Z(x) = pX|Z(x) for each x ∈ XN with pY Z(x) > 0.

To say that in yet another way, one has ξX⊥⊥ ξY | ξZ iff the
conditional density pX|Y Z(x) does not depend on the (value
of a) sub-configuration for Y . In binary case, that is, in case
Xi = {0, 1} for i ∈ N , the following cross-product criterion
can be used: provided |X | = 1 = |Y | and p̃ is the marginal
density for XY Z interpreted as a function on XXY Z then
ξX⊥⊥ ξY | ξZ iff

p̃(0, 0, z) · p̃(1, 1, z) = p̃(0, 1, z) · p̃(1, 0, z)
for any configuration z ∈ XZ for Z .

Formally, the CI structure induced by a random vector ξ
over N is a certain ternary relation on the power set P(N).
Specifically, the augmented CI structure induced by a random
vector ξ over N is

{ (X, Y |Z) ∈ P(N)× P(N)× P(N) : ξX⊥⊥ ξY |ξZ } .

The standard CI structure is the above ternary relation
on P(N) confined to triplets of pairwise disjoint subsets of
N as required traditionally in [12], [27]. Note that discrete
probabilistic CI structures over N are naturally ordered by
inclusion of involved independence triplets (for further details
see Section II-H).

C. Conditional Product of Distributions

A discrete probability distribution over N is simply the
distribution of a discrete random vector over N . Put it in
another way: a discrete distribution P over N is specified
by a collection of individual non-empty finite sample spaces
Xi, i ∈ N , and by its density p : XN → [0, 1] defined
on the respective joint sample space. Given ∅ �= A ⊂ N ,
the marginal (distribution) of P for A can be introduced as
the distribution of the random sub-vector ξA. Thus, it is a
probability distribution over A with individual sample spaces
Xi, i ∈ A, inherited from P . The marginal density can be

computed from the joint one by summing over configurations
in XN\A.

Given pairwise disjoint sets A, B, C ⊆ N with A �= ∅ �= B,
we say that (discrete) probability distributions Q over AC and
R over BC are consonant if the marginals of Q and R for C
coincide, which involves the requirement that the individual
sample spaces for i ∈ C coincide. Given such a pair of
consonant distributions their conditional product is a (discrete)
probability distribution P over ABC with individual sample
spaces inherited from Q and R whose density p on XABC is
defined by the following formula:

p(a, b, c) :=

⎧⎨
⎩

q(a,c)·r(b,c)
r(c) if r(c) > 0,

0 otherwise,

where a, b, c belong to the respective marginal sample spaces
and q(a, c) denotes the value of the marginal density of Q
for AC in the configuration [a, c]. Easy observations are that
the marginals of the conditional product P are the given
distributions Q and R and one, moreover, has ξA⊥⊥ ξB | ξC

for any random vector ξ over ABC having the conditional
product P as its distribution.

D. Semi-Graphoids

In this paper we also deal with (standard) abstract CI
structures over N which are simply ternary relations on P(N)
(confined to triplets of pairwise disjoint sets). A convention is
accepted that ordered triplets (X, Y |Z) of sets involved in
such ternary relations are interpreted as abstract independence
statements, which is expressed by notation X⊥⊥Y |Z .

Abstract CI structures can be induced by various math-
ematical objects, not just by random vectors. Nevertheless,
they typically comply with some basic formal properties
of (= “axioms” for) conditional irrelevance relations which
were already pinpointed in [6]. Thus, following to [27], we will
say that a standard abstract CI structure over N is a semi-
graphoid if it satisfies the next three conditions: given pairwise
disjoint sets X, Y, Z, U ⊆ N , one has

(S:0) ∅⊥⊥Y |Z ,
(S:1) X⊥⊥Y |Z ⇔ Y⊥⊥X |Z ,
(S:2) X⊥⊥Y Z |U ⇔ [ X⊥⊥Y |ZU & X⊥⊥Z |U ] .

One can analogously introduce semi-graphoids in context of
augmented abstract CI structures: admit intersecting sets in
(S:1) and (S:2) and replace (S:0) by

• X ⊆ Z ⇒ X⊥⊥Y |Z .

The fact that every probabilistic CI structure is a semi-graphoid
easily follows from later observations (see Lemma 3 in
Section II-F).

The semi-graphoid properties imply that one need not retain
(information about) all CI statements in order to represent a CI
structure. A triplet (X, Y |Z) of pairwise disjoint subsets of N
will be called elementary if |X | = 1 = |Y |. The point is that
elementary triplets are enough to represent a semi-graphoid.

Lemma 1: Given a semi-graphoid over N (denoted using
the symbol ⊥⊥ ) and a triplet (X, Y |Z) of pairwise disjoint
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subsets of N one has

X⊥⊥Y |Z ⇔ (2)

∀ i ∈ X, j ∈ Y, K : Z ⊆ K ⊆ XY Z \ {i, j}, i⊥⊥ j |K.

Proof: We leave it to the reader to verify (3) by induction
on the cardinality of XY . The induction premise follows
immediately from (S:0) if |XY | ≤ 2 while the induction step
can be verified using (S:2).

Taking into consideration the symmetry property (S:1) one
can deduce that to represent a standard semi-graphoid over N ,
|N | = n, in the memory of a computer it is enough to have
n · (n− 1) · 2n−3 bits, each of which corresponds to a pair of
mutually equivalent elementary triplets (i, j|K) and (j, i|K).

In the context of augmented abstract CI structures one
has, however, to introduce additional (non-disjoint) elementary
triplets (i, i|N \ i) for i ∈ N ; Lemma 1 can then be extended
to that case as well.

E. Polymatroids

A central role in our exposition will have real set functions
h : P(N)→ R. Given such a function h and sets X, Y, Z ⊆ N
we introduce a special shorthand

Δ h(X, Y |Z) := h(XZ)+h(Y Z)−h(XY Z)−h(Z) (3)

to denote the corresponding difference expression for the
ordered triplet (X, Y |Z) of subsets of N . The symbol of
the function h will sometimes be omitted; we will do so
in situations when we wish to emphasize that (3) defines
a functional Δ (X, Y |Z) : h �→ Δ h(X, Y |Z) on R

P(N).
Typically, the considered triplet (X, Y |Z) of subsets of N
will be composed of pairwise disjoint sets and, in this case,
it will be associated with an abstract CI statement X⊥⊥Y |Z .

The rank function of a polymatroid is a real set function h :
P(N) → R which satisfies h(∅) = 0 and 0 ≤ Δ h(X, Y |Z)
for any triplet X, Y, Z ⊆ N of subsets of the basic set.
In case I ⊆ J ⊆ N and (X, Y |Z) = (J, J |I) one has
0 ≤ Δ h(J, J |I) = h(J)−h(I), which implies that every rank
function h of a polymatroid is non-decreasing, and, therefore,
non-negative. The requirement 0 ≤ Δ h(X, Y |Z) for any
triplet (X, Y |Z) of pairwise disjoint subsets of N then means
that h is submodular, that is, h(I)+h(J) ≥ h(I∪J)+h(I∩J)
for any I, J ⊆ N . Conversely, given three arbitrary sets
X, Y, Z ⊆ N , the equality

Δ (X, Y |Z) =
Δ (A, BC|Z ) + Δ (B, C|AZ ) + Δ (C, C|ABZ )
with A := X \ Y Z , B := Y \XZ , C := (X ∩ Y ) \ Z ,

allows one to show that any non-decreasing submodular
function h satisfying h(∅) = 0 defines a polymatroid;
this relates our definition above to the common one from
[8, § 2.2]. The concept itself can be viewed as a generalization
of the concept of a matroid. Indeed, by [25, Corollary 1.3.4],
an integer-valued set functions h : P(N)→ Z is known to be a
rank function of a matroid if it is non-decreasing, submodular
and bounded by cardinality: if I ⊆ N then 0 ≤ h(I) ≤ |I|.

Polymatroids can also be assigned abstract CI structures.
Specifically, given a rank function h : P(N) → R of a
polymatroid (over N ) we define

X⊥⊥Y |Z [h] := Δh(X, Y |Z) = 0
for any triplet (X, Y |Z) of subsets of N .

The following observation easily follows from the
definition.

Lemma 2: The CI structure induced by a polymatroid is a
semi-graphoid.

Proof: The fact Δ (∅, Y |Z) = 0 gives (S:0) while
Δ (X, Y |Z) = Δ (Y, X |Z) gives (S:1). Given a rank func-
tion h : P(N) → R of a polymatroid, the relation
Δ h(X, Y Z|U) = Δ h(X, Y |ZU) + Δ h(X, Z|U) together
with non-negativity of the involved terms implies (S:2).

F. Entropy Function

Given a discrete random variable ξ with a sample space X,
whose distribution is given by a density p : X → [0, 1], its
entropy H(ξ) is given by the formula

H(ξ) := −
�

x∈X:p(x)>0

p(x) · ln(p(x)) .

It is clearly a non-negative real number. Thus, every discrete
random vector ξ = [ξi]i∈N can be assigned its entropy function
hξ : P(N)→ [0,∞) defined by

hξ(A) := H(ξA) for every A ⊆ N .

Lemma 3: Given a discrete random vector ξ over N ,
the entropy function hξ is the rank function of a polymatroid.
Moreover, for every ordered triplet (X, Y |Z) of subsets of N
one has

ξX⊥⊥ ξY |ξZ ⇔ Δ hξ(X, Y |Z) = 0⇔ X⊥⊥Y |Z [hξ] . (4)

In particular, the CI structure induced by ξ is a
semi-graphoid.

Proof: Elementary information-theoretical inequalities,
see [41, Appendix 14.A], imply that the entropy function hξ

is a rank function of a polymatroid. The relation (4) then
follows from the fact that the value Δ hξ(X, Y |Z) is exactly
the so-called conditional mutual information between ξX and
ξY given ξZ . This quantity is known to vanish just in case of
the validity of the CI statement; see [41, Theorem 2.34] or
[38, Corollary 2.2]. The rest follows from Lemma 2.

Given discrete probability distributions Q and R on some
sample space X, with respective densities q and r, we say that
Q is absolutely continuous with respect to R if r(x) = 0
implies q(x) = 0 for any x ∈ X. We might alternatively say
that R dominates Q or that Q is dominated by R. If this is
the case then one can define the Kullback-Leibler divergence
of Q with respect to R by the formula

D(Q �R) :=
�

x∈X:q(x)>0

q(x) · ln q(x)
r(x)

.

Well-known facts are that D(Q �R) ≥ 0 and the equality
holds iff Q = R [41, Theorem 2.31]. Observe that, given a
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probability distribution P over N and pairwise disjoint sets
A, B, C ⊆ N with A �= ∅ �= B, the conditional product P of
the marginals of P for AC and BC dominates the (original)
distribution P . The Kullback-Leibler divergence D(P �P ) is
then the respective conditional mutual information.

G. Ingleton Expression in Different Forms

Another important quantity exploited in this paper is the
expression defining the so-called Ingleton inequality, discussed
in more details in Section III-B. We are going to call that
quantity (the) Ingleton expression and introduce a special
symbol for it, following the notation from [19].

Given a real set functions h : P(N) → R and four
pairwise disjoint subsets X, Y, Z, U ⊆ N of the basic set N ,
we introduce another special shorthand

� h(X, Y ) := − h(XY ) (5)

+ h(XZ) + h(XU) + h(Y Z) + h(Y U) + h(ZU)
− h(Z)− h(U)− h(XZU)− h(Y ZU)

to denote the respective Ingleton expression for (X, Y |Z, U).
Note that a more appropriate notation would be
� h(X, Y |Z, U) because the expression (6) does depend on
sets Z and U . Nevertheless, we will solely use this notation
in a situation when the sets X, Y, Z, U ⊆ N are fixed and
no misunderstanding can occur. Observe that (6) is invariant
relative to mutual exchanges X ↔ Y and Z ↔ U . Like in
case of the difference expression the symbol of the function
h might be omitted in order to emphasize that (6) defines a
functional � (X, Y ) : h �→ � h(X, Y |Z, U) on R

P(N).
The point is that the expression (6) has a number of different

forms, which were named, somewhat figuratively, “masks”
in [19, § 4]. Note that only five “masks” were mentioned
in [19, § 4] and are recalled in Lemma 4 below but thanks
to the invariance of (6) relative to X ↔ Y and Z ↔ U
one can recognize even 14 different forms of this expression.
In fact, besides those 14 basic forms, there are further possible
re-writings which have six difference terms.

Lemma 4: Given four pairwise disjoint subsets X, Y, Z, U
of the basic set N the Ingleton expression defined in (6) has
the following different forms:

(M.1) � (X, Y ) =
Δ (Z, U |X)+Δ (Z, U |Y )+Δ (X, Y |∅)−Δ (Z, U |∅),

(M.2) � (X, Y ) =
Δ (Z, U |Y )+Δ (X, Z|U)+Δ (X, Y |∅)−Δ (X, Z|∅),

(M.3) � (X, Y ) =
Δ (X, Y |Z)+Δ (X, Z|U)+Δ (Z, U |Y )−Δ (X, Z|Y ),

(M.4) � (X, Y ) =
Δ (X, Y |Z)+Δ (X, Y |U)+Δ (Z, U |XY )−Δ (X, Y |ZU),

(M.5) � (X, Y ) =
Δ (X, Y |Z)+Δ (X, Z|U)+Δ (Z, U |XY )−Δ (X, Z|Y U).

Proof: Easy verification of every form is left to the reader:
substitute (3) into the right-hand side of it and, after canceling
some terms, obtain (6).

H. Lattice of CI Structures

A partially ordered set (Z,�) is called a lattice [2, § I.4] if
every two-element subset of Z has both the least upper bound,
also named the supremum or the join, and the greatest lower
bound, also named the infimum or the meet. A finite lattice
is necessarily complete which means that the requirement
above holds for any subset of Z . One of standard examples
of a finite lattice is the face-lattice of a polyhedral cone
[44, Theorem 2.7(v)]. A lattice (Z,�) is anti-isomorphic to
a lattice (Z �,��) if there is a one-to-one mapping ι from Z
onto Z � which reverses the ordering: for x, y ∈ Z , one has
x � y iff ι(y) �� ι(x).

An element e in a lattice Z is called meet-irreducible if it
cannot be written as the infimum of two elements of Z which
are both different from e. In a finite lattice, every element can
be written as the infimum of a set of meet-irreducible ele-
ments. Examples of meet-irreducible elements are the unique
maximal element 1 in the lattice and its sub-maximal elements,
called co-atoms. These are the elements c ∈ Z distinct from
1 such that the only elements e ∈ Z satisfying c � e are
e = c and e = 1. On the other hand, a finite lattice can have
additional meet-irreducible elements besides those mentioned
above.

Recall from Section II-B that discrete probabilistic CI struc-
tures over N are naturally ordered by inclusion (of involved
ordered triplets of subsets of N ). The point is that they form
a complete lattice relative to this ordering. This is because
the intersection of two discrete probabilistic CI structures
over N is a discrete probabilistic CI structure over N , which
fact follows from the following construction. Given densities
q : YN → [0, 1] and r : ZN → [0, 1] of discrete probability
distributions Q and R over N one can put

p([y, z]) := q(y) · r(z) for any [y, z] ∈ YN × ZN ,

which defines the density of a probability distribution P over
N with individual sample spaces Xi := Yi×Zi for any i ∈ N .
The CI structure induced by P appears to be the intersection of
CI structures induced by Q and R. The fact that CI structures
are closed under intersection allows one to characterize them
by means of meet-irreducible elements in the lattice of these
structures.

III. OVERVIEW OF RELATED FORMER RESULTS

This section, recalling earlier findings relevant to the topic
of study, can be skipped without losing understanding of
the rest of the paper. To interpret geometrically some of the
notions concepts from polyhedral geometry are used that are
not defined here; definitions can be found in books on this
topic [30], [44].

A. Representations of Polymatroids

Matroid theory was introduced already in the 1930s [40] as
an abstract theory of independence inspired by the concepts
of independence emerging in linear algebra and other fields.
There is a number of crypto-equivalent definitions of the
concept of a matroid in sense that the equivalence is not
apparent (at first glance) and some transitional constructions
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are needed; see [25] or [30, Chapter 39] for details. One of
the equivalent definitions is in terms of the rank function (of
a matroid) given in Section II-E. Some of the matroids are
linearly representable over a field F, which means that they
are defined through linear independence relationships within
a finite collection of vectors from a linear space over F.

The concept of a polymatroid was introduced by
Edmonds [7] in the early 1970s as a certain bounded polyhe-
dron in the space R

N whose defining inequalities correspond
to subsets of N . Tight upper bounds for the inequalities then
define the values of the respective rank function, determining
the polyhedron uniquely. The terminology was motivated
by the fact that this concept generalizes the concept of an
“independent set polytope” for a matroid [30, § 40.2]. Later
authors dealing with polymatroids [8, § 2.2], however, found
it to be more appropriate to define polymatroids in terms of
their rank functions instead; we have done so in Section II-E
as well. One can extend the concept of linear representability
(from matroids) to polymatroids whose rank functions are
integer-valued [8, p. 30].

One can distinguish different forms of probabilistic repre-
sentability for a polymatroid; most of definitions below were
inspired by Matúš [17], [22]. Let us say that a polymatroid
over N with a rank function h ∈ R

P(N) is

• strongly probabilistically representable if there exists a
constant c > 0 and a discrete random vector ξ over N
such that c · h(S) = hξ(S) for any S ⊆ N ,

• (strongly) asymptotically probabilistically representable
if there exists a constant c > 0 and a sequence of discrete
random vectors ξn over N such that one has c · h(S) =
limn→∞ hξn

(S) for any S ⊆ N ,
• probabilistically representable if there exists a discrete

random vector ξ over N such that, for every triplet
(X, Y |Z) of subsets of N , one has

X ⊥⊥Y |Z [h] ⇔ X ⊥⊥Y |Z [ξ] ,

• weakly probabilistically representable if there exists a
discrete random vector ξ over N such that, for every
triplet (X, Y |Z) of pairwise disjoint subsets of N ,

X ⊥⊥Y |Z [h] ⇔ X ⊥⊥Y |Z [ξ] .

It is immediate that strong probabilistic representability
implies the asymptotic one; by Lemma 3, it also implies the
remaining weaker versions.

A classic result by Matúš [15, Theorem 2] says that every
matroid which is linearly representable over a finite field F

is also strongly probabilistically representable; that particular
construction of his was based on the assumption of the
finiteness of the field F. The same method can be used
to show that this implication holds also for (integer-valued)
polymatroids [26, Theorem 1.6.2]. Note in this context that it
follows from [25, Corollary 6.8.13] that any matroid which is
linearly representable over a field is also linearly representable
over a finite field. Therefore, the assumption that the field F

is finite can be omitted.
There is also a concept of (finite) group representability

of a polymatroid over N , defined in [41, § 16.2], and any

polymatroid which has a group representation is strongly
probabilistically representable [4].

To give geometric interpretation to probabilistic repre-
sentability concepts let us recall a few basic facts on the
cone H(N) of rank functions h ∈ R

P(N) of polymatroids
over N . It is a pointed polyhedral cone and its facets are
given by inequalities Δ h(i, j|K) ≥ 0 for distinct i, j ∈ N ,
K ⊆ N \ {i, j}, and by inequalities Δ h(i, i|N \ i) ≥ 0 for
i ∈ N . This means that the facets of the cone correspond to
elementary triplets for representation of an augmented abstract
CI structure; see Section II-D. In particular, every face F
of H(N) can be identified with an augmented abstract CI
structure, determined by the list of elementary triplets for
facets containing F .

The facets of H(N) specified by equalities Δ h(i, i|N \i) =
0 for i ∈ N are quite large. In fact, there is only one
extreme ray of H(N) not contained in such a facet, which
is the zero-one indicator υ↑i of supersets of {i}. Let us say
that a polymatroid over N is tight if its rank function h
satisfies Δ h(i, i|N \ i) = 0 for any i ∈ N . Thus, the set
Ĥ(N) of rank functions of tight polymatroids over N is a
face of H(N) whose extreme rays are the extreme rays of
H(N) with the exception of |N | rays generated by υ↑i for
i ∈ N . This is because every h ∈ H(N) can be assigned its
tightened version ĥ ∈ Ĥ(N) defined by ĥ(S) := h(S) −�

i∈N Δ h(i, i|N \ i) · υ↑i(S) for S ⊆ N . The facets of
Ĥ(N) are given by inequalities Δ h(i, j|K) ≥ 0 for distinct
i, j ∈ N , K ⊆ N \ {i, j} and, thus, correspond to elementary
triplets for representation of a standard abstract CI structure;
see Section II-D. In particular, every face of Ĥ(N) can be
identified with a standard abstract CI structure.

The first two concepts of probabilistic representability of a
polymatroid with a rank function h concern the ray generated
by h. The strong representability means that the relative
interior of that ray contains an entropy function; the asymptotic
representability means that it contains a limit of entropy
functions. The probabilistic representability concerns the face
of H(N) generated by h, which is the least face F of H(N)
containing h. It is the requirement that the relative interior
of F contains an entropy function. The weak probabilistic
representability concerns the face F̂ of Ĥ(N) generated by ĥ,
the tightened version of h. It is the requirement that the relative
interior of the face F̂ contains a tightened version of an
entropy function.

Remark 1: The reader may be interested in a question what
are the extreme rays of the cone H(N). As explained above,
this question is equivalent to the task what are the extreme rays
of Ĥ(N). It follows from the fact that H(N) is defined by
inequalities with rational coefficients that every extreme ray of
H(N) is generated by an integer-valued rank function. There
is a way to recognize the extremity in H(N). Each function
h ∈ H(N) can be identified with its base polyhedron B(h)
[8, § 2.2]. Note in this context that the base polyhedron B(h)
is not the original “polymatroid” polyhedron introduced by
Edmonds [7], which is named the independence polyhedron in
[8, § 2.2]: the relation is that B(h) is a certain face of the latter
polyhedron. In a 2016 paper [39] an easy criterion was given
which allows one to test on basis of B(h) whether the function
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h generates an extreme ray of H(N). Specifically, it leads to
solving a certain simple linear equation system determined by
(the vertices of) B(h). Note, however, that the paper [39] is
primarily devoted to supermodular functions, which are mirror
images of submodular functions. The point is that the cone
Ĥ(N) of rank functions for tight polymatroids is isomorphic
to the cone of (suitably) standardized supermodular functions.
The class of base polyhedra for polymatroids then coincides
with the class of polytopes that are known as “cores” of
supermodular (= convex) games. The same class of polytopes
is also known as the class of generalized permutohedra [29].

B. CI Structures Over Four Discrete Variables

Here we describe in more detail the methodological
approach from [19]–[21]. The basic idea was the embedding
ξ �→ hξ of discrete random vectors over N into the cone
H(N); see Section II-F.

The starting conjecture (of two of us), which holds in case
|N | = 3, was that every h ∈ H(N) is a multiple of some
entropy function. To verify that it would be enough, thanks
to the construction in Section II-H, to find, for every extreme
ray R of H(N), a discrete random vector ξ over N with hξ

generating R. Matúš found the extreme rays of H(N) in case
|N | = 4 in a previous paper of his [18, § 5]: there are 41 of
them and they break into 11 permutational types.

We found the desired probabilistic constructions for 10 per-
mutational types [19, § 5] and were stuck with the last
permutational type containing 6 rays. Note in this context
that all these 35 rays, for which we found the constructions,
are generated by integer-valued rank functions linearly repre-
sentable over finite fields. Thus, the existence of their (strong)
probabilistic representations could also be derived from results
on linearly representable polymatroids [15], [26] mentioned in
Section III-A. In the Appendix, Section B, we give 9 of these
constructions, namely those for tight polymatroids.

The breakthrough was an observation by Matúš that the
last permutational type is not strongly probabilistically repre-
sentable [17, § 7]. The motivational source for that observation
was his perception that the rank function

hxy(S) :=

⎧⎨
⎩

0 for S = ∅,
4 for S = xy and S = N ,

|S|+ 1 for other S ⊆ N ,

where {x, y} ⊂ N , |N | = 4, generating a ray of the last
type, can be obtained by coarsening from the rank function of
the simplest non-linear matroid, the so-called Vámos cube,
defined on an 8-element basic set. The observation from
[17, Lemma 1] that hxy has no strong probabilistic represen-
tation was based on a derived CI property which involves
functional dependences; therefore, it does not exclude the (per-
tinent) existence of a weak probabilistic representation for hxy.
The conclusion that hxy has no weak probabilistic representa-
tion, however, follows from standard CI implications found in
[36, § 5] on basis of [17, Lemma 1].

Another argument for linear non-representability of hxy is
that it does not satisfy the Ingleton inequality � hxy(x, y) ≥ 0.
This special inequality was published in 1971: Ingleton [9]

showed that the rank function of any linearly representable
matroid over N , |N | = 4, must comply with it. An interesting
geometric observation [19, Lemma 4.1] is that the sub-cone
of H(N) demarcated by adding six versions of Ingleton
inequality has 35 extreme rays, namely those rays of H(N)
for which the probabilistic representation was found. This
led us to a revised conjecture that the sub-cone defined by
adding Ingleton inequalities to those for H(N) determines all
probabilistic CI structures over N , that is, probabilistic and
linear representability coincide in case of 4 variables.

The revised conjecture appeared not to be true: we found
four examples of probability distributions whose induced
entropy functions do not satisfy the Ingleton inequality; see
Examples 1-4 in Section IV-B. Thus, we got examples of
probabilistically representable polymatroids that are not lin-
early representable. Matúš then continued in his laborious
analysis of numerous remaining cases of “un-decided” abstract
CI structures. He obtained them on basis of a more detailed
geometric analysis of the cone H(N) from [19, § 6]. He found
many additional CI implications in the next paper [20] by
combining various methods but stuck in 1995 with a couple of
undecided cases. A breakthrough came in 1997 when Zhang
and Yeung [42] published their first conditional information
inequality. Matúš found out that he is able to settle one of his
remaining cases by deriving a CI implication as a consequence
of their inequality. Moreover, in [21, Proposition 2.1] he proved
the second conditional information inequality and solved the
last case by deriving the last CI implication.

C. Information Inequalities

In 1998 Zhang and Yeung [43] found the first unconstrained
linear inequality for the entropy function which is not implied
by the inequalities defining H(N) and showed that the set of
limits of entropy functions is a closed convex cone. Thus, they
gave the first negative response to a general question raised
by Pippenger [28] in 1986: what are the “laws of informa-
tion theory”, specifically whether classic Shannon inequali-
ties characterize entropy functions. In 2007 then Matúš [23]
showed that the cone of limits of entropy functions is not
polyhedral if |N | ≥ 4, which means there is an infinite number
of unconstrained information inequalities (= linear inequalities
valid for entropy functions).

The interest in conditional (= constrained) information
inequalities has been restored in the 2010s when Kaced and
Romashchenko [10] started to study these inequalities from a
theoretical point of view. Besides the proofs of several new
inequalities they proposed to classify these inequalities. Some
of the conditional information inequalities can be derived
from unconstrained ones, which means they are essentially
unconstrained. Kaced and Romashchenko, however, showed
that two former conditional information inequalities from
[21], [42] and their own new inequalities are essentially
conditional, which means they cannot be derived from uncon-
strained linear information inequalities.

They also introduced more detailed classification of essen-
tially conditional inequalities: some of them hold solely for
entropy functions and some of them hold even for limits
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of entropy functions. By a special evidence technique they
showed that most of (their) new inequalities are valid for limits
of entropy functions. On the other hand, they gave examples
that two discussed essentially conditional inequalities need
not hold for limits of entropy functions; the first conditional
information inequality [42] is one of them.

IV. CONDITIONAL INGLETON INEQUALITIES

In this section we present sufficient conditions in terms
of CI for the validity of Ingleton inequality, give a few
counter-examples to its general probabilistic validity and raise
related open questions.

A. Sufficient Conditions

Our main theoretical result offers five conditions ensuring
the validity of Ingleton inequality; to fix the context we
consider the case � (X, Y ) ≥ 0.

Theorem 1: Given the entropy function h induced by a
discrete random vector over N , the next implications hold:

[ 1cI ] Δ h(X, Y |∅)=0=Δh(X, Y |Z) ⇒ � h(X, Y ) ≥ 0,

[ 2cI ] Δ h(X, Y |Z)=0=Δh(Y, U |Z) ⇒ � h(X, Y ) ≥ 0,

[ 3cI ] Δ h(X, Z|U)=0=Δh(X, U |Z) ⇒ � h(X, Y ) ≥ 0,

[ 4cI ] Δ h(X, Z|U)=0=Δh(Z, U |X) ⇒ � h(X, Y ) ≥ 0,

[ 5cI ] Δ h(X, Z|U)=0=Δh(Y, Z|U) ⇒ � h(X, Y ) ≥ 0.

Proof: This shown in the Appendix, Section A.
Because of the symmetry of the expression � h(X, Y ) with

respect to X ↔ Y and Z ↔ U the conditional Ingleton
inequalities from Theorem 1 have altogether 14 possible
forms; the inequalities [ 2cI ] and [ 4cI ] have four possible
permutated versions while [ 1cI ], [ 3cI ], and [ 5cI ] only two
of them.

B. Counter-Examples

To show that the premises for Ingleton inequality
� h(X, Y ) ≥ 0 in Theorem 1 are minimal possible ones
one needs counter-examples to its general validity. Four of
them are based on constructions of probability distributions
having certain special CI structure; analogous constructions
were formerly given in [20], [21], [37].

The first counter-example is loosely related to (M.1) form
of � (X, Y ).

Example 1: There exists a discrete random vector such that

[ X⊥⊥Y | ∅ & Z⊥⊥U |X & Z⊥⊥U |Y & Z⊥⊥U |XY ]
�⇒ � (X, Y ) ≥ 0 .

Put N = {x, y, z, u} and define the density p of a binary
random vector:

x y z u

p : (0, 0, 0, 0) �→ 1/4
(0, 1, 0, 1) �→ 1/4
(1, 0, 0, 1) �→ 1/4
(1, 1, 1, 1) �→ 1/4

with zero values for other configurations. The reader can easily
check the validity of above CI statements. Using (M.1) in
Lemma 4 one has � (X, Y ) = −Δ (Z, U |∅) < 0 because
Z �⊥⊥U | ∅. The induced CI structure over N has 6 permutably
equivalent versions.

The second counter-example is based on (M.2) form of the
Ingleton expression � (X, Y ).

Example 2: There exists a discrete random vector such that

[ X⊥⊥Y | ∅ & X⊥⊥Z |U & Z⊥⊥U |Y & Z⊥⊥U |XY ]
�⇒ � (X, Y ) ≥ 0 .

To this end we put N = {x, y, z, u} and define the density
p of a binary random vector over N as follows:

x y z u

p : (0, 0, 0, 0) �→ 1/4
(0, 1, 1, 0) �→ 1/4
(1, 0, 0, 1) �→ 1/4
(1, 1, 0, 0) �→ 1/8
(1, 1, 1, 0) �→ 1/8

with zero values for other configurations. The reader can check
directly the validity of above CI statements. Using (M.2) in
Lemma 4 one has � (X, Y ) = −Δ (X, Z|∅) < 0 because
X �⊥⊥Z | ∅. The induced CI structure over N has 24 permutably
equivalent versions.

The third counter-example is related to (M.3) and (M.5)
forms of � (X, Y ).

Example 3: There exists a discrete random vector such that

[ X⊥⊥Y |Z & X⊥⊥Z |U & Z⊥⊥U |Y & Z⊥⊥U |XY ]
�⇒ � (X, Y ) ≥ 0 .

We put N = {x, y, z, u} and define the density p of a binary
random vector:

x y z u

p : (0, 0, 0, 1) �→ 2/7
(0, 0, 1, 1) �→ 1/7
(0, 1, 1, 1) �→ 1/7
(1, 0, 0, 1) �→ 1/7
(1, 0, 1, 1) �→ 1/7
(1, 1, 1, 0) �→ 1/7

with zero values for other configurations. The reader can
directly verify the validity of above CI statements. Using
(M.3) in Lemma 4 one has � (X, Y ) = −Δ (X, Z|Y ) < 0
as X �⊥⊥Z |Y ; by (M.5), alternatively, one has � (X, Y ) =
−Δ (X, Z|Y U) < 0 since X �⊥⊥Z |Y U . The induced CI
structure over N has 24 permutably equivalent versions.

The fourth counter-example is loosely related to (M.4) form
of the Ingleton expression � (X, Y ).

Example 4: There exists a discrete random vector such that

[ X⊥⊥Y |Z & X⊥⊥Y |U & Z⊥⊥U |X
& Z⊥⊥U |Y & Z⊥⊥U |XY ] �⇒ � (X, Y ) ≥ 0 .
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To this end we put N = {x, y, z, u} and define the density
p of a binary random vector over N as follows:

x y z u

p : (0, 0, 0, 0) �→ 2/7
(0, 1, 0, 0) �→ 1/7
(0, 1, 1, 0) �→ 1/7
(1, 0, 0, 0) �→ 1/7
(1, 0, 0, 1) �→ 1/7
(1, 1, 0, 0) �→ 1/7

with zero values for other configurations. The reader can
directly verify the validity of above CI statements. Using
(M.4) in Lemma 4 one has � (X, Y ) = −Δ (X, Y |ZU) < 0
because X �⊥⊥Y |ZU . The induced CI structure over N has
6 permutably equivalent versions.

The preceding examples allow one to get the following.
Corollary 5: The premises of all the implications from

Theorem 1 are minimal.
Proof: No single premise Δ h(A, B|C) = 0 there implies

� h(X, Y ) ≥ 0.
An important addition to Theorem 1 is the following claim

(see later Remark 2).
Example 5: There exists a discrete random vector such that

[ X⊥⊥Z |U & Y⊥⊥U |Z ] �⇒ � (X, Y ) ≥ 0 .

To show that we put N = {x, y, z, u} and define the density
p of a binary random vector over N as follows:

x y z u

p : (0, 0, 0, 0) �→ 18/64

(0, 1, 0, 0) �→ 3/64
(0, 1, 0, 1) �→ 1/64
(0, 1, 1, 0) �→ 7/64
(0, 1, 1, 1) �→ 3/64

(1, 0, 0, 0) �→ 3/64
(1, 0, 0, 1) �→ 7/64
(1, 0, 1, 0) �→ 1/64
(1, 0, 1, 1) �→ 3/64

(1, 1, 1, 1) �→ 18/64

with zero values for other configurations. It is easy to compute
the respective marginal densities for XZU and Y ZU :

x z u y z u

(0, 0, 0) �→ 21/64 (0, 0, 0) �→ 21/64
(0, 0, 1) �→ 1/64 (0, 0, 1) �→ 7/64
(0, 1, 0) �→ 7/64 (0, 1, 0) �→ 1/64
(0, 1, 1) �→ 3/64 (0, 1, 1) �→ 3/64

(1, 0, 0) �→ 3/64 (1, 0, 0) �→ 3/64
(1, 0, 1) �→ 7/64 (1, 0, 1) �→ 1/64
(1, 1, 0) �→ 1/64 (1, 1, 0) �→ 7/64
(1, 1, 1) �→ 21/64 (1, 1, 1) �→ 21/64

and observe that X⊥⊥Z |U and Y⊥⊥U |Z (using the
cross-product criterion). The goal is to show that the induced
entropy function h satisfies � h(X, Y ) < 0. Note that
two-dimensional marginals have a special form Pα with a
density

pα : (0, 0) �→ 1
4 · (1 + α)

(0, 1) �→ 1
4 · (1− α)

(1, 0) �→ 1
4 · (1− α)

(1, 1) �→ 1
4 · (1 + α)

for some α ∈ [0, 1].

Specifically, one has αxy = 1/8, αxz = αyu = 3/8 and
αzu = 1/2. Observe that the mutual information for the
distribution Pα is as follows:

I(α) :=
1
2
· [ (1 + α) · ln(1 + α) + (1 − α) · ln(1− α) ] .

In particular, Δ h(X, Y |∅) = I(1/8), Δ h(X, Z|∅) =
Δ h(Y, U |∅) = I(3/8) and Δ h(Z, U |∅) = I(1/2). This
allows one to write the (16)-multiple of the Ingleton expres-
sion in the following form:

16 ·� h(X, Y ) (6)= 16 ·Δ h(X, Z|U)� 	
 �
=0

+ 16 ·Δ h(Y, U |Z)� 	
 �
=0

+ 16 ·Δ h(X, Y |∅) + 16 ·Δ h(Z, U |∅)
− 16 ·Δ h(X, Z|∅)− 16 ·Δ h(Y, U |∅)

= 16 · [ I(1/8) + I(1/2)− 2 · I(3/8) ]

= 9 · ln 9
8

+ 7 · ln 7
8

+ 12 · ln 3
2

+ 4 · ln 1
2

− 22 · ln 11
8
− 10 · ln 5

8
= 32 · ln(2) + 30 · ln(3)− 10 · ln(5)

+ 7 · ln(7)− 22 · ln(11)
.= −0.0876256 < 0 .

Hence, � h(X, Y ) < 0, which concludes the arguments.
Note that the induced CI structure involves only 2 non-trivial
statements X⊥⊥Z |U and Y⊥⊥U |Z .

C. Remaining Open Tasks

First, let us recall the considerations leading to Theorem 1.
Remark 2: The simple question at the beginning was which

CI assumptions imply the validity of Ingleton inequality
� (X, Y ) ≥ 0. Clearly, by Lemma 4, there are 14 single
CI statements implying its validity, namely the ones whose
respective terms are with “minus” in one of the 14 basic
forms of the Ingleton expression. Thus, other possible CI
assumptions for � (X, Y ) ≥ 0 are subsets of the 10-element
set of remaining CI statements composed of X, Y, Z, U .

The constructions from Examples 1-4 were known for-
merly [20], [21], [37]; these appear to be maximal CI assump-
tions which do not imply � (X, Y ) ≥ 0. This led to the task
to determine the minimal subsets of the above 10-element set
of CI statements that are not contained in one of those non-
implicators. These are 2-element sets falling into 6 permuta-
tional types (relative to X ↔ Y and Z ↔ U ). Five of them,
reported in Theorem 1, appeared to imply � (X, Y ) ≥ 0, while
the sixth type not, as shown by Example 5.
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Thus, Example 5 can be viewed as a counter-example to
probabilistic validity of the sixth potential conditional Ingleton
inequality. Nevertheless, it does not exclude its existence.
Therefore, we ask the following.

Open Question 1: Is there a set X of CI statements such
that {X⊥⊥Z |U, Y⊥⊥U |Z } ⊂ X and

X ⊆ {X⊥⊥Y | ∅, X⊥⊥Z |U, Y⊥⊥U |Z, Z⊥⊥U |XY }
which implies the validity of � (X, Y ) ≥ 0 ?

Note in this context that it follows from Theorem 1 and
Example 5 that these are all the remaining potential CI impli-
cators for � (X, Y ) ≥ 0. Another couple of open problems is
inspired by concepts and results from [10].

Open Question 2: Is the new inequality [ 5cI ] from The-
orem 1 essentially conditional? Which of the inequalities
[ 1cI ]-[ 5cI ] are valid for functions that are limits of entropy
functions induced by discrete random vectors?

Remark that, by results from [10], the inequalities
[ 1cI ]-[ 4cI ] are essentially conditional and [ 3cI ]-[ 4cI ] hold
for limits of entropy functions.

V. CONDITIONAL INDEPENDENCE

STRUCTURES REVISITED

In this section we apply the previously presented results to
characterize (abstract properties of) CI structures induced by
four discrete random variables.

A. CI Equivalences

There are properties of (discrete) probabilistic CI structures
which follow solely from the basic fact that every entropy
function is a polymatroid (see Lemma 3). These properties
can be viewed as two-way CI implications where one set of CI
statements implies another set of CI statements and conversely.

Corollary 6: Every (standard) abstract CI structure over
N induced by the rank function of a polymatroid is a
semi-graphoid which complies with the following five con-
ditions: given pairwise disjoint sets X, Y, Z, U ⊆ N ,
one has

(E:1) [ X⊥⊥Y |Z & X⊥⊥Z |U & X⊥⊥U |Y ]
⇔ [ X⊥⊥Y |U & X⊥⊥Z |Y & X⊥⊥U |Z ],

(E:2) [ X⊥⊥Y |Z & X⊥⊥U |Y & Y⊥⊥Z |U & Z⊥⊥U |X ]
⇔ [ X⊥⊥Y |U & X⊥⊥U |Z & Y⊥⊥Z |X & Z⊥⊥U |Y ],

(E:3) [ X⊥⊥Y |ZU & X⊥⊥Z | ∅& Y⊥⊥U | ∅ & Z⊥⊥U |XY ]
⇔ [ X⊥⊥Y | ∅& X⊥⊥Z |Y U & Y⊥⊥U |XZ & Z⊥⊥U | ∅ ],

(E:4) [ X⊥⊥Y | ∅& X⊥⊥Y |ZU & Z⊥⊥U |X & Z⊥⊥U |Y ]
⇔ [ X⊥⊥Y |Z & X⊥⊥Y |U & Z⊥⊥U | ∅ & Z⊥⊥U |XY ],

(E:5) [ X⊥⊥Y |ZU & X⊥⊥U |Y & Y⊥⊥Z | ∅ & Z⊥⊥U |X ]
⇔ [ X⊥⊥Y |U & X⊥⊥U |Y Z & Y⊥⊥Z |X & Z⊥⊥U | ∅ ].

In particular, every (standard) probabilistic CI structure
satisfies (E:1)-(E:5).

Proof: Lemma 2 says that the induced CI structure is a
semi-graphoid. To verify the implication⇒ in (E:1), write for

a rank function h : P(N)→ R:

0 = Δ h(X, Y |Z) + Δ h(X, Z|U) + Δ h(X, U |Y )
= + h(XY ) + h(XZ) + h(XU)

+ h(Y Z) + h(Y U) + h(ZU)
− h(Y )− h(Z)− h(U)
− h(XY Z)− h(XY U)− h(XZU)

= Δ h(X, Y |U) + Δ h(X, Z|Y ) + Δ h(X, U |Z)

and deduce from non-negativity of involved difference terms
that they have to vanish. The opposite implication ⇐ in (E:1)
and also all other implications in (E:2)-(E:5) can be verified
in an analogous way; this is left to the reader. The last claim
then easily follows from the equivalence (4) in Lemma 3.

The CI equivalences from Corollary 6, including the proper-
ties defining a semi-graphoid, appear to be all CI equivalences
which effectively apply in case four random variables. Note,
however, that one can derive many further valid CI equiva-
lences in the same way in case five and more discrete variables;
one can even use computers for this purpose [3].

Remark 3: This is to commemorate the occurrence of the
properties from Corollary 6 in the literature. The condition
(E:4) appeared as (A.3) in [34] as the first ever CI property
which does not follow from semi-graphoid axioms. The con-
ditions (E:1)-(E:5) were all formulated in [36] as properties
(A.3)-(A.7) of the so-called “structural” semi-graphoids dis-
cussed there; note that one can show using [38, § 5.3] that
“structural” semi-graphoids coincide with standard CI struc-
tures induced by polymatroids. On the other hand, the condi-
tions (E:1)-(E:5) were not mentioned in [19]–[21]; they are,
however, implicit in the concept of a “semi-matroid” defined
there, which concept corresponds to an augmented CI structure
induced by a polymatroid.

B. CI Implications

Here we apply the conditional Ingleton inequalities from
Theorem 1 to derive CI implications valid for discrete random
vectors.

Corollary 7: Every (standard) probabilistic CI structure
induced by a discrete random vector over N complies with
the following 19 conditions: given pairwise disjoint sets
X, Y, Z, U ⊆ N , one has

(I:1) [ X⊥⊥Y | ∅ & X⊥⊥Y |Z & Z⊥⊥U |X & Z⊥⊥U |Y ]
⇒ Z⊥⊥U | ∅,

(I:2) [ X⊥⊥Y | ∅ & X⊥⊥Z |U & Z⊥⊥U |X & Z⊥⊥U |Y ]
⇒ Z⊥⊥XU | ∅,

(I:3) [ X⊥⊥Y | ∅ & X⊥⊥Y |U & X⊥⊥Z |U & Z⊥⊥U |Y ]
⇒ X⊥⊥Z | ∅,

(I:4) [ X⊥⊥Y | ∅ & X⊥⊥Z |U & X⊥⊥U |Z & Z⊥⊥U |Y ]
⇒ X⊥⊥ZU | ∅,

(I:5) [ X⊥⊥Y | ∅ & X⊥⊥Z |U & Y⊥⊥U |Z & Z⊥⊥U |Y ]
⇒ X⊥⊥Z | ∅,

(I:6) [ X⊥⊥Y | ∅ & X⊥⊥Z |U & Y⊥⊥Z |U & Z⊥⊥U |Y ]
⇒ X⊥⊥Z | ∅,

(I:7) [ X⊥⊥Y | ∅ & X⊥⊥Y |Z & X⊥⊥Z |U & Z⊥⊥U |Y ]
⇒ X⊥⊥Y Z | ∅,
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(I:8) [ X⊥⊥Y |Z & X⊥⊥Z |U & Y⊥⊥U |Z & Z⊥⊥U |Y ]
⇒ X⊥⊥Z |Y ,

(I:9) [ X⊥⊥Y |Z & X⊥⊥Y |U & X⊥⊥Z |U & Z⊥⊥U |Y ]
⇒ X⊥⊥Z |Y ,

(I:10) [ X⊥⊥Y |Z & X⊥⊥Z |U & X⊥⊥U |Z & Z⊥⊥U |Y ]
⇒ X⊥⊥Z |Y ,

(I:11) [ X⊥⊥Y |Z & X⊥⊥Z |U & Z⊥⊥U |X & Z⊥⊥U |Y ]
⇒ X⊥⊥Z |Y ,

(I:12) [ X⊥⊥Y |Z & X⊥⊥Z |U & Y⊥⊥Z |U & Z⊥⊥U |Y ]
⇒ X⊥⊥Z |Y ,

(I:13) [ X⊥⊥Y | ∅ & X⊥⊥Y |Z & X⊥⊥Y |U & Z⊥⊥U |XY ]
⇒ X⊥⊥Y |ZU ,

(I:14) [ X⊥⊥Y |Z & X⊥⊥Y |U & X⊥⊥Z |U & Z⊥⊥U |XY ]
⇒ X⊥⊥Y Z |U ,

(I:15) [ X⊥⊥Y | ∅ & X⊥⊥Y |Z & X⊥⊥Z |U & Z⊥⊥U |XY ]
⇒ X⊥⊥Z |Y U ,

(I:16) [ X⊥⊥Y |Z & X⊥⊥Z |U & Y⊥⊥U |Z & Z⊥⊥U |XY ]
⇒ X⊥⊥Z |Y U ,

(I:17) [ X⊥⊥Y |Z&X⊥⊥Z|U & X⊥⊥U |Z & Z⊥⊥U |XY ]
⇒ X⊥⊥Z |Y U ,

(I:18) [ X⊥⊥Y |Z & X⊥⊥Z |U & Z⊥⊥U |X & Z⊥⊥U |XY ]
⇒ X⊥⊥Z |Y U ,

(I:19) [ X⊥⊥Y |Z & X⊥⊥Z |U & Y⊥⊥Z |U & Z⊥⊥U |XY ]
⇒ Z⊥⊥XY |U .

Proof: In this proof, we will use, besides five conditional
Ingleton inequalities from Theorem 1 in their basic forms
[ 1cI ], [ 2cI ], . . . , [ 5cI ] written there, also alternative versions
of two of them, namely

[ cI2 ] Δ h(X, Y |U)=0=Δh(X, Z|U) ⇒ � h(X, Y ) ≥ 0,

[ cI4 ] Δ h(Y, U |Z)=0=Δh(Z, U |Y ) ⇒ � h(X, Y ) ≥ 0,

which can be obtained from [ 2cI ] and [ 4cI ] by the exchange
[X, Z] ↔ [Y, U ]. Each of 19 considered CI implications is
derived from one of these 7 (versions of) conditional Ingleton
inequalities using one of 5 forms (M.1), (M.2), . . . , (M.5) of
the Ingleton expression from Lemma 4.

The derivations are in terms of the entropy function h of a
discrete random vector over XY ZU satisfying the premises
of the respective CI implications. To describe them briefly we
use special schematic records. Specifically, the record

(I:1)

��	
[ 1cI ]


 �� 	
(X, Y |∅) +


 �� 	
(X, Y |Z) + (Z, U |X) + (Z, U |Y )

(M.1) (Z, U |∅)
will be used to encode the following reasoning for (I:1). Its
premise means vanishing of four difference terms, encoded as
the starting ones in the record:

Δ h(X, Y |∅) = 0, Δ h(X, Y |Z) = 0,

Δ h(Z, U |X) = 0, Δ h(Z, U |Y ) = 0,

and the goal is to verify vanishing the remaining difference
term in the record, which is Δ h(Z, U |∅) = 0 in this case. One
can use [ 1cI ] inequality, which assumes vanishing two terms
Δ h(X, Y |∅) = 0 = Δh(X, Y |Z), indicated by overbracing
them in the record, and says that � h(X, Y ) ≥ 0. Then we
use the (M.1) form of the Ingleton expression � h(X, Y ),
which step is indicated by underlining in the record. Since the

underlined terms vanish the Ingleton inequality takes the form
−Δ h(Z, U |∅) = � h(X, Y ) ≥ 0. Nevertheless, the remaining
difference term Δ h(Z, U |∅) is non-negative and must vanish.

The procedure to verify (I:2) is analogous, but uses [ 4cI ]
instead,

(I:2)

��	
[ 4cI ] (X, Y |∅) +


 �� 	
(X, Z|U) +


 �� 	
(Z, U |X) + (Z, U |Y )

(M.1) (Z, U |∅)
with little extension: using the formula Δ (Z, U |∅) +
Δ (X, Z|U) = Δ h(Z, XU |∅) yields a stronger conclusion
Z⊥⊥XU | ∅.

The next bunch of CI implications is based on (M.2) form:

(I:3)

��	
[ cI2 ] (X, Y |∅) +


 �� 	
(X, Y |U) +


 �� 	
(X, Z|U) + (Z, U |Y )

(M.2) (X, Z|∅)
(I:4)


��	
[ 3cI ] (X, Y |∅) +


 �� 	
(X, Z|U) +


 �� 	
(X, U |Z) + (Z, U |Y )

(M.2) (X, Z|∅)
(I:5)


��	
[ cI4 ] (X, Y |∅) + (X, Z|U) +


 �� 	
(Y, U |Z) +


 �� 	
(Z, U |Y )

(M.2) (X, Z|∅)
(I:6)


��	
[ 5cI ] (X, Y |∅) +


 �� 	
(X, Z|U) +


 �� 	
(Y, Z|U) + (Z, U |Y )

(M.2) (X, Z|∅)
with an extension for (I:4): the formula Δ (X, Z|∅) +
Δ (X, U |Z) = Δ (X, ZU |∅) yields a stronger conclusion
X⊥⊥ZU | ∅.

Another groups of CI implications is based on (M.3) form:

(I:7)

��	
[ 1cI ]


 �� 	
(X, Y |∅) +


 �� 	
(X, Y |Z) + (X, Z|U) + (Z, U |Y )

(M.3) (X, Z|Y )

(I:8)

��	
[ 2cI ]


 �� 	
(X, Y |Z) + (X, Z|U) +


 �� 	
(Y, U |Z) + (Z, U |Y )

(M.3) (X, Z|Y )

(I:9)

��	
[ cI2 ] (X, Y |Z) +


 �� 	
(X, Y |U) +


 �� 	
(X, Z|U) + (Z, U |Y )

(M.3) (X, Z|Y )

(I:10)

��	
[ 3cI ] (X, Y |Z) +


 �� 	
(X, Z|U) +


 �� 	
(X, U |Z) + (Z, U |Y )

(M.3) (X, Z|Y )

(I:11)

��	
[ 4cI ] (X, Y |Z) +


 �� 	
(X, Z|U) +


 �� 	
(Z, U |X) + (Z, U |Y )

(M.3) (X, Z|Y )

(I:12)

��	
[ 5cI ] (X, Y |Z) +


 �� 	
(X, Z|U) +


 �� 	
(Y, Z|U) + (Z, U |Y )

(M.3) (X, Z|Y )

with an extension for (I:7): Δ (X, Z|Y ) + Δ (X, Y |∅) =
Δ (X, Y Z|∅) yields a stronger conclusion X⊥⊥Y Z | ∅.

Two of CI implications are based on (M.4) form:

(I:13)

��	
[ 1cI ]


 �� 	
(X, Y |∅)+


 �� 	
(X, Y |Z) + (X, Y |U) + (Z, U |XY )

(M.4) (X, Y |ZU)

(I:14)

��	
[ cI2 ] (X, Y |Z) +


 �� 	
(X, Y |U) +


 �� 	
(X, Z|U)+(Z, U |XY )

(M.4) (X, Y |ZU)
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with an extension for (I:14): Δ (X, Y |ZU) + Δ (X, Z|U) =
Δ (X, Y Z|U) yields a stronger conclusion X⊥⊥Y Z |U .

The last bunch of CI implications is based on (M.5) form:

(I:15)

��	
[ 1cI ]


 �� 	
(X, Y |∅)+


 �� 	
(X, Y |Z) + (X, Z|U) + (Z, U |XY )

(M.5) (X, Z|Y U)

(I:16)

��	
[ 2cI ]


 �� 	
(X, Y |Z) + (X, Z|U) +


 �� 	
(Y, U |Z)+(Z, U |XY )

(M.5) (X, Z|Y U)

(I:17)

��	
[ 3cI ] (X, Y |Z) +


 �� 	
(X, Z|U) +


 �� 	
(X, U |Z)+(Z, U |XY )

(M.5) (X, Z|Y U)

(I:18)

��	
[ 4cI ] (X, Y |Z) +


 �� 	
(X, Z|U) +


 �� 	
(Z, U |X)+(Z, U |XY )

(M.5) (X, Z|Y U)

(I:19)

��	
[ 5cI ] (X, Y |Z) +


 �� 	
(X, Z|U) +


 �� 	
(Y, Z|U)+(Z, U |XY )

(M.5) (X, Z|Y U)

with an extension for (I:19): Δ (X, Z|Y U) + Δ (Y, Z|U) =
Δ (Z, XY |U) yields a stronger conclusion Z⊥⊥XY |U .

In the proof above we have derived each CI implication by
combining two CI assumptions that imply Ingleton inequality
with a suitable form of the Ingleton expression. Note in this
context that such a combination need not be unique, some
of those CI implications may have two alternative derivations
which use different combinations of these two things.

The reader willing to commemorate former occurrence of
the properties from Corollary 7 can find detailed information
in the Appendix, Section C.

C. Sub-Maximal CI Structures

The largest CI structure over N is the one induced by a
random vector over N whose components are stochastically
independent random variables. In this section we discuss
sub-maximal CI structures induced by 4 discrete random
variables (see Section II-H for definitions). These appear
to be closely related to the cone (of rank functions) of
polymatroids satisfying all six versions of Ingleton inequality.
More specifically, it was observed in [19, Lemma 4.1] that,
in case |N | = 4, this pointed cone has 35 extreme rays
falling into 10 permutational types. In our context of standard
CI structures, however, one can limit the attention to the
sub-cone of that cone specified by additional requirements
Δ (i, i|N \ i) = 0 for i ∈ N ; this leads to excluding 4 extreme
rays of 1 permutational type.

The polymatroids generating the extreme rays of the
sub-cone mentioned above are linearly representable, and,
therefore, by utilizing the results from [26], can be shown to be
probabilistically representable. The induced CI structures then
appear to be sub-maximal CI structures induced by 4 discrete
random variables. To give the reader a complete picture we list
representatives of 9 permutational types of these CI structures
in the Appendix, Section B.

D. Overview: Two Complementary Characterizations

In this section we summarize our findings on (standard)
CI structures induced by 4 discrete random variables. Since

these structures are semi-graphoids it follows from the facts
in Section II-D that they can be identified with subsets of a
24-element set of (pairs of mutually equivalent) elementary
triplets (i, j|K) over N , |N | = 4 (see Lemma 1). Note in this
context that the result of computations made in connection
with [36] was that the number of (standard) semi-graphoids
over N , |N | = 4, is 26 424. An even tighter upper approxi-
mation is the set of “structural” semi-graphoids over N (see
Remark 3); their number is 22 108 [36]. The number of CI
structures induced by 4 discrete random variables is, however,
only 18 478, which is the result of computations made in
connection with [31].

The class of CI structures is a lattice because the intersection
of two CI structures is a CI structure (see Section II-H). This
fact leads to two mutually complementary ways to characterize
the CI structures, namely

• in terms of irreducible CI structures, and
• in terms of CI implications.

The first option is straightforward: to characterize CI structures
over N , |N | = 4, it is enough to provide the list (of permuta-
tional types) of meet-irreducible CI structures over N . These
appear to be

• the full CI structure (induced by independent random
variables),

• the sub-maximal CI structures (= the co-atoms of the
lattice), which are described in the Appendix, Section B,

• remaining meet-irreducible CI structures, which are just
those presented in Examples 1-4 from Section IV-B.

Note that the irreducible CI structures of the third kind
correspond to counter-examples to probabilistic validity of
Ingleton inequality. Thus, altogether one has 92 irreducible
discrete probabilistic CI structures over N , |N | = 4, and they
break into 14 permutational types.

The second option is to describe minimal sets X of (ele-
mentary) triplets over N that are not CI structures. Every
such a set has uniquely determined CI closure: the fact that
the intersection of CI structures is a CI structure implies the
existence of the least CI structure Y (over N ) containing X .
One can interpret this as the claim that X probabilistically
implies Y \ X . Therefore, the above mentioned minimal
sets X correspond to CI implications/equivalences. One can
distinguish three kinds of these CI properties in case |N | = 4:

• the semi-graphoid properties (S:0)-(S:2) in Section II-D,
• the CI equivalences (E:1)-(E:5) from Corollary 6,
• the CI implications (I:1)-(I:19) from Corollary 7.

Thus, altogether, one can recognize 27 abstract CI properties
characterizing CI structures induced by 4 discrete random
variables. The fact that both ways of description determine
the same class of 18 478 (standard) abstract CI structures over
N , |N | = 4, was verified by means of a computer [31].

VI. CONCLUSION

The principal message of the paper is that CI inference
problem (for discrete probability distributions) can be solved
in an elegant way by applying special conditional information
inequalities. This was testified in case of four random variables
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and the question is whether the idea is applicable in general,
for a higher number of random variables.

A new conditional Ingleton inequality was revealed in this
paper and this leads to a few natural open tasks formulated in
Section IV-C. Note in this context that conditional information
inequalities have applications outside information theory. For
example, (more general) conditional information inequalities
can be used to obtain bounds for information ratios in the area
of secrete sharing (schemes) [1, § 3.2.6], have some group-
theoretical counter-parts [1, § 3.2.4] and also counter-parts in
context of Kolgomorov complexity [10, § 7]. One can even find
surprising combinatorial applications for conditional Ingleton
inequalities [11].

This paper has not dealt with augmented CI structures
involving functional dependence statements. For this reason,
the conditional Ingleton inequalities which have functional
dependence premises allowed, as for example (I3) in [10],
have been omitted. These inequalities can, however, possibly
be used to derive (further) CI implications for the augmented
probabilistic CI structures. Thus, one of future potential
research directions is to (try to) characterize augmented CI
structures induced by 4 discrete random variables by means
of conditional information inequalities allowing functional
dependence premises.

The interest in (algorithmic aspects of) constraints on
entropy functions has recently been amplified in the context
of database theory [1]. An interesting result from that paper,
related to our topic of study, says that the CI inference problem
(with a bounded number of variables) belongs to one of
primitive class of decidable problems [1, Theorem 8]. The
results presented in this paper support that claim from [1]
and raise the hope in characterizing CI inference for a higher
number of discrete random variables.

APPENDIX A
PROOFS OF INEQUALITIES

We prove all five conditional Ingleton inequalities from
Section IV here.

A. The First Inequality

The first conditional Ingleton inequality appeared as
[42, Theorem 3] but it was not immediately clear from its
original formulation that it is, in fact, the Ingleton inequality.
For sake of completeness we present a modified version of the
original proof from [42, Section II]; it seems to be the simplest
possible proof of this inequality from a methodological point
of view.

Proposition 1: The first conditional Ingleton inequality is
valid for any (discrete) entropy function h:

[ 1cI ] Δ h(X, Y |∅)=0=Δh(X, Y |Z) ⇒ � h(X, Y ) ≥ 0.

Proof: Let P be a discrete probability distribution over
XY ZU that satisfies both X⊥⊥Y | ∅ [P ] and X⊥⊥Y |Z [P ],
which is equivalent to the assumption that the entropy function
h of P satisfies Δ h(X, Y |∅) = 0 = Δh(X, Y |Z). We are
going to show � h(X, Y ) ≥ 0.

Let Q be the conditional product of marginals PXZU and
PY ZU (see Section II-C) and h the entropy function of Q.
Thus, P and Q have the same marginals for XZU and Y ZU
while one has, moreover, X⊥⊥Y |ZU [Q]. The next step is to
define a probability distribution R over XY ZU which shares
the (joint) sample space with P and Q. Specifically, its density
r is given by

r(x, y, z, u) :=

⎧⎪⎪⎨
⎪⎪⎩

p(x,z)·p(x,u)·p(y,z)·p(y,u)
p(x)·p(y)·p(z)·p(u)

if p(x) · p(y) · p(z) · p(u) > 0,

0 otherwise,

where x, y, z, u belong to the respective individual sample
spaces and p(x, z) denotes the value of the marginal density
of P for XZ in the configuration [x, z]. Note that, in the
definition of r, one can replace the used marginal densities
p(∗) of P by the respective marginal densities p(∗) of Q
because they coincide. Our CI assumptions imply that r is
a probability density:�
x,y,z,u

r(x, y, z, u)

=
�

x,y,z,u:p(x),...,p(u)>0

p(x, z) · p(x, u) · p(y, z) · p(y, u)
p(x) · p(y) · p(z) · p(u)

X⊥⊥Y |Z [P ]
=

�
x,y,z,u:p(x),...,p(u)>0

p(x, y, z) · p(x, u) · p(y, u)
p(x) · p(y) · p(u)

=
�

x,y,u:p(x),p(y),p(u)>0

p(x, u) · p(y, u)
p(x) · p(y) · p(u)

·
�

z: p(z)>0

p(x, y, z)

� 	
 �
p(x,y)

=
�

x,y,u:p(x),p(y),p(u)>0

p(x, u) · p(y, u) · p(x, y)
p(x) · p(y) · p(u)

X⊥⊥ Y |∅ [P ]
=

�
x,y,u: p(x),p(y),p(u)>0

p(x, u) · p(y, u)
p(u)

=
�

x,u: p(x),p(u)>0

p(x, u)
p(u)

·
�

y: p(y)>0

p(y, u)

� 	
 �
p(u)

=
�

x,u: p(x),p(u)>0

p(x, u) = 1 .

The definition of R also implies that Q is absolutely
continuous with respect to R because r(x, y, z, u) = 0 implies
p(x, z)·p(x, u)·p(y, z)·p(y, u) = 0 and, hence, p(x, y, z, u) =
0, where p is the density of Q. It remains to verify that
� h(X, Y ) = D(Q �R) to which goal we use X⊥⊥Y | ∅ [P ]
and X⊥⊥Y |ZU [Q]:

� h(X, Y ) (M.1)= Δ h(Z, U |X) + Δ h(Z, U |Y )
+ Δ h(X, Y |∅)� 	
 �

=0

−Δ h(Z, U |∅)

= Δ h(Z, U |X) + Δ h(Z, U |Y )−Δ h(Z, U |∅)
= − h(XZU)− h(Y ZU) + h(ZU)

+ h(XZ) + h(XU) + h(Y Z) + h(Y U)
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− h(X)− h(Y )− h(Z)− h(U)

=
�

x,y,z,u : p(x,y,z,u)>0

p(x, y, z, u) · ln
p(x,z,u)·p(y,z,u)

p(z,u)

p(x,z)·p(x,u)·p(y,z)·p(y,u)
p(x)·p(y)·p(z)·p(u)

=
�

x,y,z,u : p(x,y,z,u)>0

p(x, y, z, u) · ln p(x, y, z, u)
r(x, y, z, u)

= D(Q �R) ≥ 0 .

Thus, the non-negativity of the Kullback-Leibler divergence
implies the claim.

B. The Second Inequality

The second conditional Ingleton inequality appeared in
[21, § 2]. Specifically, the proof of Proposition 2.1 in [21]
contained both a hint to verify the first inequality from [42]
and the arguments for the second inequality. We believe that
our proof of the second inequality is much simpler than the
original one.

Proposition 2: The second conditional Ingleton inequality
is valid for any (discrete) entropy function h:

[ 2cI ] Δ h(X, Y |Z)=0=Δh(Y, U |Z) ⇒ � h(X, Y ) ≥ 0.

Proof: Let P be a probability distribution over XY ZU
that satisfies both X⊥⊥Y |Z [P ] and Y⊥⊥U |Z [P ], which is
equivalent to the assumption that the entropy function h of P
satisfies Δ h(X, Y |Z) = 0 = Δ h(Y, U |Z). We are going to
show � h(X, Y ) ≥ 0.

Let Q be the conditional product of marginals PY Z and
PXZU and h the entropy function of Q. Thus, P and Q
have the same marginals for Y Z and XZU while one,
moreover, has Y⊥⊥XU |Z [Q]. Hence, Y⊥⊥U |Z [Q] and the
facts PY Z = QY Z , PZU = QZU and Y⊥⊥U |Z [P ] imply
PY ZU = QY ZU . One can analogously derive PXY Z = QXY Z

(exchange U and X). In particular, P and Q have the same
marginals for XZU , Y ZU , and XY and it follows from the
definition (6) of the Ingleton expression that � h(X, Y ) =
� h(X, Y ). Therefore, it is enough to show � h(X, Y ) ≥ 0.

Nonetheless, Y⊥⊥XU |Z [Q] implies Y⊥⊥X |ZU [Q],
which is equivalent to Δ h(X, Y |ZU) = 0. Analogously,
Δ h(X, Y |Z) = 0 can be observed, although this particular
observation is not necessary to draw our conclusion. Thus,
one of the forms of the Ingleton expression from Lemma 4

� h(X, Y ) (M.4)= Δ h(X, Y |Z)� 	
 �
=0

+Δ h(X, Y |U)

+ Δ h(Z, U |XY )−Δ h(X, Y |ZU)� 	
 �
=0

= Δ h(X, Y |U) + Δ h(Z, U |XY )

together with Shannon inequalities for h imply that
� h(X, Y ) ≥ 0.

C. The Third Inequality

A number of CI implications has been derived in
[20, § 2] by a special technique of transforming the implication
problem into a wider framework of σ-algebras and applying a

special CI property for σ-algebras based on a construction of
a certain “ intersection” σ-algebra for two given σ-algebras.
The idea behind this method is that random variables on
a probability space (Ω,A, P ) can be identified with their
induced sub-σ-algebras of A; yet another interpretation is
possible in case of a finite Ω when the σ-algebras correspond
to partitions of Ω.

In our case of finitely many discrete random variables,
the construction of the “ intersection” σ-algebra corresponds
to a construction of a certain random variable on basis of
two given random variables. The above special CI property
for σ-algebras can equivalently be expressed as the prop-
erty of the constructed random variable, which is formally
done in the next Lemma 8. Note that this auxiliary result
has already been formulated both in [10, Lemma 1] and in
[14, Lemma 4], where it was named a “double Markov prop-
erty”. Nevertheless, the result itself was known much earlier:
it was already formulated in the form of an exercise under title
“double Markovity” in [5, § 3.4, excercise 25].

Lemma 8: Every discrete random vector ξ over ABC sat-
isfying ξA⊥⊥ ξB | ξC and ξA⊥⊥ ξC | ξB can be extended by a
discrete random variable ξW to a random vector over ABCW
in which ξW is functionally dependent both on ξB and on ξC

and, moreover, one has ξA⊥⊥ ξBC | ξW .
Proof: Assume without loss of generality A, B, C �= ∅ for

otherwise one can take any constant random variable in place
of ξW . Let P be the distribution of ξ on a joint finite sample
space A × B × C and p its density with strictly positive
one-dimensional marginal densities on A, B, and C. Consider
the support set L := { (b, c) ∈ B × C : pBC(b, c) > 0 } of
the marginal distribution of P for BC equipped with a binary
relation ∼ defined by

(b, c) ∼ (b�, c�) := [ b = b� or c = c� ]

and introduce an equivalence ≈ on L as the transitive closure
of ∼ . Then the quotient set W of L by ≈ (= the collection of
equivalence classes for ≈) will be the individual sample space
for ξW . Define the density p̃ of the extended random vector
over ABCW as follows: given (a, b, c, w) ∈ A × B × C ×W,

p̃(a, b, c, w) :=

⎧⎨
⎩

p(a, b, c) if p(a, b, c) > 0
and w contains (b, c),

0 otherwise.

Given b ∈ B, the definition of ≈ implies that all pairs
(b, c) ∈ L belong to the same equivalence class w of ≈. Thus,
ξW functionally depends on ξB and an analogous argument
implies that ξW functionally depends on ξC .

Realize that P can be viewed as a distribution on A×L and
one can consider the conditional density

pA|BC(a | b, c) :=
p(a, b, c)
p(b, c)

defined for a ∈ A and (b, c) ∈ L.

The assumption ξA⊥⊥ ξB | ξC implies

pA|BC(a | b, c) =
p(a, c)
p(c)

= pA|BC(a | b�, c)
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whenever a ∈ A and (b, c), (b�, c) ∈ L. Analogously,
the assumption ξA⊥⊥ ξC | ξB gives

pA|BC(a | b, c) = pA|BC(a | b, c�)
whenever a ∈ A and (b, c), (b, c�) ∈ L. Hence,
pA|BC( ∗ | b, c) = pA|BC( ∗ | b�, c�) whenever (b, c) ∼ (b�, c�)
and, by transitivity argument, pA|BC is constant on equiva-
lence classes of ≈. Thus, having fixed an equivalence class
w ∈ W, the conditional density pA|BC( ∗ | b, c) does not
depend on the choice of (b, c) ∈ w ⊆ L, which implies
ξA⊥⊥ ξBC | ξW .

The random variable ξW from the above proof is, in fact,
defined by some equivalence ≈ on L ⊆ B × C. The particular
definition of ≈ from our proof corresponds to the construction
of the “ intersection” σ-algebra for σ-algebras induced by ξB

and ξC ; note that it solely depends on the marginal of P
on BC. Thus, our construction is universal relative to ξA in
sense that one gets ξA⊥⊥ ξBC | ξW for arbitrary ξA satisfying
ξA⊥⊥ ξB | ξC and ξA⊥⊥ ξC | ξB .

Note in this context that the proof of an analogous result in
[10, Appendix IX] was based on a slightly different, perhaps
formally shorter, construction of an equivalence on L, which
construction was, however, depending on the considered ran-
dom variable ξA. Thus, its specific form was determined by
the marginal of P on ABC. In particular, the equivalence on
L from [10, Appendix IX] can be shown to be a coarsening of
≈ from our proof of Lemma 8.

We now apply Lemma 8 to prove the third conditional
Ingleton inequality which appeared in [10] as (I4�). In fact,
two proofs of this inequality were given there. The basic proof
of it was more complicated because the goal was to prove
that it is valid for any function which is a limit of (discrete)
entropy functions. The second “direct” proof from [10, § III.C]
was simpler because of easier task to prove that the inequality
holds for entropy functions only. That simpler proof was based
on an analogous idea as our proof below but it was different
in technical details. We believe that our reasoning is more
transparent.

Proposition 3: The third conditional Ingleton inequality is
valid for any (discrete) entropy function h:

[ 3cI ] Δ h(X, Z|U)=0=Δh(X, U |Z) ⇒ � h(X, Y ) ≥ 0.

Proof: Let P be a probability distribution over XY ZU
that satisfies both X⊥⊥Z |U [P ] and X⊥⊥U |Z [P ], which is
equivalent to the assumption that the entropy function h of P
satisfies Δ h(X, Z|U) = 0 = Δh(X, U |Z). We are going to
show � h(X, Y ) ≥ 0.

We apply Lemma 8 to a random vector ξ over XZU having
PXZU as its distribution with A := X , B := Z and C := U .
It says there is an extended discrete random vector ξ̃ over
XZUW with a distribution P̃ (having PXZU as a marginal)
such that the variable ξ̃W functionally depends both on ξ̃Z and
on ξ̃U and, moreover, ξ̃X⊥⊥ ξ̃ZU | ξ̃W . Let us introduce the
conditional product P̂ of distributions P̃ over XZUW and
P over XY ZU , that is, define an extended random vector
ξ̂ over XY ZUW . By the construction, its entropy function
ĥ is an extension of the entropy function h of P , one has

X⊥⊥ZU |W [P̂ ] and ξ̂W functionally depends both on ξ̂Z

and on ξ̂U .
To verify the conclusion we utilize the dependences

ξ̂W ← ξ̂Z and ξ̂W ← ξ̂U , which imply that ĥ(T ) = ĥ(TW )
for any T containing either Z or U , the fact that the entropy
function is non-decreasing, which gives ĥ(XY ) ≤ ĥ(XY W ),
and X⊥⊥Z |W [P̂ ], which gives Δ ĥ(X, Z|W ) = 0:

� h(X, Y ) (M.2)= Δ h(Z, U |Y ) + Δ h(X, Z|U)� 	
 �
=0

+ Δ h(X, Y |∅)−Δ h(X, Z|∅)
= Δ ĥ(Z, U |Y ) + Δ ĥ(X, Y |∅)−Δ ĥ(X, Z|∅)
= ĥ(Y Z) + ĥ(Y U)− ĥ(Y ZU)− ĥ(XY )
− ĥ(Z) + ĥ(XZ)

= ĥ(Y ZW ) + ĥ(Y UW )− ĥ(Y ZUW )− ĥ(XY )
− ĥ(ZW ) + ĥ(XZW )

≥ ĥ(Y ZW ) + ĥ(Y UW )− ĥ(Y ZUW )− ĥ(XY W )
− ĥ(ZW ) + ĥ(XZW )

= Δ ĥ(Z, U |Y W ) + Δ ĥ(X, Y |W )−Δ ĥ(X, Z|W )� 	
 �
=0

= Δ ĥ(Z, U |Y W ) + Δ ĥ(X, Y |W ) ≥ 0 .

Thus, the Shannon’s inequalities for ĥ imply the desired
conclusion.

D. The Fourth Inequality

Here we use an analogous method to verify the fourth condi-
tional Ingleton inequality which appeared as (I5�) in [10]. Its
original proof was more intricate because the task was to prove
its validity for functions which are limits of entropy functions.
Our proof below is based on different simpler arguments.

Proposition 4: The fourth conditional Ingleton inequality is
valid for any (discrete) entropy function h:

[ 4cI ] Δ h(X, Z|U)=0=Δh(Z, U |X) ⇒ � h(X, Y ) ≥ 0.

Proof: Let P be a probability distribution over XY ZU
that satisfies both Z⊥⊥X |U [P ] and Z⊥⊥U |X [P ], which is
equivalent to the assumption that the entropy function h of P
satisfies Δ h(X, Z|U) = 0 = Δh(Z, U |X). We are going to
show � h(X, Y ) ≥ 0.

We apply Lemma 8 to a random vector ξ over XZU
having PXZU as its distribution with A := Z , B := X and
C := U . It says there is an extended discrete random vector
ξ̃ over XZUW with a distribution P̃ (having PXZU as a
marginal) such that the variable ξ̃W functionally depends both
on ξ̃X and on ξ̃U and, moreover, ξ̃Z⊥⊥ ξ̃XU | ξ̃W . Take the
conditional product P̂ of distributions P̃ over XZUW and P
over XY ZU , that is, define an extended random vector ξ̂ over
XY ZUW . Because of the construction, its entropy function
ĥ is an extension of the entropy function h of P , one has
Z⊥⊥XU |W [P̂ ] and ξ̂W functionally depends both on ξ̂X

and on ξ̂U .
To verify the inequality we use the dependences ξ̂W ← ξ̂X

and ξ̂W ← ξ̂U , which imply that ĥ(T ) = ĥ(TW ) for any T
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containing either X or U , and Z⊥⊥X |W [P̂ ], which gives
Δ ĥ(Z, X |W ) = 0:

� h(X, Y ) (M.2)= Δ h(Z, U |Y ) + Δ h(X, Z|U)� 	
 �
=0

+ Δ h(X, Y |∅)−Δ h(X, Z|∅)
= Δ ĥ(Z, U |Y ) + Δ ĥ(X, Y |∅)−Δ ĥ(X, Z|∅)
= ĥ(Y Z) + ĥ(Y U)− ĥ(Y ZU)− ĥ(XY )
− ĥ(Z) + ĥ(XZ)

= ĥ(Y Z) + ĥ(Y UW )− ĥ(Y ZUW )− ĥ(XY W )
− ĥ(Z) + ĥ(XZW )

= ĥ(Y UW )− ĥ(Y ZUW )− ĥ(XY W ) + ĥ(Y Z)
− ĥ(Z) + ĥ(XZW )

= Δ ĥ(Z, U |Y W ) + Δ ĥ(X, Y |W )
+ Δ ĥ(Y, W |Z)−Δ ĥ(Z, X |W )� 	
 �

=0

= Δ ĥ(Z, U |Y W ) + Δ ĥ(X, Y |W ) + Δ ĥ(Y, W |Z) ≥ 0 .

Thus, the Shannon’s inequalities for ĥ imply the desired
conclusion.

E. The Fifth Inequality

Here we give the proof of the fifth conditional Ingleton
inequality which is methodologically similar to the proof of
the second inequality.

Proposition 5: The fifth conditional Ingleton inequality is
valid for any (discrete) entropy function h:

[ 5cI ] Δ h(X, Z|U)=0=Δh(Y, Z|U) ⇒ � h(X, Y ) ≥ 0.

Proof: Let P be a probability distribution over XY ZU
that satisfies both Z⊥⊥X |U [P ] and Z⊥⊥Y |U [P ], which is
equivalent to the assumption that the entropy function h of P
satisfies Δ h(X, Z|U) = 0 = Δh(Y, Z|U). We are going to
show � h(X, Y ) ≥ 0.

Let Q be the conditional product of marginals PXY U

and PZU and h the entropy function of Q. Thus, P and
Q have the same marginals for XY U and ZU while one,
moreover, has Z⊥⊥XY |U [Q]. Hence, Z⊥⊥X |U [Q] and the
facts PZU = QZU , PXU = QXU and Z⊥⊥X |U [P ] imply
PXZU = QXZU . Analogously, PY ZU = QY ZU (exchange X
and Y ). In particular, P and Q have the same marginals for
XZU , Y ZU , and XY and it follows from the definition (6)
of the Ingleton expression that � h(X, Y ) = � h(X, Y ).
Therefore, it is enough to show � h(X, Y ) ≥ 0.

Nonetheless, Z⊥⊥XY |U [Q] implies Z⊥⊥X |Y U [Q],
which is equivalent to Δ h(X, Z|Y U) = 0. Analogously,
Δ h(X, Z|U) = 0 can be observed, although this particular
observation is not necessary to draw our conclusion. Thus,
one of the forms of the Ingleton expression from Lemma 4

� h(X, Y ) (M.5)= Δ h(X, Y |Z) + Δ h(X, Z|U)� 	
 �
=0

+ Δ h(Z, U |XY )−Δ h(X, Z|Y U)� 	
 �
=0

= Δ h(X, Y |Z) + Δ h(Z, U |XY )

together with Shannon inequalities for h imply that
� h(X, Y ) ≥ 0.

APPENDIX B
SUB-MAXIMAL CI STRUCTURES

This is to recall basic constructions of discrete probability
distributions over N , |N | = 4.

I. : Put N = {x, y, z, u} and define the density p of a
binary random vector:

x y z u

p : (0, 0, 0, 0) �→ 1/2
(1, 1, 0, 0) �→ 1/2

with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the
following integer-valued rank function:

h(S) := min { |S ∩ {x, y}| , 1 } for any S ⊆ N .

Note it corresponds to the uniform matroid of rank 1 over
{x, y}. The induced CI structure involves 20 (pairs of) ele-
mentary CI statements:

x⊥⊥ z | ∅ , x⊥⊥ u | ∅ , y⊥⊥ z | ∅ , y⊥⊥ u | ∅ , z⊥⊥ u | ∅ ,

x⊥⊥ z | y , x⊥⊥ z |u , x⊥⊥ u | y , x⊥⊥ u | z ,

y⊥⊥ z |x , y⊥⊥ z |u , y⊥⊥u |x , y⊥⊥ u | z ,

z⊥⊥ u |x , z⊥⊥ u | y ,

x⊥⊥ z | yu , x⊥⊥u | yz , y⊥⊥ z |xu , y⊥⊥ u |xz , z⊥⊥ u |xy .

It has 6 permutably equivalent versions.
II. : Put N = {x, y, z, u} and define the density p of a

binary random vector:

x y z u

p : (0, 0, 0, 0) �→ 1/2
(1, 1, 1, 0) �→ 1/2

with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the
following integer-valued rank function:

h(S) := min { |S ∩ {x, y, z}| , 1 } for any S ⊆ N .

Note it corresponds to the uniform matroid of rank 1 over
{x, y, z}. The induced CI structure involves 18 (pairs of)
elementary CI statements:

x⊥⊥ u | ∅ , y⊥⊥ u | ∅ , z⊥⊥ u | ∅ ,

x⊥⊥ y | z , x⊥⊥ z | y , x⊥⊥ u | y , x⊥⊥ u | z ,

y⊥⊥ z |x , y⊥⊥ u |x , y⊥⊥u | z , z⊥⊥ u |x , z⊥⊥ u | y ,

x⊥⊥ y | zu , x⊥⊥ z | yu , x⊥⊥u | yz ,

y⊥⊥ z |xu , y⊥⊥ u |xz , z⊥⊥u |xy .

It has 4 permutably equivalent versions.
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III. : Put N = {x, y, z, u} and define the density p of a
binary random vector:

x y z u

p : (0, 0, 0, 0) �→ 1/2
(1, 1, 1, 1) �→ 1/2

with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the
following integer-valued rank function:

h(S) := min { |S| , 1 } for any S ⊆ N .

Note it corresponds to the uniform matroid of rank 1
over N . The induced CI structure involves 18 (pairs of)
elementary CI statements:

x⊥⊥ y | z , x⊥⊥ y |u , x⊥⊥ z | y , x⊥⊥ z |u ,

x⊥⊥u | y , x⊥⊥ u | z , y⊥⊥ z |x , y⊥⊥ z |u ,

y⊥⊥ u |x , y⊥⊥u | z , z⊥⊥ u |x , z⊥⊥ u | y ,

x⊥⊥ y | zu , x⊥⊥ z | yu , x⊥⊥ u | yz ,

y⊥⊥ z |xu , y⊥⊥u |xz , z⊥⊥u |xy .

It has only 1 permutably equivalent version.
IV. : Put N = {x, y, z, u} and define the density p of a

binary random vector:

x y z u

p : (0, 0, 0, 0) �→ 1/4
(0, 1, 1, 0) �→ 1/4
(1, 0, 1, 0) �→ 1/4
(1, 1, 0, 0) �→ 1/4

with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the
following integer-valued rank function:

h(S) := min { |S ∩ {x, y, z}| , 2 } for any S ⊆ N .

Note it corresponds to the uniform matroid of rank 2 over
{x, y, z}. The induced CI structure involves 18 (pairs of)
elementary CI statements:

x⊥⊥ y | ∅ , x⊥⊥ z | ∅ , x⊥⊥ u | ∅ ,

y⊥⊥ z | ∅ , y⊥⊥u | ∅ , z⊥⊥u | ∅ ,

x⊥⊥ y |u , x⊥⊥ z |u , x⊥⊥ u | y , x⊥⊥u | z ,

y⊥⊥ z |u , y⊥⊥u |x , y⊥⊥ u | z , z⊥⊥u |x , z⊥⊥u | y ,

x⊥⊥ u | yz , y⊥⊥u |xz , z⊥⊥u |xy .

It has 4 permutably equivalent versions.
V. : Put N = {x, y, z, u} and define the density p of a

binary random vector:

x y z u

p : (0, 0, 0, 0) �→ 1/8
(0, 0, 1, 1) �→ 1/8
(0, 1, 0, 1) �→ 1/8
(0, 1, 1, 0) �→ 1/8
(1, 0, 0, 1) �→ 1/8

(1, 0, 1, 0) �→ 1/8
(1, 1, 0, 0) �→ 1/8
(1, 1, 1, 1) �→ 1/8

with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the
following integer-valued rank function:

h(S) := min { |S| , 3 } for any S ⊆ N .

Note it corresponds to the uniform matroid of rank 3
over N . The induced CI structure involves 18 (pairs of)
elementary CI statements:

x⊥⊥ y | ∅ , x⊥⊥ z | ∅ , x⊥⊥ u | ∅ ,

y⊥⊥ z | ∅ , y⊥⊥u | ∅ , z⊥⊥u | ∅ ,

x⊥⊥ y | z , x⊥⊥ y |u , x⊥⊥ z | y , x⊥⊥ z |u ,

x⊥⊥ u | y , x⊥⊥ u | z , y⊥⊥ z |x , y⊥⊥ z |u ,

y⊥⊥u |x , y⊥⊥ u | z , z⊥⊥u |x , z⊥⊥u | y .

It has only 1 permutably equivalent version.
VI. : Put N = {x, y, z, u} and define the density p of a

binary random vector:

x y z u

p : (0, 0, 0, 0) �→ 1/4
(0, 0, 1, 1) �→ 1/4
(1, 1, 0, 1) �→ 1/4
(1, 1, 1, 0) �→ 1/4

with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the
following integer-valued rank function:

h(S) :=


1 if S = {x, y},
min { |S| , 2 } otherwise,

for any S ⊆ N .

Note that it corresponds to a (non-uniform) matroid over N .
The induced CI structure involves 14 (pairs of) elementary CI
statements:

x⊥⊥ z | ∅ , x⊥⊥ u | ∅ , y⊥⊥ z | ∅ , y⊥⊥ u | ∅ , z⊥⊥ u | ∅ ,

x⊥⊥ z | y , x⊥⊥u | y , y⊥⊥ z |x , y⊥⊥u |x ,

x⊥⊥ y | zu , x⊥⊥ z | yu , x⊥⊥ u | yz , y⊥⊥ z |xu , y⊥⊥u |xz .

It has 6 permutably equivalent versions.
VII. : Put N = {x, y, z, u} and define the density of a

ternary random vector:

x y z u

p : (0, 0, 0, 0) �→ 1/9
(0, 1, 1, 1) �→ 1/9
(0, 2, 2, 2) �→ 1/9
(1, 0, 1, 2) �→ 1/9
(1, 1, 2, 0) �→ 1/9
(1, 2, 0, 1) �→ 1/9
(2, 0, 2, 1) �→ 1/9
(2, 1, 0, 2) �→ 1/9
(2, 2, 1, 0) �→ 1/9
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with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the
following integer-valued rank function:

h(S) := min { |S| , 2 } for any S ⊆ N .

Note it corresponds to the uniform matroid of rank 2
over N . The induced CI structure involves 12 (pairs of)
elementary CI statements:

x⊥⊥ y | ∅ , x⊥⊥ z | ∅ , x⊥⊥ u | ∅ ,

y⊥⊥ z | ∅ , y⊥⊥u | ∅ , z⊥⊥u | ∅ ,

x⊥⊥ y | zu , x⊥⊥ z | yu , x⊥⊥ u | yz ,

y⊥⊥ z |xu , y⊥⊥u |xz , z⊥⊥u |xy .

It has only 1 permutably equivalent version.
VIII. : Put N = {x, y, z, u} and define the density p of

a random vector, whose components are binary except for ξx

which has 4 allowed values:

x y z u

p : (0, 0, 0, 0) �→ 1/4
(1, 0, 1, 1) �→ 1/4
(2, 1, 0, 1) �→ 1/4
(3, 1, 1, 0) �→ 1/4

with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the
following integer-valued rank function:

h(S) :=


2 for S = {x},
min { |S| , 2 } if S �= {x}, for S ⊆ N .

Note that it does not correspond to a matroid. The induced
CI structure involves 12 (pairs of) elementary CI statements:

y⊥⊥ z | ∅ , y⊥⊥u | ∅ , z⊥⊥u | ∅ ,

y⊥⊥ z |x , y⊥⊥u |x , z⊥⊥u |x ,

x⊥⊥ y | zu , x⊥⊥ z | yu , x⊥⊥ u | yz ,

y⊥⊥ z |xu , y⊥⊥u |xz , z⊥⊥u |xy .

It has 4 permutably equivalent versions.
IX. : Put N = {x, y, z, u} and define the density p of

a random vector, whose components are binary except for ξu

which has 4 allowed values:

x y z u

p : (0, 0, 0, 0) �→ 1/8
(0, 0, 1, 1) �→ 1/8
(0, 1, 0, 2) �→ 1/8
(0, 1, 1, 3) �→ 1/8
(1, 0, 0, 3) �→ 1/8
(1, 0, 1, 2) �→ 1/8
(1, 1, 0, 1) �→ 1/8
(1, 1, 1, 0) �→ 1/8

with zero values for other configurations. It provides (strong)
probabilistic representation of a polymatroid over N with the

following integer-valued rank function:

h(S) :=
 |S| if u �∈ S,

min { |S|+ 1 , 3 } if u ∈ S,
for S ⊆ N .

Note that it does not correspond to a matroid. The induced
CI structure involves 12 (pairs of) elementary CI statements:

x⊥⊥ y | ∅ , x⊥⊥ z | ∅ , x⊥⊥ u | ∅ ,

y⊥⊥ z | ∅ , y⊥⊥u | ∅ , z⊥⊥u | ∅ ,

x⊥⊥ y | z , x⊥⊥ z | y , y⊥⊥ z |x ,

x⊥⊥ y | zu , x⊥⊥ z | yu , y⊥⊥ z |xu .

It has 4 permutably equivalent versions.

APPENDIX C
FORMER VERSIONS OF CI PROPERTIES

This is to commemorate former occurrence of the prop-
erties from Corollary 7 in the literature. One of them was
proved in [33] and two of them formulated without proofs
in [36]. The (original) proofs of all these properties were
then published in [20], [21]; nevertheless, the CI implications
were not formulated there as explicitly as in this paper and
their proofs were encrypted as parts of composite proofs for
compound propositions. On the other hand, all the properties
were formulated explicitly in a conference contribution [37]
(without proofs), two of them in the form of open ques-
tions (= conjectures). Here we recall the (main) ideas of the
original proofs from [20], [21].

• The implication (I:1) was proved in [20, Proposi-
tion 3.1, 1st part] with [X, Y, Z, U ] = [1, 2, 3, 4]. The argu-
ment there was similar to the proof of the first conditional
information inequality [ 1cI ]: the CI assumptions allow
one to construct a certain probability distribution on
ZU which dominates the marginal distribution on ZU
and the non-negativity of the respective Kullback-Leibler
divergence implies its vanishing, meaning Z⊥⊥U . The
implication also appeared as (D.2) in [37]: [X, Y, Z, U ] =
[C, D, A, B].

• The implication (I:2) first appeared as (B.1) in
[36, § 5]; it was also reported in [37] as (B.1) with
substitution [X, Y, Z, U ] = [C, D, B, A]. The claim was
then proved in [20, Proposition 2.1, (1)] with substitution
[X, Y, Z, U ] = [1, 2, 3, 4]. The argument there was the
transformation to a wider framework of σ-algebras and
applying a special CI property within this framework (see
Section A-C).

• The implication (I:3) was proved in [20, Proposi-
tion 3.1, 2nd part] with [X, Y, Z, U ] = [2, 1, 4, 3]. The
argument there was some calculation with heedful can-
celation terms (allowed by CI assumptions) and using
some alternative definitions of CI. The property (I:3) also
appeared as (D.3) in [37] with substitution [X, Y, Z, U ] =
[B, D, A, C].

• The implication (I:4) first appeared as (B.2) in [36, § 5]
and was also reported in [37] as (B.2) with substitution
[X, Y, Z, U ] = [B, D, A, C]. The claim was proved in
[20, Proposition 2.1, (2)] with [X, Y, Z, U ] = [2, 1, 4, 3].
The argument there was the same as in case of (I:2).
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• The implication (I:5) was proved in [20, Proposition 2.1,
(3)] using the same arguments as in case of (I:2);
take [X, Y, Z, U ] = [2, 1, 4, 3] there. The property
also appeared as (B.3) in [37] with [X, Y, Z, U ] =
[B, D, A, C].

• The implication (I:6) was proved in [20, Proposition 2.1,
(4)] using the same arguments as in case of (I:2);
take [X, Y, Z, U ] = [2, 1, 4, 3] there. The property
also appeared as (B.4) in [37] with [X, Y, Z, U ] =
[B, D, A, C].

• The implication (I:7) was proved in [20, Proposi-
tion 3.1, 3rd part] with [X, Y, Z, U ] = [2, 1, 4, 3]. The
argument there was analogous as in case of (I:3). The
property appeared as (D.4) in [37]: [X, Y, Z, U ] =
[B, D, A, C].

• The implication (I:8) was proved in [20, Proposition 2.1,
(8)] using the same arguments as in case of (I:2); take
[X, Y, Z, U ] = [1, 2, 3, 4]. The property also appeared as
(B.8) in [37] with [X, Y, Z, U ] = [A, C, B, D].

• The implication (I:9) was proved in [20, Proposi-
tion 3.1, 4th part] with [X, Y, Z, U ] = [1, 2, 3, 4]. The
argument there was similar to the one in case of (I:1):
the CI assumptions allow one to construct a probability
distribution on XY Z dominated by the marginal distri-
bution on XY Z and the non-negativity of the respec-
tive Kullback-Leibler divergence forces that it vanishes,
which gives X⊥⊥Y |Z . The property also appeared as
(C.3) in [37] with [X, Y, Z, U ] = [A, C, B, D].

• The implication (I:10) was proved in [20, Proposition 2.1,
(5)] using the same arguments as in case of (I:2); take
[X, Y, Z, U ] = [1, 2, 3, 4]. The property also appeared as
(B.5) in [37] with [X, Y, Z, U ] = [A, C, B, D].

• The implication (I:11) was proved in [20, Proposition 2.1,
(6)] using the same arguments as in case of (I:2); take
[X, Y, Z, U ] = [1, 2, 3, 4]. The property also appeared as
(B.6) in [37] with [X, Y, Z, U ] = [A, C, B, D].

• The implication (I:12) was proved in [20, Proposition 2.1,
(7)] using the same arguments as in case of (I:2); take
[X, Y, Z, U ] = [1, 2, 3, 4]. The property also appeared as
(B.7) in [37] with [X, Y, Z, U ] = [A, C, B, D].

• The implication (I:13) first appeared in [33] and its
elegant proof there was based on an equivalent definition
of CI in terms of factorization of the density. The proof
from [20, Proposition 4.1, 1st part] was based on the same
argument with [X, Y, Z, U ] = [1, 2, 3, 4]. The implication
(I:13) also appeared as (D.1) in [37] where [X, Y, Z, U ] =
[A, B, C, D].

• The implication (I:14) was proved in [20, Proposi-
tion 4.1, 2nd part] with [X, Y, Z, U ] = [1, 2, 3, 4]; the
argument there was the uniqueness principle for factoriz-
able distributions with coinciding marginals. The impli-
cation also appeared as (C.1) in [37] with [X, Y, Z, U ] =
[A, B, C, D].

• The implication (I:15) was derived in [21, § 2] as a
consequence of the inequality [ 1cI ] from [21, Proposi-
tion 2.1] in the text below that claim; take [X, Y, Z, U ] =
[1, 2, 3, 4]. The property also appeared as an open ques-
tion a) in [37] with [X, Y, Z, U ] = [A, D, B, C].

• The implication (I:16) was derived in [21, § 2] as a
consequence of the inequality [ 2cI ] from [21, Proposi-
tion 2.1] in the text below that claim; take [X, Y, Z, U ] =
[1, 2, 3, 4]. The property also appeared as an open ques-
tion b) in [37] with [X, Y, Z, U ] = [A, D, B, C].

• The implication (I:17) was proved in [20, Proposition 2.1,
(9)] using the same arguments as in case of (I:2); take
[X, Y, Z, U ] = [1, 2, 3, 4]. The property also appeared as
(B.9) in [37] with [X, Y, Z, U ] = [A, C, B, D].

• The implication (I:18) was proved in [20, Proposition 2.1,
(10)] using the same arguments as in case of (I:2); take
[X, Y, Z, U ] = [1, 2, 3, 4]. The property also appeared as
(B.10) in [37] with [X, Y, Z, U ] = [A, C, B, D].

• The implication (I:19) was proved in [20, Proposi-
tion 4.1, 3rd part] with [X, Y, Z, U ] = [1, 2, 3, 4]; the argu-
ment there was the uniqueness principle for factorizable
distributions with coinciding supports. The implication
also appeared as (C.2) in [37] with [X, Y, Z, U ] =
[B, C, A, D].
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