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The model forecasts the future conditional probability distributions of returns quite

precisely when using a past indicator and past volatility proxy as predictors. Direct

benefits of the model are revealed in an empirical application to the 29 most liquid
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1 Introduction

“Those who have knowledge, don’t predict. Those who predict, don’t have

knowledge.”

- Lao Tzu, (c. 604–531 B.C.)

Several decades of research provides overwhelming evidence about the predictability of

the first two moments of stock return distributions. Expected values of stock returns are

predictable to some extent using economic variables (Keim and Stambaugh, 1986; Fama and

French, 1989; Ang and Bekaert, 2006; Viceira, 2012), while the conditional second moment

can be well characterized by simple volatility models, or even measured from high frequency

data (Bollerslev, 1986; Andersen et al., 2003). While volatility forecasting quickly became

central to the financial econometrics literature due to its importance for risk measurement

and management, research focusing on the entire return distribution still occupies a small

fraction of the literature.1

One of the main reasons why researchers may not be focused on characterizing the entire

return distribution is a prevailing practice of convenient mean-variance analysis that is still

central to modern asset pricing theories. Unfortunately, investor choices guided using the

first two moments are restricted by binding assumptions, such as the multivariate normality

of stock returns or a quadratic utility function. More importantly, an investor is restricted to

have classical preferences based on von Neumann-Morgenstern expected utility. In contrast

to this, Rostek (2010) recently developed a notion of quantile maximization and quantile

utility preferences. This important shift in decision-theoretic foundations provokes us to

depart from the limited mean-variance thinking and work with entire distributions.

Specification and estimation of an entire conditional distribution of future price changes

is useful for a number of important financial decisions. Prime examples include portfolio

selection when returns are non-Gaussian, (tail) risk measurement and management, market

timing strategies with precise entries and exits reflecting information in tails. Despite its

importance, forecasting the conditional distribution of future returns has so far attracted

little attention in contrast to point forecasts and its aforementioned uncertainty. In this

article, we present a simple approach to forecasting a conditional distribution of stock returns

using a parameterized ordered binary choice regression. Although focusing on financial

returns, we note that our approach may be useful to many other applications where the

conditional distribution forecasts are of interest.

The majority of studies focusing on prediction of conditional return distributions charac-

terize the cumulative conditional distribution by a collection of conditional quantiles (Engle

1Few studies focused on directional forecasts, or threshold exceedances (Christoffersen and Diebold, 2006;

Chung and Hong, 2007; Nyberg, 2011).
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and Manganelli, 2004; Cenesizoglu and Timmermann, 2008; Žikeš and Baruńık, 2016; Ped-

ersen, 2015). In contrast, in a notable contribution, Foresi and Peracchi (1995) focus on

a collection of conditional probabilities and describe the cumulative distribution function

of excess returns using a set of separate logistic regressions. To be able to approximate

the distribution function, Foresi and Peracchi (1995) estimate a sequence of conditional bi-

nary choice models over a grid of values corresponding to different points of the distribution.

Peracchi (2002) argues that the conditional distributions approach has numerous advantages

over the conditional quantile approach, and Leorato and Peracchi (2015) continue their com-

parison further. The approach has also been considered by Fortin et al. (2011), Rothe (2012),

Chernozhukov et al. (2013), Hothorn et al. (2014), and Taylor and Yu (2016).

In this article, we further develop the ideas set forth by Foresi and Peracchi (1995) and

present a related simple model for forecasting conditional return distributions. The proposed

model is based on an ordered binary choice regression, which is able to forecast the entire

predictive distribution of stock returns using fewer parameters than the set of separate binary

choice regressions. To achieve this substantial reduction in the degree of parameterization,

we tie the coefficients of predictors via smooth dependence on corresponding probability

levels. Our specification can be motivated in a semiparametric way, as we approximate

smooth probability functions by low-order polynomials.

The probability forecasts are conditional on past information contained in returns, as well

as their volatility proxy. The main reason for choosing volatility as one of the explanatory

variables is that the cross-sectional relation between risk and expected returns, generally

measuring a stock’s risk as the covariance between its return and some factor, is well doc-

umented in the literature. In the laborious search for proper risk factors, volatility plays a

central role in explaining expected stock returns for decades. Although predictions about ex-

pected returns are essential for understanding classical asset pricing, little is known about the

potential of these factors to precisely identify extreme tail events of the return distribution.

In our illustrative empirical analysis, we estimate conditional distributions of the 29 most

liquid U.S. stocks and compare their generated forecasts with those from the buy-and-hold

strategy as well as several benchmarks – a collection of separate binary choice models, a

fully specified conditional density, and historical simulation. The benefits of our approach

translate into significant economic gains in a simple trading strategy that uses conditional

probability forecasts.

We provide the package DistributionalForecasts.jl in the Julia software for estimating

the model introduced in this article. The package is available at https://github.com/

barunik/DistributionalForecasts.jl.

The article is organized as follows. Section 2 describes the model and emphasizes its dif-

ferences with the collection of separate binary choice models. Section 3 contains information

about the data we use and lays out details of particular specifications. In Section 4, empirical
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results are presented. Section 5 concludes. The Appendix contains more technical material

and details of some procedures used in the empirical application.

2 Model

We consider a strictly stationary series of financial returns rt, t = 1, . . . , T . Our objective is to

describe, as precisely as possible, the conditional cumulative return distribution F (rt | It−1) ,

where It−1 includes the history of rt as well as, possibly, past values of other observable

variables.

Consider a partition of the support of returns by p > 1 fixed cutoffs, or thresholds

c1 < c2 < · · · < cp,

and define c0 = −∞ and cp+1 = +∞ for convenience. The higher p, the more precise the

description of the conditional distribution will be (see a full discussion later in the section).

The partition {cj}p+1
j=0 is arbitrary subject to the ordering restrictions. One intuitive partition

corresponds to empirical quantiles of returns: each cj is an empirical αj-quantile of returns,

j = 1, . . . , p, where 0 < α1 < α2 < · · · < αp < 1 are p probability levels; a reasonable

grid for the probability levels is a regularly spaced unit interval [0, 1]. Alternatively, and

perhaps more judiciously, the partition {cj}pj=1 and thresholds {αj}pj=1 can be tied to some

volatility measure to reflect the time-varying spread of returns due to the changing shape of

the conditional distribution. Thus, in general the elements of the partition are time-varying

and implicitly indexed by t.

Let Λ : u 7→ [0, 1] be a (monotonically increasing) link function. Both unordered and

ordered binary choice models are represented by a collection of conditional probabilities

Pr{rt ≤ cj|It−1} = Λ (θt,j) , j = 1, . . . , p, (1)

for some specification of the driving processes θt,j, j = 1, . . . , p. For convenience, define

Λ (θt,0) = 0 and Λ (θt,p+1) = 1.

Let xt−1,j, j = 1, . . . , p be a vector of predictors for I{rt≤cj} that may depend on j via the

dependence of some of them on cj. For instance, one of predictors may be I{rt−1≤cj}, the

past indicator (dependent on j), while another may be rt−1, the past return (independent of

j), yet another may represent some volatility measure (also non-specific to j). Suppose for

simplicity that the number of predictors in xt−1,j is the same for all j and equals k.

In the unordered model, the specification for the underlying process θt,j is

θt,j = δ0,j + x′t−1,jδj. (2)

There are no cross-quantile restrictions, and each binary choice problem is parameterized

separately. This results in a flexible but highly parameterized specification. In the proposed
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ordered model, we place cross-quantile restrictions on the parameters. In particular, the

coefficients of predictors are tied via smooth dependence on the probability levels; this leads

to a substantial decrease in the degree of parameterization.

In the unordered model, no monotonicity, in the language of Foresi and Peracchi (1995),

holds in general. That is, Pr{rt ≤ cj−1|It−1} may exceed Pr{rt ≤ cj|It−1} with positive

probability even though cj−1 < cj. In the proposed ordered model, the monotonicity prop-

erty in-sample is imposed automatically by the specification of the ordered binary choice

likelihood function. This may require artificial adjustments of the conditional distribution

values at some thresholds. Out-of-sample, the monotonicity is also not guaranteed to hold,

but similar artificial measures can be applied. One simple way is to shift that value of the

conditional distribution that violates monotonicity at a particular threshold to its value at

the previous threshold plus an additional small figure. An alternative way to ensure both

in-sample and out-of-sample predictability is via rearrangement (Chernozhukov et al., 2009).

Given the generally low predictability of conditional probabilities for returns (and hence their

low variability compared to their mean), a share of observations that need such adjustments

is expected to be low (see below for empirical evidence); therefore we give a preference to

the former, simpler method.

The specification for the underlying process θt,j is

θt,j = δ0,j + x′t−1,jδ (αj) , (3)

where δ (αj) are coefficients that are functions of the probability level αj. Each probability-

dependent slope coefficient vector is specified as follows: δ (αj) = (δ1 (αj) , . . . , δk (αj))
′ ,

where for each ` = 1, . . . , k,

δ` (αj) = κ0,` +

q∑̀
i=1

2i(αj − 0.5)i · κi,`, (4)

and q` ≤ p− 1. Note that each intercept δ0,j is j-specific and represents an ‘individual effect’

for a particular probability level, while the slopes δ’s do not have index j, i.e. they depend on

j only via dependence on αj’s. The motivation behind such specification is semiparametric:

any smooth function on [0, 1] can be approximated to a desired degree of precision by the

system of basis polynomials {αj − 0.5, (αj − 0.5)2, . . . , (αj − 0.5)q} by making q big enough.

Because all αj ∈ (0, 1), the polynomial form behaves nicely even for a large q; the basis

polynomials are uniformly bounded on [0, 1] . The additional weights 2i are introduced to

line up the coefficients κi on a more comparable level.

Let us compare the degrees of parameterization of the unordered and ordered binary choice

models. Denote

q =
k∑
`=1

q`.
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In the unordered model, the total number of parameters is

KUO = (1 + k) p

(namely, one intercept δ0,j and k slopes δj in each of p equations for θj), while in the ordered

model, the total number of parameters is

KO = p+ k + q

(namely, p intercepts δ0,j and k slopes δ (αj), each parameterized via 1 + q` parameters).

The difference

KUO −KO = k (p− 1)− q

is larger the larger p is, the fineness of the partition by thresholds. The resulting difference

is also positively related to the number of predictors used.2

In the unordered model, the composite loglikelihood corresponding to observation t is

`UOt =

p+1∑
j=1

I{rt≤cj} ln (Λ (θt,j)) , (5)

and the total composite likelihood
∑T

t=1 `
UO
t can be split into p independent likelihoods∑T

t=1 `
(j)
t , where

`
(j)
t = I{rt≤cj} ln (Λ (θt,j)) , (6)

to be maximized over the parameter vector (δ0,j, δj)
′ . In the ordered model, the loglikelihood

corresponding to observation t is

`Ot =

p+1∑
j=1

I{cj−1<rt≤cj} ln (∆jΛt) , (7)

where ∆1Λt = Λ (θt,1) , ∆jΛt = Λ (θt,j)−Λ (θt,j−1) for j = 2, . . . , p, and ∆p+1Λt = 1−Λ (θt,p) .

The total likelihood
∑T

t=1 `
O
t is to be maximized over the parameter vectors (δ0,1, . . . , δ0,p)

′

and (κ0,1, . . . , κ0,k, κ1,1, . . . , κqk,k)
′. Under mild suitable conditions, the estimates of the pa-

rameter vector are expected to be consistent for their pseudotrue values and asymptotically

normal around them, with a familiar sandwich form of the asymptotic variance.

Of course, each difference ∆jΛt needs to be positive. This monotonicity property, though

not guaranteed, is easier to enforce in maximization of the joint ordered likelihood
∑T

t=1 `
O
t

than in separate maximizations of independent unordered likelihoods, as the common param-

eters will automatically adjust to these monotonicity restrictions. However, if the degrees

of freedom are insufficient to ensure this for all predictor values in the sample, to prevent

2In our empirical illustration, p = 37, k = 2 and q1 = 2, q2 = 3. Hence, KUO = 111 while KO = 44, and

the difference is KUO −KO = 67.
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(rare) realizations of negative differences for particular t, monotonicity can be enforced by

imposing constraints ∆jΛt ≥ ε for all j and t, where ε is some small number.3

Computationally, it is convenient to maximize the total likelihood in a number of steps.

The reason is that an arbitrary initial parameter vector is likely to result in incomputable

likelihood because of numerous violations of the monotonicity property. The idea is to first

determine approximate values of individual intercepts and slopes, subject to their mono-

tonicity, then relaxing the restrictions on the slopes using the evaluated values as starting

points for corresponding parts of the parameter vector. Towards this end, we propose and

further use the following algorithm4:

Step 1. Run a series of separate binary choice models (1) and (2) with the specification θt,j =

δ0,j + x′t−1,jδj with δj = (δj,1, . . . , δj,k)
′ , j = 1, . . . , p, by maximizing the individual

likelihoods (6), and call the obtained estimates δ̄0,j and δ̄j.

Step 2. For each ` = 1, . . . , k, run a linear regression δ̄` = κ0,` +
∑q`

i=1 2i(α − 0.5)i · κi,`,
where δ` = (δ1,`, . . . , δp,`)

′ and α = (α1, . . . αp)
′, and call the obtained estimates κ̄i,`,

i = 0, 1, . . . , q`.

Step 3. Run the ordered binary choice model (1) and (3) with specification (4) by maximizing

the total likelihood (7) using δ̄0,j as starting points for δ0,j, j = 1, . . . , p, and κ̄i,` as

starting points for κi,`, i = 0, 1, . . . , q`, ` = 1, . . . , k.

Having estimated the conditional return distribution evaluated at the threshold values, one

can obtain the entire (continuous) conditional distribution by using interpolation schemes

that preserve monotonicity of the outcome. Towards this end, we apply the Fritsch–Carlson

monotonic cubic interpolation (Fritsch and Carlson, 1980) (see Appendices A.1 and A.2)

and use the result for testing the quality of the estimated distribution (see Appendices A.3

and A.4).

The quality of approximation of the constructed conditional distribution in the ordered

model is determined by a number of factors, the precision of interpolation being the least

important. There is an important tradeoff between the number of thresholds (and hence

the precision of the interpolation input), and the degree of parameterization and hence the

amount of estimation noise. Yet another factor is the flexibility of specification of the slopes

δ’s on αj’s. It seems reasonable to set the system of thresholds fine enough (as long as one

does not come close to the computability limits) to describe the distribution precisely enough

3In our empirical illustration, we made each difference to be bounded below by ε = 10−6 by force.

Such strategy has resulted in only less than 1% of such interferences among all differences during in-sample

estimation and less than 2% during out-of-sample forecasting.
4The estimation can be done using the package DistributionalForecasts.jl developed by

the authors in the Julia software. The package is available at https://github.com/barunik/

DistributionalForecasts.jl
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but not too fine so that there are a sufficient number of observations that fall between each

pair of adjacent thresholds. One may also afford higher flexibility to the slope specification

for larger sample sizes; however, low numbers are usually pretty adequate in semiparametric

setups in practice. One may also employ formal model selection criteria such as the Bayesian

information criterion to choose the optimal orders of polynomials in slope specifications.

3 Data and Empirical Specification

We study the conditional distribution forecasts of 29 U.S. stocks5 that are traded on the New

York Stock Exchange. These stocks have been chosen according to market capitalization and

their liquidity. The sample under investigation spans from August 19, 2004 to December 31,

2015. We consider trades executed during U.S. business hours (9:30–16:00 EST). In order to

ensure sufficient liquidity and eliminate possible bias we explicitly exclude weekends and bank

holidays (Christmas, New Year’s Day, Thanksgiving Day, Independence Day). In total, our

final dataset consists of 2826 trading days, 500 of which are used for in-sample estimation,

and the rest 2326 for out-of-sample forecasting using a rolling window scheme with the

window size of 500 days. We split the sample to have a much larger out-of-sample portion

as we perform an extensive set of tests, robustness checks and inter-model comparisons on

it.

Next we give the details of our empirical specification. For both ordered and unordered

models, we use the logit link function

Λ (u) =
exp(u)

1 + exp(u)

resulting in logit specifications. We consider a partition of the return space into 37 equally

spaced probability levels6 from α ∈ (5%, 95%), i.e., a grid with step 2.5% resulting in p = 37

quantiles in total.7 We use a time-varying partition that changes with the rolling window.

In every window, cj is computed as γ(αj)
√
σ2
t , where γ(αj) is a quantile of the standard

5Apple Inc. (AAPL), Amazon.com, Inc. (AMZN), Bank of America Corp (BAC), Comcast Corporation

(CMCSA), Cisco Systems, Inc. (CSCO), Chevron Corporation (CVX), Citigroup Inc. (C), Walt Disney

Co (DIS), General Electric Company (GE), Home Depot Inc. (HD), International Business Machines Corp.

(IBM), Intel Corporation (INTC), Johnson & Johnson (JNJ), JPMorgan Chase & Co. (JPM), The Coca-

Cola Co (KO), McDonald’s Corporation (MCD), Merck & Co., Inc. (MRK),Microsoft Corporation (MSFT),

Oracle Corporation (ORCL), PepsiCo, Inc. (PEP), Pfizer Inc. (PFE), Procter & Gamble Co (PG), QUAL-

COMM, Inc. (QCOM), Schlumberger Limited. (SLB), AT&T Inc. (T), Verizon Communications Inc. (VZ),

Wells Fargo & Co (WFC), Wal-Mart Stores, Inc. (WMT), Exxon Mobil Corporation (XOM).
6The use of more extreme values of probability levels such as 1% and 99% leads, with our in-sample

window of 500 observations, to large estimation uncertainty in the tails, but ends up successful when the

model is estimated on the whole sample.
7We have also used partitions with p = 19 and p = 73 equally spaced probability levels; for details, see

subsection 4.4.
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normal distribution, and σ2
t is a conditional variance of returns in the corresponding window

computed from the RiskMetrics of JPMorgan Chase standards as an exponentially weighted

moving average with a decay factor of 0.94.

We choose k = 2 and the predictors to be

xt−1,j =

(
I{rt−1≤cj}

ln (1 + |rt−1|)

)
for all j = 1, . . . , p. The first predictor is a lagged indicator corresponding to the probability

level αj, which is plausibly supposed to have the highest predictability power among all

such indicators. The second predictor is a proxy for a volatility measure, with the absolute

return dampened by the logarithmic transformation. Note that the first predictor is specific

to a specific quantile, while the second predictor is common for all quantiles. In principle,

one could specify all predictors to be the same across the quantiles, or, on the opposite, all

predictors may vary with the quantile. In the ordered model, we set, after some experimen-

tation with statistical significance of higher-order polynomials, q1 = 2 and q2 = 3.8 That is,

the polynomial is quadratic in the probability level α for the past indicator and cubic for

the past volatility proxy.

The full specification of the model for j = 1, . . . , p empirical quantiles is

Pr{rt ≤ cj|It−1} =
exp(θt,j)

1 + exp(θt,j)
,

θt,j = δ0,j + δ1 (αj) I{rt−1≤cj} + δ2 (αj) ln (1 + |rt−1|) ,

with the coefficient functions

δ1 (αj) = κ0,1 + 2(αj − 0.5) · κ1,1 + 22(αj − 0.5)2 · κ2,1,

δ2 (αj) = κ0,2 + 2(αj − 0.5) · κ1,2 + 22(αj − 0.5)2 · κ2,2 + 23(αj − 0.5)3 · κ3,2.

In total, there are KO = 44 parameters: p = 37 individual intercepts δ0,j and k = 2 slopes

δ (αj), one parameterized via 1+q1 = 3 parameters, the other via 1+q2 = 4 parameters. This

parametrization is parsimonious enough and approximates the distribution quite well, and

additional terms do not bring significant improvements. Hence, estimating seven parameters

κi,` in addition to individual intercepts is enough to approximate the conditional return

distribution.

4 Empirical Findings

We now present the results of estimating the conditional distribution function of returns

using the ordered binary choice model. We consider forecasts for 29 stocks, so first we

8We also perform model selection analysis with the Bayesian information criterion in the ordered model;

for details, see subsection 4.4.
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present individual estimates of three illustrative stocks, namely Intel Corporation (INTC),

QUALCOMM, Inc. (QCOM), and Exxon Mobil Corporation (XOM), and then we present

the results for all 29 stocks in an aggregate form.

After presenting the parameter estimates, we evaluate the statistical as well as economic

significance of the predicted distributions. Further, we compare the performance of the or-

dered model with popular and challenging benchmarks used in the literature. Namely, we

include two candidate models that perform best (Kuester et al., 2006) – an asymmetric gener-

alized autoregressive conditional heteroscedastic model with skewed-t distribution (GARCH

henceforth) and GARCH-filtered historical simulation (FHS henceforth). In implementing

both alternative methods, we follow Kuester et al. (2006).

4.1 Parameter estimates

Table 1 shows estimates of cutoff-specific intercepts δ0,j in the ordered logit model for the

three illustrative stocks. The intercepts have expected signs – negative for probability levels

to the left of 50% and positive to the right of 50% – due to monotonically increasing Λ(·)
and low predictability of predictors and exhibit expected monotonic behavior increasing from

the left tail to the right tail, thus generating an increasing cumulative distribution function

(assuming zero predictors). The intercepts are statistically significant in most cases except

for few a cutoff points near the median. The intercept values are quite similar across three

stocks, though there is some variability.

The left plot shown in Figure 2 collects the intercept estimates for all 29 stocks and

reveals that indeed the intercepts are similar across the stocks. The plot has a shape similar

to an inverse logit link function Λ (u) defined earlier, with a stronger effect in the tails. A

flexible j-specific intercept allows for controlling individual quantile effects, and shows that

unconditional expectations are an important part of the predicted distribution.

The estimates of the seven coefficients κi,` driving the slopes on the predictors for the

three illustrative stocks, are shown in Table 2. The coefficients κi,1 correspond to the lagged

indicator predictor I{rt−1≤cj}. All parameter estimates for the lagged indicator are of a

small magnitude, and some are highly statistically significant. The left plot in Figure 1

complements these findings with estimates of the lagged indicator coefficients for all 29

stocks shown by the box-and-whisker plots. The estimates document a heterogeneous effect

of the lagged indicator on the future probabilities for different stocks. While we document

zero coefficients for some stocks, the quadratic term seems to play a big role in others.

The second predictor, the past volatility proxy ln (1 + |rt−1|), carries even more important

information about future probabilities. The estimated coefficients κi,2 corresponding to

the volatility predictor reveal that the cubic polynomial has many statistically significant

coefficients (see Table 2). The right plot of Figure 1 shows estimated coefficients for all 29

stocks as box-whisker plots. We can see that κ1,2 and κ3,2 are significantly different from zero
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for most of the stocks, and so the past volatility proxy contributes strongly to the prediction

of return distributions.

Figure 2 plots the functions δ1 (αj), and δ2 (αj), in addition to the intercepts. Correspond-

ing to heterogenous parameters κi,1, the function δ1 (αj) is also heterogeneous for 29 stocks,

exhibiting a mixed effect of the lagged indicator predictor (shown in the middle plot of Fig-

ure 2). Overall, we can see that the effect is small. Coefficient function δ2 (αj) implied by

the past volatility proxy shows a similar impact.

Figure 3 depicts an interpolated predictive conditional CDF of returns on the interval

[−1.5, 1.5] for an arbitrary stock9 evaluated at arbitrary 100 out-of-sample periods. One can

observe how the cumulative distribution varies over time. There is a certain distribution

clustering, i.e. the CDF possesses some persistence, while at some periods the CDF shape

stands out from the cluster.

4.2 Statistical Fit

To assess the adequacy of the predicted distribution, we run the generalized autocontours

specification tests of González-Rivera and Sun (2015). This test verifies whether the col-

lection of out-of-sample generalized residuals (also known as probability integral transform)

together with their lags are scattered uniformly inside a hypercube of corresponding dimen-

sion; see Appendix A.3 for a detailed description. We use lag L = 1 in the contour-aggregated

test with a simple collection of sides α = (0.25, 0.50, 0.75)′ and a larger collection coinciding

with our full grid α = (α1, α2, . . . , αp)
′. We use side ᾱ = 0.5 in the lag-aggregated test with

L = 3 and L = 10. Figure 4 shows the distributions of p-values from the González-Rivera

and Sun (2015) tests for the ordered logit model for all 29 stocks. All four variations of the

test – two contour-aggregated and two lag-aggregated – show the adequacy of the estimated

conditional distribution.10

We also compare probabilistic forecasts of different models in terms of proper scoring rules

(Gneiting and Raftery, 2007), namely the Brier score and the continuous ranked probability

score (CRPS); see Appendix A.4 for a detailed description.11 Figure 5 shows the average

score values for the four models (ordered logit, collection of separate logits, GARCH and

FHS). All four approaches deliver Brier score that have similar median values though differing

a bit in dispersion. The CRPS scores are very similar across all four approaches, though the

logit models marginally dominate.

9The minimal and maximal values of returns in the whole sample for this stock are approximately −0.20

and 0.20.
10We did not account for the estimation noise in constructing the test. Because it generally tends to

increase asymptotic variances, the p-values would be even higher if the estimation noise was accounted for.
11We follow Gneiting and Raftery (2007) and define the CRPS with a minus sign so that its larger values

are preferred to smaller values.
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4.3 Economic Significance

To understand the economic usefulness of the proposed model, we study a simple profit rule

for timing the market based on the model forecasts. The idea is to explore information from

the entire distribution. To build a trading strategy, we explore the difference between the

predicted conditional probability and unconditional probability, which indicates if positive

or negative returns are predicted with higher probability. In the spirit of the previous

literature (Breen et al., 1989; Pesaran and Timmermann, 1995; Anatolyev and Gospodinov,

2010), we evaluate the model forecasts in terms of profits from a trading strategy for active

portfolio allocation between holding a stock and investing in a risk-free asset. The detailed

construction of the trading strategy is described in Appendix A.5.

Table 3 summarizes the results of running the trading strategies in terms of a mean and

median return, volatility, as well as Sharpe ratio. While the benchmark market strategy

earns a 0.806 return with a 0.244 volatility, GARCH and FHS generate similar returns with

a lower volatility. When an investor uses predictions about the entire distribution from

separate logit models, an improved mean return of 1.088 is obtained with a much lower

volatility. Finally, our proposed ordered logit model generates a 1.296 mean return with a

volatility similar to that of separate logits. The Sharpe ratio showing a risk-adjusted return,

or a average return per unit of volatility, reveals that the ordered logit model generates the

highest returns when one takes risk into account. The figures for median values confirm this

result.

Figure 6 shows returns, volatilities, and Sharpe ratios for all 29 stocks using box-and-

whisker plots. The figure reveals that the naive buy and hold strategy yields low returns

with the highest volatility, which are moreover quite heterogeneous for all the considered

stocks. GARCH and FHS improve the volatility estimates, hence yielding similar returns

with a lower risk. In terms of risk-adjusted Sharpe ratios, the separate logistic regressions

yield a similar result, while the ordered logit model makes a marked improvement. One

can see positive Sharpe ratios for almost all considered stocks pointing to the highest risk-

adjusted returns offered by the ordered model.

Figure 7 looks closely at the cumulative returns and drawdowns of the three illustrative

stocks we used earlier. It can be seen that returns from the ordered logit strategy are

consistent over time, with the lowest drawdown. This holds even in the case of a XOM that

has been growing for the whole period, hence making it difficult to beat the buy and hold

strategy.

Finally, we compare the relative performance of all five strategies in Figure 8. The top

left plot in the Figure compares the ordered logit with the ‘market,’ or naive buy and hold

strategy, while the top right plot compares the ordered logit with separate logits. The plots

at the bottom of Figure 8 compare the ordered logit versus GARCH and FHS. We document

a consistently better performance for the proposed ordered logit model in comparison with
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both the unordered logit as well as benchmark strategies for all 29 stocks.

4.4 Sensitivity Analysis

As noted before, we have chosen, after some experimentation, specification with p = 37

thresholds and polynomial orders q1 = 2 and q2 = 3. Here we report on the results with

different specifications. As a robustness check, we do an investigation of the impact of

partition fineness and polynomial complexity on the performance of the proposed method.

We have estimated and evaluated the model with different choices of partitions, namely

p = 19 (corresponding to twice as coarse a partition) and p = 73 (corresponding to twice as

fine a partition). On the one hand, p = 19 may seem too coarse for the CDF approximation

to be considered good. On the other hand, too high p may seriously impact the model

complexity: while the number of parameters for the basic partition p = 37 equals KO = 44,

for the finer partition it equals 80, which is obviously too many for our out-of-sample exercise

with 500 rolling in-sample observations. In our experiments with p = 19 and p = 73,12 some

of the generalized autocontours tests (in particular, the three-side contour-aggregated test)

exhibits the tendency to reject the constructed conditional distribution. The results of

economic evaluation though are not sensitive to the choice of partition, and the dominance

of the proposed method based on the ordered logit over all the other methods still prevails.

The polynomial orders (q1, q2) do not affect the degree of parsimony drastically, on the

one hand, and on the other, the dependence of predictability on the probability level is

presumably not very sophisticated to require higher-order powers. Hence, one would not

expect high sensitivity to the choice of orders. We have run the proposed model with various

combinations of polynomial orders (q1, q2) around the running (q1, q2) = (2, 3) combination,

and computed the value of the Bayesian information criterion (BIC) for each. The pattern

of BIC is presented in Figure 9. While the values of q1 and q2 such as 0 and 1 are obviously

too small to capture the differences in predictability across the probability levels, there is

little sensitivity once the orders reach the selected combination, which is clearly preferred

by BIC en masse across the 29 stocks.

5 Conclusion

This article investigates the predictability of stock market return distributions. We propose a

relatively parsimonious parametrization of an ordered binary choice regression that forecasts

well the conditional probability distribution of returns. We subject the proposed model to

a number of statistical tests for adequacy and to comparison with alternative methods. In

order to see how useful the model is economically, we use distributional predictions in a

12The detailed results are available upon request from the authors.
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simple market timing strategy. Using 29 liquid U.S. stocks, we find significant economic

gains when compared to the benchmarks.

Our findings are useful for risk management and measurement or building trading strate-

gies using the entire conditional distribution of returns. The model nevertheless has a much

wider potential use in any application that exploits distribution forecasts, including forecast-

ing of interest rates, term structures, and macroeconomic variables.
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A Appendix

A.1 CDF interpolation

The Fritsch–Carlson monotonic cubic interpolation (Fritsch and Carlson, 1980) provides a

monotonically increasing CDF with range [0, 1] when applied to CDF estimates on a finite

grid.

Suppose we have CDF F (r) defined at points (rk, F (rk)) for k = 1, . . . , K, where F (r0) = 0

and F (rK) = 1. We presume that rk < rk+1 and F (rk) < F (rk+1) for all k = 0, . . . , K − 1,

which is warranted by the continuity of returns and construction of the estimated distribu-

tion. First, we compute the slopes of the secant lines as ∆k = (F (rk+1)−F (rk)))/(rk+1−rk)
for k = 1, . . . , K − 1, and then the tangents at every data point as m1 = ∆1, mk =
1
2
(∆k−1 + ∆k) for k = 2, . . . , K − 1, and mK = ∆K−1. Let αk = mk/∆k and βk = mk+1/∆k

for k = 1, . . . , K − 1. If α2
k + β2

k > 9 for some k = 1, . . . , K − 1, then we set mk = τkαk∆k

and mk+1 = τkβk∆k, with τk = 3(α2
k + β2

k)
−1/2. Finally, the cubic Hermite spline is applied:

for any r ∈ [rk, rk+1] for some k = 0, . . . , K − 1, we evaluate F (r) as

F (r) = (2t3 − 3t2 + 1)F (rk) + (t3 − 2t2 + t)hrk + (−2t3 + 3t2)F (rk+1) + (t3 − t2)hmk+1,

where h = rk+1 − rk and t = (r − rk)/h.

A.2 Generalized residuals

The CDF specification testing is based on the properties of the generalized residuals (also

known as probability integral transform). First, for each out-of-sample period t = R +

1, . . . , T, we apply the CDF interpolation algorithm with input data (2rmin, 0), (cj, P̂r{rt ≤
cj|It−1}), (2rmax, 1) for j = 1, . . . , p, where rmin and rmax are minimal and maximal sample

values of returns within the estimation portion of the sample. That is, we approximate the

conditional CDF values outside the interval [2rmin, 2rmax] by exact zero or exact one, which

is reasonable, as the probability of such returns is negligible. The generalized residual εt,

t = R + 1, . . . , T, is computed simply as an interpolated conditional CDF evaluated at rt.

A.3 CDF Testing

The generalized residuals εt have a familiar property that εt ∼ i.i.d. U [0, 1]. The univari-

ate version of the generalized autocontours test of González-Rivera and Sun (2015) verifies

whether the collection of k out-of-sample generalized residuals together with their lags are

scattered uniformly inside the [0, 1]2k hypercube.

The testing procedure contains the following steps. Let the vector α contain pα ‘sides’

αi ∈ (0, 1], and consider pairs (εt, εt−`) of out-of-sample generalized residuals and their `th

lags, ` = 1, 2, . . . , L, t = R + 1, . . . , T. Under the null hypothesis of correct specification
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when εt ∼ i.i.d. U [0, 1], each side αi is consistently estimated by the sample proportion of

pairs (εt, εt−`) falling into the corresponding generalized autocontour – the subhypercube

G-ACRα,` = ×pαi=1[0,
√
αi]

2:

α̂α,` =
1

T −R− `

T∑
t=R+1+`

I{(εt,εt−`)∈G-ACRα,`}.

The González-Rivera–Sun test exists in two chi-squared variations: contour-aggregated

and lag-aggregated. The contour-aggregated statistic gathers information from estimated

generalized autocontours for a collection of different sides, keeping the lag, say ¯̀, fixed.

Let α̂¯̀ = (α̂1,¯̀, . . . , α̂p,¯̀)
′. The lag-aggregated statistic gathers information from estimated

generalized autocontours for a collection of different lags, keeping the side, say ᾱ, fixed. Let

α̂ᾱ = (α̂ᾱ,1, . . . , α̂ᾱ,L)′.

Then, under the null of correct distributional specification,

GRSα,¯̀ = (α̂¯̀− α)′A−1
α,¯̀

(α̂¯̀− α)→d χ2
pα

and

GRSᾱ,L = (α̂ᾱ − ᾱιL)′A−1
ᾱ,L(α̂ᾱ − ᾱιL)→d χ2

L,

where the matrices Aα,¯̀ and Aᾱ,L contain asymptotic variances and covariances of elements

of the estimated generalized autocontours, which are functions of elements of the vector α

only and need not be estimated (see González-Rivera and Sun (2015) for more details), and

ιL is a column vector of ones of length L.

The rejection by the González-Rivera–Sun tests means that the generalized residuals are

not likely to be uniform on [0,1] and/or fail to be serially independent.

A.4 Scoring rules

Gneiting and Raftery (2007) list several scoring rules that can be used to compare proba-

bilistic forecasts of different models of (conditional) distributions. The Brier score for the

forecast at t made at t− 1 is

Bt = −
p+1∑
j=1

(
I{cj−1<rt≤cj} − P̂r{cj−1 < rt ≤ cj}

)2

,

and is a quadratic criterion of deviations of binary realizations from probability forecasts.

The CRPS for the forecast at t made at t− 1 is

CRPSt = −
∫ ∞
−∞

(
P̂r{rt ≤ r|It−1} − I{rt≤r}

)2

dr,

where the conditional CDF P̂r{rt ≤ r|It−1} is obtained by CDF interpolation (see Appendix

A.1), while the integral is computed numerically using the Gauss-Chebyshev quadrature

formulas (Judd (1998), section 7.2) with 300 Chebychev quadrature nodes on [2rmin, 2rmax].
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The average Brier score and average CRPS are computed by averaging Bt and CRPSt

over out-of-sample periods t = R + 1, . . . , T.

A.5 Trading strategy

To build a trading strategy, we use a simple rule exploring the difference between the pre-

dicted conditional probability and unconditional probability Pr{rt ≤ cj} = αj. We sum the

differences over the interval of empirical quantiles [a, b] as

St =
b∑

cj=a

(
P̂r{rt ≤ cj|It−1} − αj

)
.

If we sum all p available quantiles, we are using the information from the entire distribution.

If we want to use the information only about positive returns, we sum only half of the

available empirical quantiles corresponding to the cutoffs at positive returns. For example,

in case the positive returns are predicted with a higher probability than the negative returns

for all corresponding empirical quantiles, the sum St will be positive. Further, it may be

useful to compare St computed for the empirical quantiles corresponding to both negative

and positive returns. After some experimentation, we obtain threshold values for each stock

depending on the shape of the conditional distributions, generating consistent profits. Hence

we build the trading strategy on St exceeding these thresholds, but we note that this could

further be optimized for maximum profits. In our setup, we use all quantiles, hence a = c1,

and b = cp, while the threshold is set to zero.

Starting with a one dollar investment at the beginning of the sample, our investor decides

to hold the stock depending on whether the predicted probability is favorable or not. We

compare the cumulative returns from this simple market-timing strategy using predictions

from the ordered logit, unordered logit, GARCH, FHS, and the buy and hold strategy for

all 29 stocks separately.
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B Tables

Table 1. Estimates of intercepts δ0,j in the ordered logit specification θt,j = δ0,j +x′t−1,jδ (αj)

for the three illustrative stocks. The standard errors are below the point estimates.

αj INTC QCOM XOM αj INTC QCOM XOM

5% −3.046
(0.115)

−2.775
(0.116)

−2.871
(0.118)

95% 2.898
(0.155)

2.689
(0.113)

3.042
(0.122)

7.5% −2.504
(0.096)

−2.422
(0.098)

−2.488
(0.102)

92.5% 2.704
(0.156)

2.581
(0.108)

2.579
(0.098)

10% −2.195
(0.087)

−2.148
(0.088)

−2.235
(0.092)

90% 2.026
(0.095)

2.401
(0.100)

2.474
(0.098)

12.5% −1.953
(0.081)

−1.999
(0.081)

−2.032
(0.088)

87.5% 1.702
(0.082)

2.137
(0.091)

2.105
(0.089)

15% −1.800
(0.077)

−1.810
(0.075)

−1.812
(0.083)

85% 1.666
(0.079)

2.069
(0.089)

1.962
(0.087)

17.5% −1.672
(0.074)

−1.684
(0.071)

−1.679
(0.082)

82.5% 1.455
(0.075)

1.957
(0.085)

1.751
(0.083)

20% −1.489
(0.072)

−1.546
(0.068)

−1.575
(0.082)

80% 1.338
(0.072)

1.719
(0.080)

1.645
(0.084)

22.5% −1.325
(0.070)

−1.397
(0.065)

−1.454
(0.082)

77.5% 1.214
(0.070)

1.528
(0.076)

1.492
(0.083)

25% −1.151
(0.068)

−1.252
(0.064)

−1.301
(0.081)

75% 1.049
(0.066)

1.249
(0.068)

1.336
(0.081)

27.5% −1.020
(0.067)

−1.074
(0.062)

−1.174
(0.081)

72.5% 0.899
(0.064)

1.100
(0.065)

1.171
(0.081)

30% −0.859
(0.065)

−0.928
(0.061)

−1.033
(0.080)

70% 0.828
(0.063)

0.953
(0.062)

1.035
(0.080)

32.5% −0.711
(0.064)

−0.781
(0.060)

−0.919
(0.080)

67.5% 0.764
(0.063)

0.831
(0.061)

0.873
(0.080)

35% −0.631
(0.063)

−0.633
(0.059)

−0.813
(0.080)

65% 0.650
(0.062)

0.707
(0.060)

0.678
(0.079)

37.5% −0.477
(0.062)

−0.542
(0.059)

−0.690
(0.080)

62.5% 0.539
(0.061)

0.622
(0.060)

0.531
(0.078)

40% −0.386
(0.062)

−0.465
(0.059)

−0.595
(0.080)

60% 0.425
(0.061)

0.501
(0.059)

0.393
(0.079)

42.5% −0.286
(0.062)

−0.344
(0.059)

−0.499
(0.080)

57.5% 0.334
(0.061)

0.354
(0.059)

0.227
(0.079)

45% −0.223
(0.061)

−0.280
(0.059)

−0.345
(0.080)

55% 0.226
(0.061)

0.253
(0.059)

0.109
(0.079)

47.5% −0.098
(0.062)

−0.134
(0.059)

−0.205
(0.079)

52.5% 0.096
(0.061)

0.144
(0.059)

0.023
(0.079)

0.50% −0.004
(0.062)

−0.014
(0.059)

−0.117
(0.079)
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Table 2. Estimates of slope coefficients κi,` in the ordered logit specification δ` (αj) =

κ0,` +
∑q`

i=1 2i(αj − 0.5)i · κi,` for the three illustrative stocks. The standard errors are below

the point estimates.

Coefficient INTC QCOM XOM Coefficient INTC QCOM XOM

κ0,1 −0.003
(0.018)

−0.169
(0.015)

−0.053
(0.011)

κ0,2 −3.33
(3.93)

−0.285
(4.001)

0.109
(8.104)

κ1,1 −0.035
(0.044)

−0.143
(0.035)

−0.117
(0.043)

κ1,2 4.92
(5.79)

−15.06
(3.08)

−17.52
(5.71)

κ2,1 0.085
(0.084)

0.542
(0.092)

0.052
(0.076)

κ2,2 12.13
(4.72)

−7.16
(5.61)

−16.85
(7.83)

κ3,2 −3.86
(7.32)

25.34
(7.524)

25.98
(9.23)

Table 3. Mean and median return-volatility characteristics from five trading strategies for

all 29 stocks.

mean median

Method return volatility Sharpe return volatility Sharpe

Ordered Logit 1.296 0.159 0.381 0.789 0.161 0.322

Separate Logits 1.088 0.159 0.289 0.663 0.155 0.289

Market 0.806 0.244 0.102 0.447 0.226 0.219

GARCH 0.768 0.202 0.169 0.414 0.182 0.277

FHS 0.791 0.193 0.162 0.428 0.184 0.225
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C Figures: Parameter Estimates
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Figure 1: Parameter estimates: ordered logit parameters estimated for all 29 stocks shown

by box-and-whisker plots.
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Figure 2: Parameter estimates: coefficient functions implied by parameters estimated for

all 29 stocks. Minimum and maximum values are shown as a light grey area, 50% of the

distribution as a grey area, and the median as a black line.
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D Figures: Conditional CDF

Figure 3: Fragment of interpolated estimated conditional CDF of returns for one of stocks.
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E Figures: Statistical Evaluation
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Figure 4: p-values from Gonzalez-Rivera and Sun (2015) tests for the ordered logit

model shown by box-and-whisker plots for all 29 stocks. The four test specifications

are shown with α = (0.25, 0.5, 0.75)′ (a) contour-aggregated, (b) lag-aggregated, with

α = (0.05, 0.1, ..., 0.9, 0.95)′ (c) contour-aggregated, (d) lag-aggregated.
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Figure 5: Brier scores and CRPS for ordered logit (1), separate logits (2), GARCH (3), and

FHS (4), shown by box-and-whisker plots for all 29 stocks. Larger values of the scores are

preferred to their smaller values.
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F Figures: Economic Evaluation
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Figure 6: Performance of ordered logit (1), separate logits (2), market benchmark (3),

GARCH (4), and FHS (5) models. Return, volatility and Sharpe ratio for all 29 stocks

are shown by box-and-whisker plots.
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Figure 8: Relative performance: trading strategy based on probability predictions from the

ordered logit model relative to separate logits (top right) as well as benchmark market (top

left), GARCH (bottom left), and FHS (bottom right). The median value from all 29 stocks

is black line surrounded by 90% of the distribution in grey area. Note that the value of one

shows equal performance for both of the compared strategies.
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G Figures: Sensitivity to Polynomial Orders●
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Figure 9: Bayesian information criterion for the ordered logit model with different polynomial

orders (q1 q2) on the x-axis shown by box-and-whisker plots for all 29 stocks.
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