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This article presents a novel scheduling approach to minimise the energy consumption of a machine dur-
ing its idle periods. In the scheduling domain, it is common to model the behaviour of the machine by
defining a small set of machine modes, e.g. ‘‘on”, ‘‘off” and ‘‘stand-by”. Then the transitions between
the modes are represented by a static transition graph. In this paper, we argue that this type of model
might be too restrictive for some types of machines (e.g. the furnaces). For such machines, we propose
to employ the complete time-domain dynamics and integrate it into an idle energy function. This way,
the scheduling algorithm can exploit the full knowledge about the machine dynamics with minimised
energy consumption encapsulated in this function. In this paper, we study a scheduling problem, where
the tasks characterised by release times and deadlines are scheduled in the given order such that the idle
energy consumption of the machine is minimised. We show that this problem can be solved in polyno-
mial time whenever the idle energy function is concave. To highlight the practical applicability, we anal-
yse a heat-intensive system employing a steel-hardening furnace. We derive an energy optimal control
law, and the corresponding idle energy function, for the bilinear system model approximating the
dynamics of the furnace (and possibly other heat-intensive systems). Further, we prove that the idle
energy function is, indeed, concave in this case. Therefore, the proposed scheduling algorithm can be
used. Numerical experiments show that by using our approach, combining both the optimal control
and optimal scheduling, higher energy savings can be achieved, compared to the state-of-the-art schedul-
ing approaches.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The machines in heat-intensive processes (such as furnaces) are
highly energy-demanding, and therefore their energy consumption
optimisation usually provides a significant reduction in production
costs. In this work, we focus on the idle energy consumption opti-
misation, which has been widely studied in recent years (Gutowski
et al., 2005; Mouzon et al., 2007; Shrouf et al., 2014; Gahm et al.,
2016; Che et al., 2017; Abikarram et al., 2019). The research pre-
sented in this paper is inspired by a heat-intensive production pro-
cess from Škoda Auto. There, steel hardening is performed in
electric vacuum furnaces, which require high power input to reach
and maintain the specific operating temperature. In this produc-
tion line, all furnaces are heated to the operating temperature at
the beginning of the week and turned off at its end. However, this
strategy is very wasteful because a considerable amount of energy
is consumed for heating even during the periods when no material
is being processed. The problem of energy-wasting during pro-
longed idle periods is not specific only to this particular plant. Sim-
ilar observations have already been made in other companies as
well (Mouzon et al., 2007).

A common approach in the area of the idle energy consumption
optimisation is to define a set of machine modes, typically ‘‘off”,
‘‘on”, and ‘‘stand-by” (Mouzon et al., 2007; Shrouf et al., 2014;
Che et al., 2017; Abikarram et al., 2019). The feasible transitions
between the modes are then represented by a static transition
graph defining the time and energy needed to switch from one
mode to another and thus describing the machine dynamics to
some extent. In this paper, we argue that this type of model might
be too restrictive for some types of machines (e.g. the furnaces).
For such machines, we propose to employ the complete time-
domain behaviour of the machine, when available, in contrast to
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Ondřej Benedikt, B. Alikoç, Přemysl Šůcha et al. Computers and Operations Research 128 (2021) 105167
the use of the finite number of stand-by modes as in the existing
literature. The relation between the length of the idle period and
the possible minimal energy consumption is then represented by
the idle energy function, which is used by the proposed scheduling
algorithm. This way, the whole energy minimisation problem is
decomposed into two independent optimisation problems: (i)
determination of the idle energy function and (ii) optimal schedul-
ing of the tasks.

For the scheduling part, we examine a single machine problem
where tasks are characterised by release times, processing times,
and deadlines while the objective is to minimise the idle energy
consumption. Besides, we assume a fixed order of tasks. The reason
for this assumption is that the single machine problem with
release times and deadlines is already NP-hard (Garey and
Johnson, 1977). Therefore, it is reasonable to solve the entire pro-
duction problem by a heuristic. In this case, a decision concerning
the order of tasks and their assignment to machines is often deter-
mined by a local-search or meta-heuristic. These techniques can
employ the scheduling approach proposed in this paper for finding
the optimal start times of the tasks given their order. We prove
that whenever the idle energy function is concave, the scheduling
problem can be solved in polynomial time by reduction to the
shortest path problem. The main advantage of this transformation
is that the size of the reduced problem is independent of the length
of the scheduling horizon.

The determination of the idle energy function is specific to the
considered machine. In this paper, we take as an example the elec-
tric furnaces widely used in industrial production lines such as
steel hardening and glass tempering, operating at a specified tem-
perature. Using the Pontryagin’s minimum principle (PMP) to anal-
yse a realistic bilinear model of the continuous-time furnace
dynamics, we prove that the energy-optimal control law during
any idle period is to switch from zero input power (cooling) to
the maximum applicable input power (maximal heating) at some
convenient switching time. This optimal control law is then shown
to result in the concavity of the idle energy function, which enables
to employ the proposed optimal scheduling algorithm. The theo-
retical approach and findings are validated through a case study
investigating an industrial furnace in a real production line.

1.1. Related work

Concerning the research of energy-efficient manufacturing sys-
tems, one of the first analyses in this area was performed by
Mouzon et al. (2007), who observed that a significant amount of
energy could be saved by managing the state of the machine. They
proposed several dispatching rules for online production, consider-
ing operating and idle states of the machine. Specifically, rules were
devised to turn the non-bottleneck machines off when they were
idle for a certain amount of time. Experimental results showed
that, compared to the worst-case policy (no switching), substantial
energy savings could be achieved. This research laid the founda-
tions for further works investigating the minimisation of (idle)
energy in production. Often, following the example of Mouzon
et al., authors consider only a simple case with two states, the pro-
cessing (operational) state and off state. That is also the case in the
work of Che et al. (2017), who proposed a mixed-integer linear
programming (MILP) model and heuristics for bi-objective minimi-
sation of the energy and maximum tardiness. Another example can
be found in the work of Zhou et al. (2018), who proposed a math-
ematical model and a differential evolution algorithm for a parallel
batch processing machine scheduling problem considering min-
imisation of the makespan and total energy consumption. Two
states of the batch processing machine were assumed for the mod-
elling, namely the processing and idle state. Angel et al. (2012) anal-
ysed a single machine problem with tasks characterised by release
2

times and agreeable deadlines and showed that the problem of idle
energy minimisation can be solved in polynomial time when only
on–off switching is considered. Machines characterised by three
states (processing, idle, and shutdown) were studied by both
Shrouf et al. (2014) and Aghelinejad et al. (2018), who addressed
energy minimisation under variable energy prices. A common
aspect of all previously mentioned works is that the dynamics of
the machine is simplified to several constants (representing the
transition times/costs between pairs of modes) only. Contrary to
that, we show that by using a more precise model of the machine
dynamics, higher energy savings can be achieved. Our claim is sup-
ported by a case study examining a heat-intensive system employ-
ing a steel-hardening furnace.

Regarding scheduling for heat-intensive production systems
and industrial furnaces, the literature is still very sparse. Some
authors have studied re-heating furnaces (Zhang et al., 2002;
Tang et al., 2014), which are used to heat steel slabs to a specified
temperature before they enter the next production stage. Typically,
the duration which the slabs spend inside the furnace (i.e. the pro-
cessing time), and the sequence of the slabs are optimised. Haït
and Artigues (2011) studied the problem where the metal is
melted in several induction furnaces. The melting time can be
shortened by increasing the input power. In contrast, the process-
ing time, as well as the temperature, are specified in our case to
ensure the desired quality of the product. Liu et al. (2018)
addressed a glass production flow-shop problem, modelling multi-
ple stages, and optimising the makespan and total energy con-
sumption. However, only the processing and idle states were
considered to approximate the furnace dynamics in the scheduling
model.

In addition to the manufacturing processes mentioned previ-
ously, the research on power-saving states has a broad base in
the domain of embedded systems, where energy savings are cru-
cial to prolonging the battery life (Irani et al., 2003; Baptiste
et al., 2012; Gerards and Kuper, 2013). The considered devices typ-
ically have only a small number of power-saving states (Gerards
and Kuper, 2013), which are specified by the manufacturer. Some-
times authors assume only the processing state and the off-state
(Irani et al., 2003; Baptiste et al., 2012). The studied problems com-
monly lead to online scheduling algorithms because of their real-
time character or uncertainties in the arrival times of the tasks.
In contrast to embedded systems, the dynamics of machines in
production lines, e.g. for the heat-intensive systems investigated
in our case study, is typically much slower. Thus, by assuming only
on and off states for such machines, the idle periods between two
consecutive tasks would need to be very long to make the transi-
tions possible. Another difference is the possibility of solving the
production problems offline with respect to known, or a priori
approximated, parameters of the tasks and the identifiable
dynamic behaviours. However, despite all differences, some con-
cepts originating from the domain of embedded systems are gen-
eral and can still be used even for production scheduling.
Frequently, the idle energy consumption is captured by an idle
energy function, E : RP0 ! RP0, mapping the length of the idle per-
iod to energy consumption (Gerards and Kuper, 2013). Such a func-
tion E is typically assumed to be non-decreasing piecewise-linear
concave where each linear segment corresponds to a single
power-saving state. Adopting this concept, we mainly propose a
new polynomial-time scheduling algorithm, also suitable for pro-
duction line machines whose dynamics can be captured by a con-
cave idle energy function.

1.2. Contributions and outline

The main contribution of this paper is twofold. First, we propose
a new polynomial scheduling algorithm using the concept of the
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idle energy function. Second, we show that the idle energy function
can be used to better represent the dynamics of the machine com-
pared to the approaches that are just approximating it with few
states only. As the experimental results show, we can achieve
much better energy savings. Further, we list the particular contri-
butions of our article in the context of the present related works:

1. We define the problem of idle energy consumption minimisa-
tion for a single machine scheduling with release times, deadli-
nes, and the fixed order of tasks where the consumption of the
machine is defined by the idle energy function (Section 2).

2. We suggest decomposing the studied problem to (i) the deter-
mination of the idle energy function with respect to the
machine dynamics, and (ii) the optimal scheduling of tasks.

3. We show that the scheduling problem can be solved in O n3
� �

,
where n is the number of tasks, assuming that the idle energy
function is concave (Section 3). To the best of our knowledge,
the closest work that can be adapted to our problem is the algo-
rithm proposed for a fixed sequence of tasks in (Aghelinejad

et al., 2019). The complexity of their algorithm is O jHj2n
� �

,

where jHj is the length of the scheduling horizon. Since for prac-
tical applications jHj � n, our approach exhibits a better com-
plexity (Section 6.3).

4. Utilising a bilinear system approximation of furnace dynamics,
we propose an energy-optimal control law for fixed idle period
lengths and show that the idle energy function under this con-
trol law is concave (Section 4).

5. Combining the scheduling approach and the idle energy func-
tion derived for a real industrial furnace at Škoda Auto (in Sec-
tion 5), we verify the proposed approach on a set of instances
and show (in Section 6.2) that the proposed solution provides
significantly less energy consumption as compared with the
existing modelling approach based on explicit modelling of
the machine modes (Mouzon et al., 2007; Shrouf et al., 2014;
Che et al., 2017; Abikarram et al., 2019).

The rest of the article is organised as follows. Section 2 provides
the problem description and assumptions. In Section 3, the domi-
nant structures in schedules are identified, and it is shown that
the scheduling problem can be solved in polynomial time by find-
ing the shortest path in a directed acyclic energy graph. Section 4
addresses the modelling of the furnace; a bilinear model is
described, and the energy-optimal control law is derived. The case
study in Section 5 describes a real furnace used in the production;
bilinear model parameters are identified, and the idle energy func-
tion is derived. The case study is followed by Section 6, which
shows the results of the numerical scheduling experiments using
the identified model of the real furnace in contrast to the state-
of-the-art modelling techniques assuming a finite number of
machine modes. Finally, Section 7 concludes the article.
2. Problem statement

We study a scheduling problem denoted 1 j rj; d
�
j; fixed

order j RE, i.e. the minimisation of the idle energy consumption
on a single machine where the order of the tasks is fixed. Formally,
let T ¼ 1;2; . . . ;nf g denote the set of tasks sorted according to the
given order. Each task i 2 T is characterised by three integers:

release time ri 2 ZP0, deadline ~di 2 Z>0, and processing time

pi 2 Z>0, such that ri þ pi 6 ~di 8i 2 T .
A schedule is defined by vector of start times

s ¼ s1; s2; . . . ; snð Þ 2 Rn
P0. A feasible schedule is such a schedule that

satisfies the following constraints.
3

(C1) Each task i is processed within its execution time window

ri; ~di

h i
.

(C2) The processing order of the tasks is given and fixed.
(C3) At most, a single task is processed at one time.
(C4) The processing is done without preemption.

For the rest of this work, when we talk about a schedule, we
always mean a feasible schedule.

We assume that the machine is turned on (e.g. heated to the
operating temperature from off state in case of a furnace) just
before the first task is processed, and it is turned off immediately
after the last task is processed. When the machine is off, the power
consumption is zero. Costs for turning the machine on and shutting
it off are constant and cannot be optimised.

When a task is processed, the machine operates in the process-
ing state given by the respective technological process (e.g. the fur-
nace is heated to the operating temperature, which is the same for
all tasks). Therefore, energy consumption cannot be optimised in
this case, as well. However, during the idle periods, the machine
can change its state to lower the energy consumption (i.e. the tem-
perature of the furnace can be lowered to save energy). At the end
of the idle period, the machine needs to be switched back to the
processing state before the next task is processed.

The objective is to find start times s, such that the idle energy
consumption Etotal sð Þ, i.e. the total energy consumption during idle
periods, is minimised. An idle period is defined as the duration
between the completion time of a task and start time of the follow-
ing one. Since the execution order of the tasks is fixed, we can
assume that the tasks are sorted in the given order, i.e.
si þ pi 6 siþ1 8i 2 1;2; . . . ;n� 1f g. Then, the objective can be writ-
ten as

min
s

Etotal sð Þ ¼ min
s

Xn�1

i¼1

E siþ1 � si þ pið Þð Þ; ð1Þ

where E : RP0 ! RP0 represents the idle energy function, which
encodes the relationship between the idle period length and the
consumed energy (taking into account various power-savings).
The idle energy function is further discussed in Section 4.3, and a
real example for an industrial furnace is shown in Fig. 7 in Section 5.

Note that because of the fixed order, release times and deadli-
nes can be propagated. Specifically, taking tasks from left to right,
release times can be shifted such that

ri :¼ max ri�1 þ pi�1; rif g; 8i 2 2;3; . . . ;nf g; ð2Þ
and taking the tasks from right to left, deadlines can be adjusted
such that

~di :¼ min ~diþ1 � piþ1;
~di

n o
; 8i 2 n� 1;n� 2; . . . ;1f g: ð3Þ

If there exists a task such that its propagated execution window
is shorter than its processing time, then the instance does not have
a feasible solution for the given order. For the rest of this article, we
assume that release times and deadlines are propagated and a fea-
sible solution exists.

3. Scheduling algorithm and complexity analysis

In this section, we show that 1 j rj; d
�
j; fixed order j RE can be

solved in polynomial time under the assumption that the energy
function E is concave. Note that if the order was not fixed, the prob-

lem would be NP-hard because its underlying problem 1 j rj; ~dj j-
is NP-complete in a strong sense (Garey and Johnson, 1977).

A special version of the problem studied here was addressed by
Gerards and Kuper (2013), who assumed a so-called frame-based
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system, i.e. a system where ri ¼ i� 1ð Þ � T and ~di ¼ i � T for some
constant number T. In frame-based systems, execution windows
of the tasks do not overlap. Gerards and Kuper showed that idle
energy minimisation in frame-based systems can be done in poly-
nomial time, assuming that the idle energy function is concave. We

extend their result to 1 j rj; d
�
j; fixed order j RE, i.e. to systems with

arbitrary release times and deadlines, assuming that the execution
order of the tasks is fixed.

Further, we describe the structure of the energy graph, and show

that 1 j rj; d
�
j; fixed order j RE can be solved by finding the shortest

path in that graph. But first, we provide necessary definitions and
show that only schedules in a special form (so-called block-form
schedules) can be assumed for the optimisation.

3.1. Definitions

A basic structure that appears in the feasible schedules is called
a block of tasks or simply block, and is widely used; see, e.g. Baker
et al. (2009) or Baptiste et al. (2012).

Definition 1 (Block of tasks). A sequence of tasks B ¼ b1; . . . ; bmð Þ,
which are scheduled on the samemachine, is called a block of tasks
if the following properties hold:

sbi þ pbi
¼ sbiþ1

; 8i 2 1;2; . . . ;m� 1f g; ð4Þ
8i 2 T n B : si þ pi < sb1

� � _ si > sbm þ pbm

� �
: ð5Þ

Property (5) states that block B is maximal, i.e. it cannot be
extended to the left or right. Every feasible schedule is composed
of blocks of tasks, which are separated by idle intervals. Blocks
are, therefore, fundamental building elements out of which the
resulting schedule is created.

Even though all schedules are composed of blocks of tasks,
some schedules are special in a certain sense. We call them
block-form schedules.

Definition 2 (Block-form schedule). A schedule consisting of k
blocks B1;B2, . . ., Bk is in the block form if each block of tasks Bj

contains at least one task, which starts at its (propagated) release
time or ends at its (propagated) deadline; such a task is called the
support of block Bj.

Thanks to the properties of the block-form schedules, the idle
energy optimisation can be made simple, as shown in Section 3.2
and Section 3.3.

3.2. Dominance of block-form schedules

In this section, we show that block-form schedules weakly
dominate all other schedules. To prove this, we utilise the follow-
ing lemma.

Lemma 1. Given a concave idle energy function E : RP0 ! RP0, for
0 6 � 6 x 6 y it holds that

E x� �ð Þ þ E yþ �ð Þ 6 E xð Þ þ E yð Þ: ð6Þ
Proof. Property (6) is directly implied by the concavity of E, see
Gerards and Kuper (2013).

Lemma 1 implies that, in the case of having two idle periods x
and y, energy E xð Þ þ E yð Þ decreases or remains the same even if
the shorter idle period of length x is reduced on behalf of the longer
idle period of length y. Then, we have the following theorem.
4

Theorem 1. Given a concave idle energy function E, for every feasible
schedule S1 defined by start times s1, there exists a feasible schedule S2
defined by start times s2, such that S2 is in a block form and
Etotal s1ð Þ P Etotal s2ð Þ.
Proof. If S1 is already in a block form, nothing has to be done.
Otherwise, S1 consists of k blocks

B1;B2; . . . ;Bkf g ¼ Bfixed [Bfree; Bfixed \Bfree ¼ £;

where Bfixed is the set of blocks that contain at least one support,
and Bfree are the blocks without supports. The blocks in Bfixed will
not be moved, while the blocks in Bfree will be shifted to gain a sup-
port. By shift, we mean adding a non-zero constant to all start times
of the tasks in the block.

Let us assume that there is an infinitely long idle period before
the first block in S1 and after the last one. Now, every block is
separated from the other blocks by two idle periods (before and
after the block).

Let us take an arbitrary block B 2 Bfree. Since it does not contain
a support, it can be shifted. The direction of the shift can be
selected according to Lemma 1 such that the idle energy con-
sumption does not increase (i.e. shift the block such that the
shorter neighbouring idle period decreases its length). Note that
the leftmost (rightmost) block is always shifted right (left) to
prolong the time when the machine is off (idle energy consump-
tion does not increase).

After the block is shifted as much as possible, there are two
possible outcomes.

(1) Some task i 2 B reaches its release time or deadline. In this
case, block B gains a support and joins Bfixed; the cardinality
of Bfree decreases by one.
(2) Block B reaches its neighbouring block Bneigh.
In this case, block B joins its neighbouring block. If Bneigh 2 Bfixed,
then B gains a support and joins Bfixed. Otherwise,
Bfree :¼ Bfree n B;Bneigh

� �� � [ B� Bneigh
� �

, i.e. B and Bneigh are
joined (operator �). Anyway, the cardinality of Bfree decreases
by one.

If cases 1. and 2. happen at the same time, both B and Bneigh gain
a support, join Bfixed, and the cardinality of Bfree decreases by at
least one.

It can be seen that after one shift, the cardinality of Bfree

decreases, and the idle energy consumption does not increase (by
Lemma 1). By iteratively shifting the blocks without supports,
every block will eventually join Bfixed. Since there are at most n
blocks in Bfree at the beginning, and the cardinality of Bfree

decreases after each shift, Bfree will be empty after at most n
iterations. Also, there are at most n tasks in each block. Therefore,
each shift can be done in O nð Þ steps (shifting one task after
another). Hence, the transformation can be done in O n2

� �
steps.

Schedule S2 is then given by the start times of the tasks in Bfixed.

Theorem 1 shows that it is sufficient to optimise only over
schedules in the block form.

3.3. Finding an energy-optimal block-form schedule

Here we show how the schedules can be represented as paths in
an oriented directed acyclic energy graph. The graph-based
approach was originally introduced for frame-based systems by
Gerards and Kuper (2013), but since the release times and deadli-
nes in their frame-based systems do not overlap, the graph had a
very simple structure. In our case, we need to non-trivially extend
the idea, relying on Theorem 1.
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By Definition 2, each block of a block-form schedule contains at
least one support. The main idea leading to a graph-based approach
is to represent the supports of the schedule by nodes of the energy
graph. In the following, wewill show that paths in the energy graph
can be associated with the block-form schedules and that the short-
est path corresponds to the optimal block-form schedule.

Our extended version of the energy graph can be represented as
a triplet G ¼ VG; EG; cð Þ, where VG is set of its vertices, EG is set of its
oriented edges, and c : EG ! RP0 is the cost function. For each task

i 2 T , we define vertices v r
i and v ~d

i representing situations when
task i starts at its release time and ends at its deadline, respec-
tively. Let start v x

i

� �
be the actual start time of the task i repre-

sented by vertex v x
i , i.e.
start v x
i

� � ¼ ri; if x is r;

d
�
i � pi; if x is d

�
:

(
ð7Þ

Furthermore, let us define two additional dummy vertices, the
starting vertex v s and the ending vertex v e. We will define the
edges in such a way that the paths between v s and v e represent
block-form schedules. The set of edges EG consists of three types

of edges, EG ¼ E 1ð Þ
G [ E 2ð Þ

G [ E 3ð Þ
G , where
Table 1
Example task parameters.

i 1 2 3 4

ri 0 15 45 80
~di 20 40 70 100

pi 10 15 5 10
E 1ð Þ
G ¼ v s; v x

i

� � j i 2 T; x 2 r; ~d
n o

such that the partial schedule given by
n

si :¼ start v x
i

� �
; si0 :¼ si �

Xi�1

k¼i0
pk 8i0 2 1;2; . . . ; i� 1f g is feasible

)
;

ð8Þ
E 2ð Þ
G ¼ v x

i ; v e
� � j i 2 T; x 2 r; ~d

n o
such that the partial schedule given by

n

si :¼ start v x
i

� �
; si0 :¼ si þ

Xi0�1

k¼i

pk 8i0 2 iþ 1; iþ 2; . . . ;nf g is feasible

)
;

ð9Þ
E 3ð Þ
G ¼ v x

i ;v
y
i0

� �
j i 2 T; i0 2 T; i < i0; x; y 2 r; ~d

n o
and

n
9k 2 i; iþ 1; . . . ; i0 � 1

� �
such that the partial schedule given by

si :¼ start v x
i

� �
; si0 :¼ start v y

i0

� �
;

sa :¼ si þ
Xa�1

l¼i

pl 8a 2 iþ 1; iþ 2; . . . ; kf g;

sb :¼ si0 �
Xi0�1

l¼b

pl 8b 2 kþ 1; . . . ; i0 � 1
� �

is feasible

)
:

ð10Þ

In E 1ð Þ
G , edges connect the starting vertex v s and vertex

v x
i ; x 2 r; ~d

n o
; i 2 T, associated with task i. Each edge represents

the situation when task i is the support and tasks 1;2; . . . ; i� 1f g
are aligned to the right, joining the block supported by task i, see

Fig. 1(a). Similarly, edges in E 2ð Þ
G link v x

i ; x 2 r; ~d
n o

; i 2 T, with the

ending vertex v e. Each edge represents the situations when task i
is the support, and tasks iþ 1; iþ 2; . . . ;nf g are aligned to the left,

joining the block supported by i, see Fig. 1(b). Finally, set E 3ð Þ
G rep-

resents situations when there are two blocks of tasks supported by
i and i0, respectively. All the tasks iþ 1; iþ 2; . . . ; kf g are aligned to
Fig. 1. Examples of the partial schedules corresponding to the

5

the left and join the block supported by i and tasks
kþ 1; kþ 2; . . . ; i0 � 1

� �
are aligned to the right and join the block

supported by task i0, see Fig. 1(c).
Now, we define the cost function c. We set the costs of edges in

E 1ð Þ
G and E 2ð Þ

G to zero because the tasks represented by these edges

are processed without any idle periods. The costs of edges in E 3ð Þ
G

correspond to the idle energy consumption between two blocks
of tasks. Even though there might be multiple possible ways to
schedule the tasks between the two supports, the processing time
of each task is assumed to be constant and so the length of the idle
period is invariant for a fixed pair of supports. Let us denote the
length of the idle period between blocks supported by v x

i and v y
i0 ,

where i0 > i, by tf v x
i ;v

y
i0

� �
, defined by

tf v x
i ;v

y
i0

� �
¼ start v y

i0

� �
� start v x

i

� �þ pi

� �� Xi0�1

k¼iþ1

pk: ð11Þ

Now, the cost function can be defined in the following way:

c eð Þ ¼
0; if e 2 E 1ð Þ

G [ E 2ð Þ
G ;

E tf v x
i ;v

y
i0

� �� �
; if e ¼ v x

i ;v
y
i0

� �
2 E 3ð Þ

G :

8<
: ð12Þ

Example 1. To illustrate the energy graph, let us consider an
arbitrary concave idle energy function E and four tasks charac-
terised by parameters given in Table 1. The corresponding energy
graph is shown in Fig 2. Each edge e is labelled by its cost c eð Þ,
defined by (12).

Note that there is no edge between v s and v r
3 because if task 3

started at its release time, it would not be possible to execute the
previous tasks without introducing an idle period

(~d2 ¼ 40 < 45 ¼ r3). But in that case, the previous tasks would
form a different block, having its own support. Therefore, edge
v s;v r

3

� �
does not bring any additional useful information. The

situation is similar for other ‘missing’ edges.

The connection between the paths in the energy graph and
block-form schedules is explained by the following two lemmas.

Lemma 2. For every block-form schedule S, there exists a path in the
corresponding energy graph, such that length of the path equals the
idle energy consumption of schedule S.
Proof. This is assured by the structure of the energy graph. Given a
block-form schedule with blocks B1;B2; . . . ;Bk and their supports
a1; a2; . . . ; ak, the corresponding path in the energy graph is

v s;v x a1ð Þ
a1 ;v x a2ð Þ

a2 ; . . . ;v x akð Þ
ak ;v e, where
edges between (a) v s;v r
i

� �
, (b) v r

i ; v e
� �

, and (c) v ~d
i ;v r

i0

� �
.



Fig. 2. Energy graph constructed for the tasks specified by Table 1.
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x aið Þ :¼ r if ai starts at its release time;
~d if ai ends at its deadline:

(
ð13Þ

Nodes on the path correspond to the supports of the individual
blocks, and because the cost of each edge directly corresponds to
the idle energy consumption, the length of the path is the same
as the idle energy consumption of the schedule.
Lemma 3. For every path P between the start node v s and end node
v e in the energy graph, there exists a feasible block-form schedule S,
such that the idle energy consumption cost of S is the same as the
length of path P.
Proof. Again, this is trivially given by the structure of the energy
graph, where nodes represent supports of the blocks. According
to (8)-(10), an edge between two nodes representing the supports
is added only if there exists a feasible schedule of the tasks
between them.

Finally, by Lemmas 2 and 3, we see that problem

1 j rj; d
�
j; fixed order j RE can be solved by finding the shortest path

in a directed acyclic graph. The graph contains O nð Þ vertices and at
most O n2

� �
edges. Whether edge e belongs to the graph or not can

be verified according to (8)-(10) in linear time O nð Þ. Therefore, the
number of steps needed to build the graph is upper bounded by
O n3
� �

. The shortest path itself can be found in linear time with
respect to the size of the graph by the dynamic programming (Sec-
tion 24.2, Cormen et al., 2001). So the overall complexity is
bounded by O n3

� �
.

Example 1 (continued) The schedule corresponding to path

v s;v ~d
1 ;v r

3; v r
4;v e is depicted in Fig. 3. It consists of three blocks,

B1 ¼ 1;2ð Þ;B2 ¼ 3ð Þ, and B3 ¼ 4ð Þ. Supports of these blocks are
tasks 1;3 and 4, respectively. Idle energy consumption of the
schedule equals the sum of energy consumed during the first idle
period (from time 35 to time 45), plus energy consumed during
the second idle period (from time 50 to time 80).

Remark 1. Note that edges in E 3ð Þ
G might not imply one particular

schedule of the tasks between the supports. Therefore, for a given
path, there might exist multiple feasible schedules with the same
Fig. 3. Feasible schedule corresponding to path v s; v ~d
1 ;v r

3 ;v r
4 ; v e .

6

idle energy consumption. Similarly, as each block might contain
multiple supports, there might be multiple different paths corre-
sponding to one block-form schedule.
Remark 2. The graph-based approach described above can handle
arbitrary concave idle energy function, which is a common shape
of the idle energy function used in the literature (Irani et al.,
2003; Gerards and Kuper, 2013). However, it is still an open ques-
tion if the problem would be polynomial even if the idle energy
function was not concave but arbitrary.
Remark 3. The energy graph could also be used to find the sched-
ules minimising the number of idle periods longer than 0. Such an
application is useful when the stress of the machine caused by
excessive switching needs to be minimised. The problem reduces
again to the shortest path problem. The structure of the graph

remains the same, but the edges in E 3ð Þ
G should be labelled by some

positive constant, e.g. 1. Note that it is again possible to optimise
only over the block-form schedules because the shifts described
in the proof of Fig. 1 might join some blocks but never split them.
4. Electric furnaces: modelling, optimal control and energy
function

Up till now, we have discussed how to solve scheduling prob-

lem 1 j rj; d
�
j; fixed order j RE, assuming that the energy function

is given and concave. The majority of the existing papers address-
ing the idle energy optimisation assume that the dynamics of the
machine is described by a static transition graph, and its parame-
ters are given. Obtaining those parameters or the idle energy func-
tion can be simple in some cases (e.g. for some hardware
components in the embedded systems, the parameters or the idle
energy function can be extracted from the data provided by the
manufacturer), but becomes quite challenging in others. Since
the idle energy optimisation aims at a large variety of machines
ranging from processors to huge furnaces, it is not possible to pro-
vide a single approach for obtaining the parameters of the transi-
tion graph or the idle energy function. Therefore, we concentrate
on heat-intensive systems that are the most frequently addressed
in connection with the idle energy optimisation in production.

In this section, we discuss the electric furnace models and pre-
sent a bilinear modelling approach, which is shown to provide a
goodapproximationof industrial electric furnacedynamics. Further,
the open-loop control forminimumenergy consumptionduring idle
periods, concerning the studied scheduling problem, is given based
on the considered bilinear system approximation. Then, we show
that the idle energy function as an input to the scheduling problem
is concave under the proposed approximation and control, thus con-
firming the use of the above-proposed algorithm is correct.

4.1. A bilinear model approximation of furnaces

Obtaining and identifying a reasonable physical model of an
industrial furnace is usually very difficult due to unspecified char-
acteristics, imperfections or degradation of insulation materials,
and time/temperature dependency of the physical parameters.
Thus, instead of proposing a physical model and identifying its
parameters, it is usual in practice to approximate the furnace
dynamics with reasonable linear and nonlinear mathematical
models; see, e.g. Wang et al. (2002) for a linear model, Moon
et al. (2003) for a fuzzy system approximation, Wang et al.
(1998) for a direction-dependent model, and Yu (2000) and Chee
Chook and Tan (2007) for bilinear system approximations.
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Our decision to use the bilinear approximation of the furnace
dynamics is motivated by the existing literature. For example,
Derese and Nodulus (1980) have reported that the bilinear model
for heat-transfer processes is more suitable than the linear model.
Chee Chook and Tan (2007) considered the identification of a first-
order bilinear model for an electric tube furnace and showed
experimentally that the bilinear model provides the most accurate
description as compared with the linear and direction-dependent
models. Another advantage of the bilinear model is its simplicity
and well-understood behaviour in the class of nonlinear systems.
Thus, we also consider the approximation of the furnace dynamics
similarly as in Chee Chook and Tan (2007) with the bilinear model

_x tð Þ ¼ �ax tð Þ þ bu tð Þ � qx tð Þu tð Þ; x tð Þ 2 R; u tð Þ 2 0; �u½ �;
a; b; q 2 R>0 ð14Þ
where u is the applied electric power (in kilowatts), i.e. the input to
the system, and x is the deviation of the furnace temperature Tf (in
kelvins) from the constant ambient temperature
Te; x tð Þ :¼ Tf tð Þ � Te, i.e. the variable to be controlled. The model
(14) slightly differs from that in Chee Chook and Tan (2007),
because we additionally accommodate constraints on control and
system parameters regarding the reality for furnaces. First, we do
impose the upper bound �u on the admissible control power, which
is important in practice. Second, based on physical modelling con-
siderations, it is assumed in (14) that the system parameters a;b,
and q are positive constants. That is due to Chee Chook and Tan
(2007), where Section IV provides successful identification of
a; b;q, resulting as positive numbers for their furnaces operational
data. Note, that physical-principle-based modelling provided in
Chee Chook and Tan (2007) actually gives the following model

_Tf tð Þ ¼ 1
Cf

� Tf tð Þ � Te

R
þ u tð Þ � K T4

f tð Þ � T4
e

� �� 	
; ð15Þ

where Cf is the thermal capacitance, R is the thermal resistance, and
K is a constant regarding the emissivity of the furnace. Obviously,
Cf ; R; K > 0; as already noted, Te stands for the ambient tempera-
ture, which is assumed constant since its possible variations are
negligible compared to extremely high furnace temperatures. Due
to its complexity, instead of (15) Chee Chook and Tan (2007) study
simpler bilinear model (14) and provide some arguments for such a
simplification. Indeed, there is a kind of trade-off: higher-order non-
linearity of (15) is replaced by bilinear dependence in (14), so rigor-
ously (14) is not a simplification or approximation of (15). Yet, as
shown in the sequel, (14) can be handled in an easier way, and some
rigorous mathematical statements can be proved for it. Besides
easier theoretical analysis, another argument justifying replace-
ment of (15) by (14) given in Chee Chook and Tan (2007) is that
the nonlinearities that arise in heat-transfer processes may be rep-
resented by characteristics that are similar to those of a bilinear sys-
tem. In such a way, the current paper joins the existing literature
mainstream represented by Chee Chook and Tan (2007) and will
concentrate on the model (14) only. Note, that the constraints on
a; b; q will hold for the electrical vacuum furnace, which is studied
in Section 5 as a case study. As shown in Section 5.1 later on, these
parameters a; b; qcan be quite precisely identified based on the
real data, and the resulting estimates comply with the above
assumptions.

4.2. Solving the ordinary differential equation with a discontinuous
right-hand side

Before formulating the main theorem of this section analysing
the optimal control of system (14), let us briefly recall the defini-
tion of the solution of the ordinary differential equation (ODE) with
the possibly discontinuous right-hand side. This overview is
7

presented in a rather casual way; rigorous and detailed theory
can be found, e.g. in (Filippov, 1988, Chapter 1). Indeed, as it will
be seen, the optimal control is a discontinuous function in time
and thereby after substituting it into (14) one gets ODE with dis-
continuous (in time variable) right-hand side. Namely, consider
ODE

_x tð Þ ¼ f x tð Þ; tð Þ; x 2 Rn: ð16Þ
The usual definition of the solution of (16) for its continuous

right-hand side f x; tð Þ is that the solution x tð Þ is a continuously dif-
ferentiable function of time converting the above ODE into equality
valid for all times. As there are infinitely many such solutions, the
specific unique solution is determined by the so-called initial
condition

x t0ð Þ ¼ x0; x0 2 Rn; t0 2 R; ð17Þ
where t0; x0 are given initial time and initial condition, respectively.
The relations (16) and (17) are usually referred to as the initial value
problem, or Cauchy problem. When the right-hand side of (16) is dis-
continuous, the solution of (16) cannot be continuously differen-
tiable in time. When the discontinuity is with respect to time
only, the usual way to handle this situation is to define the solution
in Caratheodory sense; namely, the initial value problem (16) and
(17) is replaced by the following integral equation

x tð Þ ¼ x t0ð Þ þ
Z t

t0

f x sð Þ; sð Þds; ð18Þ

where the solution x tð Þ is required to be continuous only. Note, that
the solution of the integral Eq. (18) automatically satisfies the initial
condition (17) and, moreover, where x tð Þ is in addition continuously
differentiable, it implies the validity of (16). As already noted, Car-
atheodory approach helps to handle the discontinuity with respect
to the time variable only. The discontinuity with respect to state
variable x presents even more tough challenge and even more
abstract solution is required, namely the so-called solution in the
Fillipov’s sense.

In the subsequent analysis, all the time discontinuities will be of
the simplest kind, i.e. they will be piecewise continuous. In this
case, Caratheodory solution can also be obtained in the following
intuitively clear way. Namely, ODE is solved together with the ini-
tial condition on the largest time interval where f x; tð Þ is continu-
ous. When reaching discontinuity point tdc 2 R, the resulting
solution value x tdcð Þ is taken as the initial condition for the next
time interval where f x; tð Þ is continuous; ODE is solved again and
this procedure can be repeated.

Note that such an approach correctly represents reality. In the
case of furnace heating, it means that discontinuous jump change
of heating influences further development of the temperature,
but the temperature has to stay continuous even at the point
where heating intensity experiences jump, see Fig. 6. Obviously,
such an understanding of the solution of the ODE with time discon-
tinuity at its right-hand side is the only acceptable one from the
natural and practical point of view. Putting it in different words,
under quite mild and reasonable mathematical technical assump-
tions imposed on the right-hand side f x; tð Þ, there is a unique solu-
tion that satisfies ODE in a classical sense everywhere except some
isolated time moments, where this unique solution is at least con-
tinuous. In other words, many solutions are possible, but only one
of them is everywhere at least continuous.

In the sequel, we will use exactly the latter approach to obtain
the unique solution of the initial value problem when heating
intensity (the input) is piecewise constant. Namely, we compute
the solution to the initial value problem on time subinterval where
heating intensity is constant. Then, at the time where heating
intensity jumps to a different constant value, we use the terminal
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value of temperature on the first time subinterval as the initial
condition for the ODE solution on the next time subinterval.

4.3. Minimum-energy control and the related idle energy function

This subsection aims to study the optimal control of furnaces
during an idle period, based on the approximate bilinear model
(14).

Recall that our aim is to find an energy-efficient behaviour of
the furnace in an idle period. Thus, we look for an optimal control
law, which minimises the power consumption for any fixed idle
period length. Then, our problem for furnaces turns into finding a
control minimising the performance index

J uð Þ ¼
Z tf

0
ju tð Þjdt ð19Þ

which is called as minimum-control-effort problem (Kirk, 2004).
Obviously, tf can be considered as the idle period length, i.e.
siþ1 � si þ pið Þð Þ in (1). Then J uð Þ is the energy (in kilowatt-hours)
consumed during the corresponding idle period, i.e.
E siþ1 � si þ pið Þð Þ in (1). Note, that it is sufficient to consider an
open-loop control to heat the furnace to the (close neighbourhood
of) operating temperature at the end of the idle period (assuming
constant ambient temperature), whereas a closed-loop control is
necessary to maintain the operating temperature. Such a control
strategy is actually common in process control applications, e.g.
see Fig. 4 with the temperature data of the real industrial furnace
controlled to operate at different temperatures in our case study.
As we seek a control minimising energy consumption during the
idle periods, we give the following theorem for the open-loop opti-
mal control problem for the industrial furnaces which can be mod-
elled as the bilinear system in (14).

Theorem 2. Consider the following optimal control problem: min-
imise the performance index (19) subject to constraints

x 0ð Þ ¼ x tf
� � ¼ x0 2 R; x0 > 0; ð20Þ

where x tð Þ is the solution of the system (14) and tf > 0 is a given fixed
terminal time. Further, assume that

b� qx0ð Þ�u� ax0 > 0; ð21Þ
where �u is the upper bound on u tð Þ. Then there exists the unique opti-
mal control u� tð Þ solving the above-defined optimal control problem
and this optimal control takes the following form

u� tð Þ ¼ 0; 8t 2 0; tsw½ Þ
�u; 8t 2 tsw; tf


 �
;

(
ð22Þ

where tsw 2 0; tf
� �

is the switching time. Finally, tsw is the solution of
the following equation
Fig. 4. Relationship between the temperature and power when cooling to 600 �C
and heating back to operating temperature.

8

x0 ¼ exp �a� q�uð Þ tf � tsw
� �� �

x0 exp �atswð Þ � b�u
aþ q�u

� 	
þ b�u
aþ q�u

;

ð23Þ
this solution exists and is unique for any given tf > 0. Furthermore,
defined in such a way function tsw tf

� �
satisfies

dtsw
dtf

¼ 1� ax0
b exp atswð Þ � qx0ð Þ�u : ð24Þ
Proof. Pontryagin’s minimum principle (PMP) is used (Kirk, 2004).
To do so, realise that ju tð Þj in (19) can be replaced simply by u tð Þ
because u tð Þ > 08t in (14). Further, the appropriate Hamiltonian
function for the performance index (19) and the system (14) is
given by

H x tð Þ;u tð Þ;w tð Þð Þ ¼ u tð Þ � aw tð Þx tð Þ þ w tð Þ b� qx tð Þ½ �u tð Þ ð25Þ
where w tð Þ represents the usual adjoint variable. By PMP, the neces-
sary conditions for u� tð Þ to be an optimal control are

_x� tð Þ ¼ @H x�;u�;w�ð Þ
@w

¼ �ax� tð Þ þ bu� tð Þ � qx� tð Þu� tð Þ; ð26aÞ

_w� tð Þ ¼ � @H x�;u�;w�ð Þ
@x

¼ w� tð Þ qu� tð Þ þ að Þ; w 0ð Þ ¼ w0 2 R n 0f g; ð26bÞ

H x� tð Þ;u� tð Þ;w� tð Þð Þ ¼ min
u2 0;�u½ �

H x� tð Þ;u tð Þ;w� tð Þð Þ8t 2 0; tf

 � ) ð26cÞ

u� tð Þ þ w� tð Þ b� qx� tð Þ½ �u� tð Þ ¼ min
u2 0;�u½ �

u tð Þ þ w� tð Þ b� qx� tð Þ½ �u tð Þð Þ8t 2 0; tf

 �

:

ð26dÞ
Indeed, the boundary conditions (20) of the investigated control

problem are fixed, so that w tð Þ can be any nontrivial solution of the
adjoint Eq. (26b).

Before analysing the above necessary condition for the opti-
mality, let us give the following property useful later on. Namely,
(26a) and (26b) can be solved analytically giving that

x� tð Þ ¼ exp �at � q
Z t

0
u� gð Þdg

� 	
x0 þ b

Z t

0
exp agþ q

Z g

0
u� sð Þds

� 	
u� gð Þdg

� 	
;

ð27Þ

w� tð Þ ¼ w0 exp at þ q
Z t

0
u� gð Þdg

� 	
: ð28Þ

To analyse (26a)-(26d) subject to the control constraint
u tð Þ 2 0; �u½ �, consider the function

/ w� tð Þ; x� tð Þð Þ ¼ w� tð Þ b� qx� tð Þð Þ þ 1 ð29Þ
to investigate the minimum of the Hamiltonian with respect to u.
Further, realise that the necessary condition (26c)-(26d) implies
that u tð Þ ¼ �u if / w� tð Þ; x� tð Þð Þ < 0;u tð Þ ¼ 0 if / w� tð Þ; x� tð Þð Þ > 0;
whereas for / w� tð Þ; x� tð Þð Þ ¼ 0 it is always satisfied. As a conse-
quence, the optimal control, if it exists, satisfies

u� tð Þ
¼ �u; for / w� tð Þ; x� tð Þð Þ < 0
¼ 0; for / w� tð Þ; x� tð Þð Þ > 0
2 0; �u½ �; for / w� tð Þ; x� tð Þð Þ ¼ 0:

8><
>: ð30Þ

Furthermore, by (27) and (28) it holds that

/ tð Þ ¼ 1� w0x0qþ w0b exp at þ q
R t
0 u gð Þdg

� �
�w0bq

R t
0 exp at þ q

R g
0 u sð Þds� �

u gð Þdg;
d/ tð Þ
dt ¼ w0b aþ qu tð Þð Þ exp at þ q

R t
0 u gð Þdg

� �
�w0bqu tð Þ exp at þ q

R t
0 u gð Þdg

� �
;

ð31Þ
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which implies

d/ tð Þ
dt

¼ w0ab exp at þ q
Z t

0
u gð Þdg

� 	
: ð32Þ

Now, using (31) and (32) one concludes that

/ 0ð Þ ¼ w0 b� qx0ð Þ þ 1; ð33Þ

sign
d/
dt

� 	
¼ sign w0ð Þ; w0 – 0: ð34Þ

Note that by (34) / tð Þ is obviously a strictly monotonous func-
tion. In such a way, / tð Þ either vanishes at a single isolated point
only, or it never vanishes. As w0 – 0, only the following four
options are possible for u� tð Þto be optimal.

1. If w0 > qx0 � bð Þ�1
> 0, then / 0ð Þ > 0 and d/ tð Þ

dt > 0;8t P 0,
which means / tð Þ > 0;8t P 0. By (30), then u� tð Þ 	 0. However,
it is clear from (27) that (14) with u tð Þ 	 u� tð Þ 	 0 does not sat-
isfy (20).

2. If qx0 � bð Þ�1
> w0 > 0, then / 0ð Þ < 0 and d/ tð Þ

dt > 0;8t P 0. By
(30), then u� tð Þ ¼ �u; t < tsw and u� tð Þ ¼ 0; t > tsw. However, this
option is not possible because qx0 � bð Þ > 0 contradicts the
assumption (21) as a; �uand x0 are positive.

3. If w0 < qx0 � bð Þ�1
< 0, then / 0ð Þ < 0 and d/ tð Þ

dt < 0;8t P 0,
which means / tð Þ < 0;8t P 0. By (30), then u� tð Þ 	 �u. However,
by assumption (21) and by (27) it holds that x tf

� �
> x0. Thus,

(20) is violated.

4. If qx0 � bð Þ�1
< w0 < 0, then/ 0ð Þ > 0 and d/ tð Þ

dt < 0;8t P 0. By
(30), then
u� tð Þ ¼ 0; t < tsw; u� tð Þ ¼ �u; t > tsw;

tsw ¼ a�1 log qx0w0 � 1ð Þ= bw0ð Þð Þ: ð35Þ
Moreover, it can be seen through some straightforward analysis

that when w0 ranges through qx0 � bð Þ�1;0
� �

, the expression

qx0w0 � 1ð Þ= bw0ð Þð Þ ranges through 1;1ð Þ, i.e. w0 can always be
chosen in such a way that any tsw 2 0;1ð Þ is possible.

Summarising, the control satisfying PMP and (20) under
assumption (21) should have the form (35) for some suitable
switching time tsw. To conclude the proof, it remains to show that
there is a unique tsw 2 0; tf


 �
such that (14) with u tð Þ 	 u� tð Þ given

by (35) satisfies the boundary conditions (20). Such a property
follows straightforwardly by (27) and (21), moreover, also by (27),
the switching time tsw is the solution of

x0 ¼ exp �a� q�uð Þ tf � tsw
� �� �

exp �atswð Þx0 � b�u
aþ q�u

� 	

þ b�u
aþ q�u

: ð36Þ

Indeed, on the right-hand side of (36) there is a value of tem-
perature trajectory x tð Þ at time tf obtained by solving (14) on
subinterval 0; tsw½ Þ with initial condition x 0ð Þ ¼ x0 applying the
input (applied power) u 	 0 and then solving (14) with initial
condition x tswð Þ ¼ exp �atswð Þx0and the input u 	 �u on subinter-
val tsw; tf


 �
.

Note, that tsw solving (36) exists and is unique for any given
tf > 0. Indeed, the right-hand side of (36) is a smooth function of
tsw and it is equal to exp �atf

� �
x0 < x0 if tsw ¼ tf and to

exp �a� q�uð Þtf
� �

x0 � b�u
aþ q�u

� 	
þ b�u
aþ q�u

> x0;
9

if tsw ¼ 0. The last inequality straightforwardly holds thanks to
the assumption (21) and exp �a� q�uð Þtf

� � 2 0;1ð Þ. As a conse-
quence, there exists at least one tsw solving (36) thanks to the
well-known basic property of continuous functions. To show that
such tsw is unique, note that the right-hand side of (36) is strictly
decreasing function of tsw since its derivative with respect to tsw
is

�u � exp �a� q�uð Þ tf � tsw
� �� � � qx0 exp �atswð Þ � bð Þ;

which is negative since by the assumption (21) b > qx0and
obviously qx0 > qx0 exp �atswð Þ as a > 0; tsw P 0. In such a
way, the value tsw solving (36) exists and is unique. Finally,
to prove (24) apply the well-known formula to compute the
derivative of the implicitly defined function and perform some
straightforward, though laborious computations. The proof is
complete.
Remark 4. The assumption (21) is equivalent to
ax0= b� qx0ð Þ 2 0; �uð Þ. The value ax0= b� qx0ð Þ is the constant trim
control keeping the state x0 as the equilibrium, i.e. x tð Þ 	 x0 and
therefore the assumption (21) should be valid in any reasonable
practical setting. Indeed, if the assumption (21) is to be replaced
by b� qx0ð Þ�u� ax0 ¼ 0, then the optimal control is
u� tð Þ ¼ �u; 8t 2 0; tf


 �
, i.e. as if tsw ¼ 0 in (35). As such,

�u ¼ ax0= b� qx0ð Þ is the trim control value that ensures x tð Þ 	 x0;
practically, such a situation is not acceptable because any small
perturbation pushing the state to a value slightly lower than x0
cannot be compensated for.
Remark 5. We consider the optimal control law with the state
constraint (20) because a single operating temperature x0 for
the scheduling problem is considered. Definitely, the furnace
temperature is x0 at the beginning of each idle period and
should also be x0 at the end of the idle period to execute the
consecutive task. In fact, Theorem 2 can be easily extended to
a more general case with boundary conditions of the form
x 0ð Þ ¼ x0; x tf

� � ¼ xf ; x0 > 0; xf > 0 and, possibly, x0 – xf .

Let us finally show that the energy function of the idle period
length, for a furnace described by the bilinear model (14) and opti-
mally controlled as proposed in Theorem 2, is concave.

Theorem 3. The idle energy function E : RP0 ! RP0 of system (14)
under control (22) assuming (21) is described by equation
E tf
� � ¼ �u � tf � tsw tf

� �� �
for any tf 2 RP0, where tsw tf

� �
is the func-

tion existing by (23). Moreover, E tf
� �

is concave.
Proof. Recall that �u is constant maximal value of the applied elec-
tric power in (14). Also recall from the proof of Theorem 2 that tsw
in control (22) applied to system (14) is uniquely determined with
the implicit solution of (23) for given tf and fixed parameters
a; b;q; x0, and �u. Thus, the energy consumption during an idle per-
iod, i.e. idle energy function, can be described as

E tf
� � ¼ �u � tf � tsw tf

� �� �
: ð37Þ

Then, for concavity of E tf
� �

, it remains to show that

@2E tf
� �

@t2f
¼ ��u

d2tsw
dt2f

ð38Þ

is negative 8tsw. Substituting further differentiation of (24) to (38)
gives
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@2E tf
� �

@t2f
¼ � a2bx0 exp atswð Þ

qx0 � b exp atswð Þð Þ2
dtsw
dtf

: ð39Þ

To prove (39), first note that by assumption (21), it holds b > qx0
and therefore, the denominator of the fraction in (39) is positive.
The numerator a2bx0 exp atswð Þ is positive as well, since b > 0 by
definition (14) and x0 > 0 by (20). Therefore, to prove that (39) is
negative, it remains to show that dtswð Þ= dtf

� �
> 08tsw. By (21) we

have ax0 < b� qx0ð Þ�u, which also implies
ax0 < b exp atswð Þ � qx0ð Þ�u since a > 0 by definition (14) and
tsw P 0. It follows that ax0

b exp atswð Þ�qx0ð Þ�u < 1, which in turn proves that

dtswð Þ= dtf
� �

> 0. As a consequence, E tf
� �

is concave, and the proof is
complete.

By Theorem 3, we conclude that problem

1 j rj; d
�
j; fixed order j RE can be solved in polynomial time for fur-

naces that can be modelled as (14), and controlled by (22). In the
following section, the proposed approach is shown on a real indus-
trial electric furnace from Škoda Auto.

5. Case study: an industrial electric furnace

Škoda Auto has a production line employing a ModulTherm�

system by ALD, containing electric vacuum furnaces used for the
steel hardening. The outer steel shells of the furnaces are cooled
by a central cooling system of circulating water at �35 �C to avoid
overheating of the system. Thus, we can assume that the ambient
temperature (Te) is constant. The operating temperature of the fur-
naces is set to 960 �C for the hardening process, which takes about
2:5 h on average.

The heating of the furnaces has a substantial energy demand
across the whole production line. In a normal regime, all furnaces
are turned on and heated to the operating temperature. The oper-
ating temperature is preserved even if nothing is being processed.
To investigate the potential for energy savings, an experiment has
been performed, during which the furnace was cooled to 600 �C,
and its steady-state power consumption was measured. After-
wards, the furnace was heated back to the operating temperature
again. Measured data are shown in Fig. 4 (Dušek, 2016). It can be
seen that the steady-state power consumption for 600 �C and
960 �C is about 18 kW and 40 kW, respectively.

Clearly, if the idle period is long enough, significant energy sav-
ings can be achieved by lowering the temperature of the furnace,
i.e. turning off the furnace for a longer time and then reheating it
back at the right time. This can be achieved by the optimal control
law described in the previous section. The rest of the section doc-
uments the identification of the furnace in Škoda Auto and shows
the resulting idle energy function.

5.1. Identification of the furnace model

We employ the bilinear model given by (14) to the furnace
mentioned above and estimate the parameters a; b; q in the model.
For this purpose, we use the temperature data collected by Dušek
(2016) shown by dashed lines in Fig. 5, with a sampling time of
30s. The system parameters are estimated as

a ¼ 0:003821964; b ¼ 0:175187494; q ¼ 0:000094367 ð40Þ
by the least-squares method using the measured temperature sam-
ples and their derivatives obtained via a polynomial regression. The
simulated response of the system (14) with (40) is illustrated by red
lines in Fig. 5, when the experimental input power is applied. It is
seen that the utilised bilinear model provides a reasonable fit to
the measured temperature values of the furnace. Note, that all the
measurements were carried out during production and it was not
10
possible to test arbitrary input signals (i.e. power). Nevertheless,
the mean absolute percentage error over all experiments for the
identified model is found as 4.49%, which is sufficiently accurate
for the system identification.

5.2. Idle energy function of the furnace

To reveal the idle energy function of the furnace, let us first
demonstrate the furnace temperature response under the pro-
posed energy-optimal control law given by Theorem 2. In Fig. 6,
the time response of the furnace model (14) with the parameters
(40) is illustrated via simulations for two different terminal times

(t 1ð Þ
f and t 2ð Þ

f ), i.e. idle periods, when the optimal control (22) is
applied. Indeed, the applied input power is switched from zero to
the maximum applicable power �u (160 kW) at the appropriate

switching times tsw t 1ð Þ
f

� �
and tsw t 2ð Þ

f

� �
calculated by (23), to ensure

reaching the operating temperature (960 �C) at the end of each idle

period. The corresponding minimal energy consumptions E t 1ð Þ
f

� �
and E t 2ð Þ

f

� �
(calculated by (37)) are also illustrated in the lower part

of Fig. 6.
Performing the above explained calculations for an appropriate

sampling of the idle period length tf , one can obtain the idle energy
function E, as shown in Fig. 7. Function E is bounded by a constant
shown by the dashed line, which is the energy for heating the
machine from the ambient temperature (35 �C) to the operating
temperature. Clearly, it is seen that E is concave, as declared by
Theorem 3.

Remark 6. Note that for the real furnace application the proposed
control may not be precisely optimal, and the operating temper-
ature may not be reached exactly at t ¼ tf , inherently due to the
uncertain dynamics and the approximate modelling. Nevertheless,
the proposed approximation is acceptable for achieving almost
optimal control in practice. The reach of the operating temperature
can be guaranteed with a simple if case control as is actually done
in switching to feedback control around the operating point in
practical process control approaches.
6. Comparison to the state-of-the-art approaches

As it was explained in the introduction, conventional schedul-
ing approaches to idle energy optimisation assume only a small
number of machine modes to approximate the dynamics of the
machine (Mouzon et al., 2007; Shrouf et al., 2014; Che et al.,
2017; Abikarram et al., 2019). To represent the machine modes,
the authors typically use the static transition graph, where the ver-
tices represent the modes, and the edges represent the available
transitions between them. The edges are labelled by the time,
which is needed for the transition, and the power, which is con-
sumed during the transition. Examples of the transition graphs
for the furnace model (14) with parameters (40) are shown in
Fig. 8. These graphs represent simple scenarios, with a single pro-
cessing mode (960 �C) and one (G600;G700), or two (G600;700),
standbymodes. The standby modes correspond to allowed temper-
atures, to which the furnace can be cooled during the idle periods
(here 600 �C, and 700 �C).

The primal aim of this section is to show, why representation
via an idle energy function is better than a transition graph. This
is illustrated by an experiment described in Section 6.2. Secondly,
we compare complexity of the algorithm for problem

1 j rj; d
�
j; fixed order j RE described in Section 3 with the state-of-

the-art approaches. This analysis is described in Section 6.3.



Fig. 5. Comparison of the measured data and simulation using a bilinear model.

Fig. 6. Examples of the optimal control for two different terminal times t 1ð Þ
f and t 2ð Þ

f .
Fig. 7. Idle energy function E and two different idle period lengths t 1ð Þ

f and t 2ð Þ
f with

the corresponding idle energy consumption E t 1ð Þ
f

� �
and E t 2ð Þ

f

� �
.
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6.1. Benchmark instances

Considering the behaviour of the machine, we use the idle
energy function E depicted in Fig. 7 for the minimisation of the
objective (1). Our approach is compared to the dynamic program-
ming adopted from Aghelinejad et al. (1001), which represents the
behaviour of the machine by a finite transition graph. For the com-
parison, we use the transition graphs G600;G700, and G600;700

depicted in Fig. 8.
Now we describe, how we generate the tasks parameters for the

benchmarks instances. A set of 6750 instances was generated using
Algorithm 1. Specifically, 10 instances were generated for each
combination of n 2 30;40;50f g; c 2 0:2;0:4; . . . ;3:0f g, and
d 2 0:2;0:4; . . . ;3:0f g. A wide range of parameters c and dwas used
to generate data of different characteristics. Constants pmin and
pmax, denoting the minimal and the maximal processing time, were
set to 1 and 300, respectively. Note that Algorithm 1 is designed
such that only feasible instances are generated. By U a; bf g, we
denote integer uniform distribution on set a; aþ 1; . . . ; bf g; here
Exp xð Þ denotes exponential distribution with scale parameter x.
Algorithm1: Generation of task parameters
One of the factors influencing the final energy savings is the
utilisation of the machine, which is calculated as the ratio between
the sum of processing times and length of the scheduling horizon,

i.e.
Pn

i¼1pi =
~dn � r1

� �
. Based on the machine utilisation, the gener-

ated instances were divided, as indicated by Table 2.

6.2. Transition graphs vs. idle energy function

For the experiment, we optimised all generated instances with
respect to the idle energy function E (our approach), and transition
graphs G600;G700, and G600;700 (representing the state-of-the-art
approaches assuming only a small number of modes). The
instances with transition graphs G600;G700, and G600;700 were opti-
mised using the dynamic programming adopted from
Aghelinejad et al. (1001).

To compare the results, we define the average power per idle
time P as
12
P ¼ EI
total

~dn � r1
� �

�
Xn
i¼1

pi

; ð41Þ

where EI
total is the optimal total idle energy consumption (with

respect to given idle energy function or transition graph). It is
assumed that the machine is underutilised, i.e.
~dn � r1

� �
�Pn

i¼1pi > 0. For the considered models, it holds that

0 6 P 6 Pmax, where Pmax is the theoretical worst case, representing
the situation when the furnace is heated to the operating tempera-
ture all the time.

Results for different utilisations of the machines are shown in
the form of boxplots in Fig. 9. Clearly, our approach using E domi-
nates all the transition graphs, as the power saving modes mod-
elled by G600;G700, and G600;700 are only a subset of all possible
modes implicitly encoded in E. The difference increases when util-
isation is lowered as the idle periods become longer. For example,
the average P for E is less than half compared to G600;700 for utilisa-
tion 0:1;0:2ð �.
It can be seen that P optimised with respect to G600 nearly con-
verges to steady-state power compensating for the energy loss at
600 �C, which is approximately 18kW. Similar observation also
holds for G700, and G600;700. Using G700 is slightly better than G600

only when the utilisation is high because shorter idle periods do
not allow the standby mode corresponding to 600 �C to be reached.
6.3. Time complexity comparison

The authors of conventional scheduling approaches to idle
energy optimisation use the ILP formalism for the modelling
(Mouzon et al., 2007; Shrouf et al., 2014; Che et al., 2017;
Abikarram et al., 2019). The scheduling horizon is discretised into
a set of intervals H (e.g. one minute long), and for each interval
k 2 H and each possible mode of the machine m, binary variables
encode whether the machine operates in mode m during interval
k or not (Abikarram et al., 2019; Shrouf et al., 2014; Aghelinejad



Fig. 8. Examples of the transition graphs for the furnace model (14) with parameters (40).

Table 2
Number of generated instances with respect to utilisation (columns) and number of tasks (rows).

Utilisation

(0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9]

30 12 532 621 391 286 193 125 90
n 40 2 508 672 383 273 191 113 108

50 5 520 672 376 252 195 121 109

Total 19 1560 1965 1150 811 579 359 307

Fig. 9. Average power per idle time P depending on the modelling of the machine dynamics and utilisation of the machine.
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et al., 2018). The main weakness in these approaches is that the
size of the model depends on the number of intervals in H as well
as on the number of machine states. Therefore, the model can be
used successfully only for small instances of the problem. When
long scheduling horizon is considered (e.g. 7200 min in a work-
week), building and optimisation of such model become
intractable.

To the best of our knowledge, the nearest polynomial-time
approach that can be adopted to solve the problem addressed in
this paper is described in Aghelinejad et al. (1001). Assuming that
the scheduling horizon is discretised and the order of the tasks if
fixed, the problem can be transformed to the shortest path prob-
lem. Aghelinejad et al. construct graph G having jHj layers, each
of which is containing about

P
i2Tpi nodes. Node n i; kð Þ in layer k

encodes that i intervals were spent for the processing from the
beginning till time k. The graph contains O jHjPi2Tpi

� �
nodes, and

O jHj2Pi2Tpi

� �
edges. The shortest path representing the schedule
13
with lowest energy consumption can be found by dynamic pro-

gramming in O jHj2Pi2Tpi

� �
. In the original paper (Aghelinejad

et al., 1001), the authors did not assume release times and dead-
lines. However, their approach can be easily extended by removing
the edges, which would cause the processing of the task i outside of

its execution window defined by ri; ~di

h i
. Further, in the case of the

problem studied in this paper, it is not necessary to model every
unit of tasks’ processing times. Thus, term

P
i2Tpi can be substi-

tuted by n (processing units corresponding to a single job can be
joined together). Therefore, the complexity of solving our problem

by the approach described in Aghelinejad et al. (1001) is O jHj2n
� �

assuming that the scheduling horizon is discretised into jHj
intervals.

In comparison, the energy graph proposed in this paper con-
tains O nð Þ nodes and O n2

� �
edges and can be constructed in

O n3
� �

steps. The overall complexity of our approach is therefore
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O n3
� �

. Taking into account that for a real production jHj is typically
larger than n, the complexity of our approach is significantly better.

Summarising, we believe that there are two main drawbacks in
the adaptation of the state-of-the-art approaches (including both
the ILP models as well as the graph proposed in Aghelinejad
et al. (1001)). First, the complexity of the state-of-the-art
approaches sharply grows with the length of the scheduling hori-
zon H, while our approach is independent on it. Second, a finite
number of machine modes cannot fully describe the behaviour of
more complex systems. For example, see function E in Fig. 7 repre-
senting the energy consumption w.r.t. the length of the idle period
for our case study. The shape of this function cannot be reasonably
approximated by a simple transition graph with several modes
only.

7. Conclusions

This paper has two aims. The first one is to show that for some
machines, e.g. furnaces and other heat-intensive systems, when
approximating their dynamics by a simple transition graph, the
scheduling algorithm cannot achieve the maximum energy sav-
ings. For such systems, we propose a different concept incorporat-
ing the complete dynamics and the optimal control of the machine
into the idle energy function, which represents the energy con-
sumption of the machine much better. The analysis in Section 6.2
on an electric furnace from Škoda Auto company shows the signif-
icant difference between these two concepts. Second, we show that

problem 1 j rj; d
�
j; fixed order j RE can be solved in polynomial

time, assuming that the idle energy function is concave. The time
complexity of our algorithm is better than the complexity of
related state-of-the-art algorithms, as it is explained in Section 6.3.

Our analysis is focused on heat-intensive processes, as the most
typical applications in the domain of idle energy optimisation and
scheduling. Indeed, our analysis cannot be applied to an arbitrary
machine, and we cannot analyse every possible one. Nevertheless,
many energy demanding systems have very similar properties,
often resulting in a concave idle energy function. Moreover, the
concept of energy function allows integrating the system dynamics
and its energy-optimal control, studied in the control engineering
domain, into the scheduling domain. As we believe, this synergy
is essential for achieving maximal energetic efficiency. A related
example can be found in papers Bukata et al. (2018, 2019) studying
energy optimisation of robotic cells, where very complex dynamics
of a robotic manipulator is also encoded into an energy function.
Those papers do not study idle energy consumption but address
the relation between the speed limit of a robot movement and
its energy consumption. Unlike the case with the furnaces, this
function is convex; nevertheless, the idea of the decomposition is
the same. Therefore, as we believe, there are other applications
where the complex dynamics of a machine can be expressed using
a nonlinear function and exploited in a scheduling algorithm to
achieve the best savings. Therefore, finding other scenarios where
an energy function can be used is the real challenge for future
research.
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Ondřej Benedikt, B. Alikoç, Přemysl Šůcha et al. Computers and Operations Research 128 (2021) 105167
Liu, M., Yang, X., Chu, F., Zhang, J., Chu, C., 2018. Energy-oriented bi-objective
optimization for the tempered glass scheduling. Omega (United Kingdom), p.
101995..

Moon, U.-C., Lee, K.Y., 2003. Hybrid algorithm with fuzzy system and conventional
pi control for the temperature control of tv glass furnace. IEEE Trans. Control
Syst. Technol. 11 (4), 548–554.

Mouzon, G., Yildirim, M., Twomey, J., 2007. Operational methods for minimization
of energy consumption of manufacturing equipment. Int. J. Prod. Res. 45, 4247–
4271.

Shrouf, F., Ordieres, J., García-Sánchez, Á., Ortega-Mier, M., 2014. Optimizing the
production scheduling of a single machine to minimize total energy
consumption costs. J. Cleaner Prod. 67, 197–207.

Tang, L., Ren, H., Yang, Y., 2014. Reheat furnace scheduling with energy
consideration. Int. J. Prod. Res. 53, 1–19.
15
Wang, J., Spanos, C.J., 2002. Real-time furnace modeling and diagnostics. IEEE Trans.
Semiconductor Manuf. 15 (4), 393–403. ISSN 08946507.

Wang, Q.-G., Hang, C.-C., Zou, W., 1998. Automatic tuning of nonlinear PID
controllers for unsymmetrical processes. Comput. Chem. Eng. 22 (4–5), 687–
694. ISSN 00981354.

Yu,D.-L., 2000. Diagnosing simulated faults for an industrial furnace based onbilinear
model. IEEE Trans. Control Syst. Technol. 8 (3), 435–442. ISSN 1063-6536.

Zhang, B., Chen, Z., Xu, L., Wang, J., Zhang, J., Shao, H., 2002. The modeling and
control of a reheating furnace. In: Proceedings of the 2002 American Control
Conference, vol. 5, pp. 3823–3828..

Zhou, S., Li, X., Du, N., Pang, Y., Chen, H., 2018. A multi-objective differential
evolution algorithm for parallel batch processing machine scheduling
considering electricity consumption cost. Comput. Oper. Res. 96, 55–68. ISSN
0305-0548.

http://refhub.elsevier.com/S0305-0548(20)30284-7/h0120
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0120
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0120
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0125
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0125
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0125
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0130
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0130
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0130
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0135
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0135
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0140
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0140
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0145
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0145
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0145
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0150
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0150
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0160
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0160
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0160
http://refhub.elsevier.com/S0305-0548(20)30284-7/h0160

	A polynomial-time scheduling approach to minimise idle energy consumption: An application to an industrial furnace
	1 Introduction
	1.1 Related work
	1.2 Contributions and outline

	2 Problem statement
	3 Scheduling algorithm and complexity analysis
	3.1 Definitions
	3.2 Dominance of block-form schedules
	3.3 Finding an energy-optimal block-form schedule

	4 Electric furnaces: modelling, optimal control and energy function
	4.1 A bilinear model approximation of furnaces
	4.2 Solving the ordinary differential equation with a discontinuous right-hand side
	4.3 Minimum-energy control and the related idle energy function

	5 Case study: an industrial electric furnace
	5.1 Identification of the furnace model
	5.2 Idle energy function of the furnace

	6 Comparison to the state-of-the-art approaches
	6.1 Benchmark instances
	6.2 Transition graphs vs. idle energy function
	6.3 Time complexity comparison

	7 Conclusions
	CRediT authorship contribution statement
	Acknowledgement
	References


