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Abstract
This paper gives new contributions to the development of iterative learning control for
distributed parameter systems, based on using finite difference schemes to construct a finite-
dimensional approximate model of the dynamics for control law design. To form a basis for
the new results, systems whose dynamics are described by a fourth-order partial differential
equation are considered together with the associated accuracy and numerical stability checks.
Some previous control law designs use only a spatial variable as the control input, which can
be a serious obstacle to practical implementation since many actuators and sensors must be
deployed. This paper’s new design is based on spatially homogeneous sensing and excitation
over a selected sub-area of the domain considered. Supporting numerical case studies are
given to support the analysis.
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1 Introduction

Iterative Learning Control (ILC) is a well-established area for systems that repeat the same
finite duration task repeatedly. Each execution is known as a pass (or trial or iteration) in the
literature, and the associated duration is termed the pass (or trial or iteration) length. Suppose,
therefore, that a pass has been completed. Then all information generated over the complete
pass length is available for use in updating the control input to the next pass. Hence ILC aims
to improve performance from pass-to-pass, but it is also necessary to regulate the dynamics
produced along the passes (if required).

The origins of ILC lie in robotics (Arimoto et al. 1984;Bristow et al. 2006;Ahn et al. 2007),
but since this first work,many other application areas have arisen.Moreover, there is available
a wide range of design methods for linear and (more recently) nonlinear dynamics. Recent
application areas in engineering include various forms of additive manufacturing processes,
e.g., Rafajlowicz et al. (2019), Lim et al. (2017)), nanopositioning, e.g., de Rozario et al.
(2019), path following for center-articulated industrial vehicles (Dekker et al. 2019) and
within healthcare, robotic-assisted upper limb stroke rehabilitation with clinical trials, e.g.
Freeman et al. (2012) and ventricular assist devices, e.g., Ketelhut et al. (2019).

A substantial percentage of the available ILC literature is on the case when the dynamics
of the application area can be modeled as a finite-dimensional system. There has also been
some work on ILC design for distributed parameter systems, where two basic approaches
are possible. The first of these is to use a semi-group or related setting, see, e.g., Huang
et al. (2014). An alternative is to approximate the distributed parameter dynamics by a finite-
dimensional model, which is the starting point for this paper.

Discretization of partial differential equations (PDE) describing systems with spatial and
temporal dynamics is required to obtain discrete models that can form a basis for the design
and digital implementation of control laws. A critical factor in this general approach is
numerical stability, i.e., the discrete approximation must produce trajectories close to those
produced by the PDE with identical stability properties. One group of methods which can
be applied to the discretization of PDEs are based on a finite difference approximation, see,
e.g. Strikwerda (1989).

Commonly used explicit discretization methods are conditionally numerically stable, i.e.,
the time discretization period is related to its spatial counterpart. This feature requires the use
of dense time and spatial discretization grids. One way of avoiding the difficulties in analysis
and design that would arise is to use the so-called singular methods, see Rabenstein and
Steffen (2011), Rabenstein and Steffen (2009) and, in particular, the Crank Nicolson method
(Crank and Nicolson 1947), which frequently produces an unconditionally stable discrete
approximation to the dynamics of the original PDE. Discretization of PDEs describing sys-
tems or processes with one temporal and one spatial variable, such as the one- dimensional
heat transfer equation results in models that are very similar to repetitive processes (Rogers
et al. 2007), a distinct class of 2D systems.

Previous research on using the repetitive process setting to the control design for spatially
distributed systems, described by PDEs, includes the results given in Cichy et al. (2008).
As a particular example, a thin, flexible membrane is considered as model for vibrations
resulting from a transverse external force’s application. This paper builds on the preliminary
results for dynamics modeling in Augusta et al. (2015). For this case, an ILC scheme, which
is an essential novelty compared to previous research, is developed, analyzed, and supported
by numerical examples. Also, the numerical analysis of the considered case is significantly
extended.
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Fig. 1 A schematic of the form of actuation and sensing considered

2 Construction of the finite-dimensional approximatemodel

As a basis for the results in this paper, the following Lagrangian PDE is considered, where
this model is standard in the study and application of membranes (or plates) and shells in
mechanics and in this setting has the form, see, e.g. Timoshenko and Woinowski-Krieger
(1959)

∂4 w(t, x, y)

∂ x4
+ 2

∂4 w(t, x, y)

∂ x2 ∂ y2
+ ∂4 w(t, x, y)

∂ y4

+ ρ

D

∂2 w(t, x, y)

∂ t2
= f (t, x, y)

D
,

(1)

where

x , y are spatial variables [m],
t is time [s],

w is the lateral deflection in the z direction [m] perpendicular to x , and y,
ρ is the mass per unit area [kgm−2],
f is the transverse external force, with dimension of force per unit area [Nm−2],

∂2 w

∂ t2
is the acceleration in the z direction [ms−2],

D = E h3/(12 (1 − ν2)),
ν is Poisson ratio,
h is the thickness of the membrane [m],
E is Young modulus [Nm−2].

This PDE has two spatial indeterminates and one that is temporal. In this paper, both spatial
indeterminates are finite. The analysis that follows applies to all linear systemswith dynamics
described by this form of PDE.

This paper considers the practically relevant case where the control action is discrete and
based on an array of actuators and sensors. A schematic illustration of this form of sensing
and actuating is given in Fig. 1. The particular case considered is where the actuators and
sensors used are distributed over a circle of diameter a, but the actuators are only used in
an area of diameter d < a. Hence the forcing function f can be modeled using a Heaviside
function H as

f (t, x, y) = (
1 − H(x2 + y2 − d2)

)
q(t, x, y).

Since the function 1− H(x2 + y2 − d2) = 1 within the region where the load is applied, the
distributed system input is set to f (t, x, y) = q(t, x, y) in the area of the membrane defined
by the diameter d and to f (t, x, y) = 0 outside this area.
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(a) (b)

Fig. 2 An example of explicit and implicit difference schemes showing the points needed for computation.
The input mask is marked in red and output values currently being computed are marked in white

The discretization of (1) is based on finite difference methods, where, in general terms,
the following steps must be implemented:

1. cover the region where a regular grid seeks a solution,
2. replace the derivative terms in the PDE by differences using only values at nodal points,

i.e., approximate the derivatives.

These steps result in either an explicit or an implicit scheme. In general terms, an explicit
difference scheme enables each value of the solution at sample time tp+1 to be independently
calculated from the values known at time tp , see Fig. 2a. However, such approximation’s
numerical stability critically depends on the quotient of the sampling period, δt secs, and
the distance between nodes δx and δy . Conversely, discretization using an implicit differ-
ence scheme often results in an unconditionally numerically stable approximation of system
dynamics. Still, more than one value of the solution has to be computed at the new time
tp , see Fig. 2b. Moreover, all values at tp must be obtained simultaneously, which, in turn,
requires the solution of a system of equations at each time step. In this paper, a difference
scheme of this type is used and for a detailed treatment of these schemes and the differences
between them, see, e.g., Smith (1985) In the spatial variables, we use the grid of Figs. 3, 4.

Derivatives arising in (1) are replaced by differences, and using the notation specified, this
step results in

∂4w

∂x4
≈ 1

4δ4x

(
wp+2,l+2,m − 2wp+2,l+1,m+1

− 2wp+2,l+1,m−1 + 6wp+2,l,m − 2wp+2,l−1,m+1

− 2wp+2,l−1,m+1 + wp+2,l−2,m + 2wp+1,l+2,m

− 4wp+1,l+1,m+1 − 4wp+1,l+1,m−1 + 12wp+1,l,m

− 4wp+1,l−1,m+1 − 4wp+1,l−1,m+1 + 2wp+1,l−2,m

+ wp,l+2,m − 2wp,l+1,m+1 − 2wp,l+1,m−1 + 6wp,l,m

− 2wp,l−1,m+1 − 2wp,l−1,m+1 + wp,l−2,m
)
, (2)

∂4w

∂ y4
≈ 1

4δ4y

(
wp+2,l,m+2 − 2wp+2,l+1,m+1

− 2wp+2,l−1,m+1 + 6wp+2,l,m − 2wp+2,l+1,m−1

− 2wp+2,l+1,m−1 + wp+2,l,m−2 + 2wp+1,l,m+2
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Fig. 3 An example of the triangular grid for n = 7, the number of nodal points in each row is written on the
right-hand side

Fig. 4 A more detailed view of
the triangular grid for n = 7

− 4wp+1,l+1,m+1 − 4wp+1,l−1,m+1 + 12wp+1,l,m

− 4wp+1,l+1,m−1 − 4wp+1,l+1,m−1 + 2wp+1,l,m−2

+ wp,l,m+2 − 2wp,l+1,m+1 − 2wp,l−1,m+1 + 6wp,l,m

− 2wp,l+1,m−1 − 2wp,l+1,m−1 + wp,l,m−2
)
, (3)

∂4w

∂x2∂ y2
≈ 1

4δ2xδ
2
y

( − wp+2,l+1,m+1 − wp+2,l+1,m−1

+ 4wp+2,l,m − wp+2,l−1,m+1 − wp+2,l−1,m−1

− 2wp+1,l+1,m+1 − 2wp+1,l+1,m−1 + 8wp+2,l,m

− 2wp+2,l−1,m+1 − 2wp+2,l−1,m−1 − wp,l+1,m+1

− wp,l+1,m−1 + 4wp,l,m − wp,l−1,m+1 − wp,l−1,m−1
)
, (4)
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∂2w

∂t2
≈ 1

δ2t

(
wp+2,l,m − 2wp+1,l,m + wp,l,m

)
. (5)

Substituting (2)–(5) into (1) followed by routine manipulations gives the following partial
recurrence equation as a discrete approximate model of the original PDE dynamics described
by (1)

(
1

4δ4x

) (
wp+2,l+2,m + wp+2,l−2,m

)

+
(

− 1

2δ4x
− 1

2δ4y
− 1

2δ2xδ
2
y

)
(
wp+2,l+1,m+1

+wp+2,l+1,m−1 + wp+2,l−1,m+1 + wp+2,l−1,m−1
)

+
(

1

4δ4y

)
(
wp+2,l,m+2 + wp+2,l,m−2

)

+
(

3

2δ4x
+ 3

2δ4y
+ 2

δ2xδ
2
y

+ ρ

Dδ2t

)
wp+2,l,m

+
(

1

2δ4x

) (
wp+1,l+2,m + wp+1,l−2,m

)

+
(

− 1

δ4x
− 1

δ4y
− 1

δ2xδ
2
y

)(
wp+1,l+1,m+1

+wp+1,l+1,m−1 + wp+1,l−1,m+1 + wp+1,l−1,m−1
)

+
(

1

2δ4y

)
(
wp+1,l,m+2 + wp+1,l,m−2

)

+
(

3

δ4x
+ 3

δ4y
+ 4

δ2xδ
2
y

− 2ρ

Dδ2t

)
wp+1,l,m

+
(

1

4δ4x

) (
wp,l+2,m + wp,l−2,m

)

+
(

− 1

2δ4x
− 1

2δ4y
− 1

2δ2xδ
2
y

)(
wp,l+1,m+1

+wp,l+1,m−1 + wp,l−1,m+1 + wp,l−1,m−1
)

+
(

1

4δ4y

)
(
wp,l,m+2 + wp,l,m−2

)

+
(

3

2δ4x
+ 3

2δ4y
+ 2

δ2xδ
2
y

+ ρ

Dδ2t

)
wp,l,m = 1

D
qp,l,m . (6)

The next stage is to investigate this approximation’s numerical stability properties, for
which von Neumann stability analysis is used. Von Neumann analysis is a standard math-
ematical method for checking the stability of finite difference scheme approximations to a
PDE, see, e.g., Strikwerda (1989). This analysis gives a relation between the sampling period
δt and the distance between nodal points δx , δy , respectively, required for stability. Since an
implicit difference scheme is used, i.e., a particular case of unconditionally stable schemes,
von Neumann analysis should result in always satisfied conditions.
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Consider (6) with a zero right-hand side and substitute gpe jlθ1e jmθ2 for wp,l,m , where g
is termed the amplification factor and θ1 and θ2 denote the spatial frequencies. Then by von
Neumann analysis, (6) is stable if and only if |g| ≤ 1 for all values of θ1 and θ2. Also these
substitutions result in a polynomial in g of the form

A2g
2 + A1g + A0, (7)

with non-constant, uniquely defined coefficients A0(θ1, θ2), A1(θ1, θ2), A2(θ1, θ2) that fol-
low immediately from (6), see Rabenstein and Steffen (2011) for details. Moreover, it follows
from algebraic manipulations, see also Rabenstein and Steffen (2011), that |g| ≤ 1 if and
only if

A2 + A1 + A0 ≥ 0, (8)

A2 − A1 + A0 ≥ 0, (9)

A2 − A0 ≥ 0, (10)

for all values of θ1 and θ2, where, for the case considered, (8) can be expressed as

A2 + A1 + A0 = 8

δ2xδ
2
y
[1 − cos θ1 cos θ2]

+ 1

δ4x

[
6 + 2 cos(θ1)

2 − 2 sin(θ1)
2 − 8 cos θ1 cos θ2

]

+ 1

δ4y

[
6 + 2 cos(θ2)

2 − 2 sin(θ2)
2 − 8 cos θ1 cos θ2

] ≥ 0.

Using Euler’s formula and routine manipulations gives

8

δ2xδ
2
y
[1 − cos θ1 cos θ2] + 4

δ4x

[
(cos θ1 − cos θ2)

2 + sin(θ2)
2]

+ 4

δ4y

[
(cos θ1 − cos θ2)

2 + sin(θ1)
2] ≥ 0, (11)

which is always satisfied and hence (8) is also always satisfied. Inequalities (9) and (10) now
take the form

A2 − A1 + A0 = 4
ρ

Dδ2t
≥ 0

A2 − A0 = 0 ≥ 0,
(12)

respectively, and also are always satisfied. Hence (8)–(10) always hold and therefore (6) is a
stable approximation for arbitrary values of the discretization parameters δt , δx and δy .

At this stage, (6) can be written in the equivalent form

AWp+2 + BWp+1 + AWp = CQp, (13)

where the nodes (l,m) are ordered row by row as illustrated in Fig. 5 with p ≥ 0. In (13)Wp

and Qp are, respectively, the vectors of the deflections and the external forces at the nodal
points and given by

Wp =
⎡

⎢
⎣

wp,0,0
...

wp,l,m

⎤

⎥
⎦

l+m=N−1

, Qp =
⎡

⎢
⎣

qp,0,0
...

qp,l,m

⎤

⎥
⎦

l+m=N−1

,
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Fig. 5 Computation mask
associated with the partial
recurrence equation (6)

and A, B and C are Toeplitz matrices constructed from the coefficients of (6). Since the
deflections at all boundary nodal points and those external to the membrane are always zero,
they are not included in Wp; similarly, for Qp . The entries in Wp are the variables to be
controlled, and those in Qp the control signals to be designed.

In (13), the matrices A, B and C have the dimension N × N and A can be written as (51)
given in the appendix, where A(X)

1 for a positive integer X is an X × X matrix and O is the
zero matrix with compatible dimensions. Also the following matrices are used

S = 1

δxδ3y
+ 1

δyδ3x
+ 1

2δ4x
+ 1

2δ4y
+ ρ

Dδ2t
,

Q = δxδy − δ2y − 2δ2x
4δ5xδy + 4δ4xδ

2
y

, R = δxδy − 2δ2y − δ2x

4δ2xδ
4
y + 4δxδ5y

,

P = 1

2δ2xδ2y
− 1

2δxδ3y
− 1

2δ3xδy
. (14)

The matrix B has the same structure as A with

S = 2

δxδ3y
+ 2

δyδ3x
+ 1

δ4x
+ 1

δ4y
− 2

ρ

Dδ2t
,

Q = δxδy − δ2y − 2δ2x
2δ5xδy + 2δ4xδ

2
y

, R = δxδy − 2δ2y − δ2x

2δ2xδ
4
y + 2δxδ5y

,

P = 1

δ2xδ
2
y

− 1

δxδ3y
− 1

δ3xδy
. (15)
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and

A4 =

⎡

⎢
⎢
⎢
⎢
⎣

R 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 R

⎤

⎥
⎥
⎥
⎥
⎦

, C =

⎡

⎢
⎢
⎢
⎢
⎣

1/D 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1/D

⎤

⎥
⎥
⎥
⎥
⎦

. (16)

The node distances in the x and y directions are given by

δx = a

n + 1
and δy =

√
3

2
δx .

An alternativemethod to that given above is to solve (13) directly by amultigrid algorithm,
see Rabenstein and Steffen (2012). Then, (13) can be written as

Wp+2 = −A−1BWp+1 − Wp + A−1CQp, (17)

provided that the matrix A is invertible.

3 Problem formulation

3.1 Background on repetitive processes

The simplest form of repetitive processes is those where at any instant along the current pass
the contributions from the previous pass are only from the same instant. Let the nonnegative
integer k denote the pass number and 0 ≤ p ≤ N − 1 denote a sample instant along a trial
formed of N samples. Then the state equation of such an example on pass k is of the form

xk(p + 1) = Ãxk(p) + B̃uk+1(p) + B̃0yk−1(p)

where, with compatible dimensions, xk(p) is the state vector, uk(p) is the input vector and
yk−1(p) is the previous pass output vector at sample p, termed the pass profile. The algebraic
equation for computing the current pass profile vector is of the form

yk(p) = C̃xk(p) + D̃uk(p) + D̃0yk−1(p)

A further generalization of wave repetitive processes is possible to the case where a
‘window’ of previous instances along the previous pass contributes to a ‘window’ of instances
along the current pass, see Fig. 6. It is this form of repetitive process that provides the setting
for ILC design in the next section.

The stability theory for linear (and nonlinear) repetitive processes (Rogers et al. 2007)
is of bounded-input bounded-output form. In particular, given the unique control problem,
this theory requires that a bounded initial pass profile (y0) produces a bounded sequence of
pass profiles ({yk}k), where the meaning of ‘bounded’ is in the sense of the norm on the
underlying function space. Moreover, this property can be required over the finite and fixed
pass length or uniformly, i.e., for all possible values of the pass length where this property can
be examined mathematically for discrete processes by considering the case when N → ∞.
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Fig. 6 An alternative updating structure of a wave repetitive process

3.2 ILC problem formulation

The control approach adopted in the current application is to apply control through Qp of
(13) over a finite duration. A stoppage occurs, the control action is updated and then applied
over the same finite duration, i.e., pass length. The aim is to force the membrane to deflect to
a specified profile by repeated application of control action updated between two successive
passes using an ILC law. Next, the design problem is formulated.

Note 1 From this point onwards, I and O , respectively, denote the compatibly dimensioned
identity and null matrices.

Rewrite (17) in the form

Wp+2 = Â1Wp+1 + Â2Wp + B̂Q p, (18)

where

Â1 = −A−1B, Â2 = −I , B̂ = A−1C . (19)

This is a second-order difference equation and to transform it to first-order, introduce

Wp =
[
Wp+1

Wp

]
, Qp = Qp, (20)

to obtain the state equation

Wp+1 = AWp + BQp, (21)

with p ≥ 0 and

A =
[
Â1 Â2

I O

]
, B =

[
B̂
O

]
. (22)
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To formulate the ILC design problem, a positive integer variable k denoting the pass-to-
pass update is introduced. Then (21) can be written as

Wp+1(k) = AWp(k) + BQp(k). (23)

Introduce the output equation

Yp(k) = CWp(k) = Wp+1(k), (24)

with

C = [
I O

]
. (25)

Also define the tracking error Ep(k) as

Ep(k) = Y∗
p − Yp(k) = W ∗

p+1 − Wp+1(k), (26)

where Y∗
p denotes a spatial/temporal reference signal and hence W ∗

p+1 denotes deflections
in spatial/temporal reference signal.

Introduce the state and control increments as

Θp+1(k + 1) = Wp(k + 1) − Wp(k), (27)

ΔQp(k + 1) = Qp(k + 1) − Qp(p) (28)

and apply the ILC law

ΔQp(k + 1) = K1Θp+1(k + 1) + K2Ep+1(k) (29)

to obtain the following ILC dynamicswritten in the form of a discrete linear repetitive process
(Rogers et al. 2007)

Θp+1(k + 1) = ĀΘp(k + 1) + B̄Ep(k),

Ep(k + 1) = C̄Θp(k + 1) + D̄Ep(k),
(30)

where

Ā = A + BK1, B̄ = BK2,

C̄ = −C Ā, D̄ = I − CB̄.
(31)

In the repetitive process setting, the pass error (Ep(k))is the output, and Θp(k + 1) is the
current pass state vector (there is no pass input term as this is the model of the controlled
dynamics). Hence the stability theory for linear repetitive processes can be applied.

Previous research on ILC design using repetitive process stability theory has, uniquely for
2D systems based ILC analysis, been followed through to experimental validation, see, e.g.,
Hładowski et al. (2010); Paszke et al. (2016). This previous work was for systems that are
finite-dimensional, instead of using a finite-dimensional model as an approximation to PDE
dynamics.

4 ILC design

The aim is to design the ILC law using the strong form of the repetitive process stability
theory (Rogers et al. 2007) applied to (30). This design will guarantee monotonic pass-to-
pass error convergence and also regulate the dynamics produced along each trial. One means
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of applying this theory is by use of the Lyapunov function

Vp(k) = Θp(k + 1)T P1Θp(k + 1)

+ Ep(k)
T P2Ep(k)

(32)

where P1 and P2 are compatibly dimensioned symmetric positive definite matrices, denoted
from this point onwards as P1 	 0 and P2 	 0. This function can be viewed in physical
terms where the quadratic form in Θp(k + 1) measures the energy along a pass and that in
Ep(k) the ‘energy’ from pass-to-pass.

Introduce the associated increment of Vp(k) as

ΔVp(k) = Θp+1(k + 1)T P1Θp+1(k + 1)

−Θp(k + 1)T P1Θp(k + 1)

+Ep(k + 1)T P2Ep(k + 1) − Ep(k)
T P2Ep(k). (33)

then the stability theory for discrete linear repetitive processes (Rogers et al. 2007) gives that
pass-to-pass error convergence occurs when

ΔVp(k) < 0, ∀ k, p > 0, (34)

or
[
ĀT P1 Ā − P1 + C̄T P2C̄ ĀT P1 B̄ + C̄T P2 D̄

B̄T P1 Ā + D̄T P2C̄ B̄T P1 B̄ + D̄T P2 D̄ − P2

]
≺ 0, (35)

where ≺ denotes the symmetric negative definite property. Also introduce

Ā =
[
Ā B̄
C̄ D̄

]
, P̄ = diag {P1, P2} (36)

and then (35) can be rewritten as

ĀT P̄Ā − P̄ ≺ 0. (37)

Moreover, rewriting Ā as

Ā =
[

A + BK1 BK2

−CA − CBK1 I − CBK2

]
(38)

and introducing

Ā =
[
A O
O I

]
, B̄ =

[
B B
O O

]
, C̄ =

[
I O

−C I

]
,

K = diag {K1,K2} , A = C̄Ā, B = C̄B̄. (39)

Moreover, (38) is equivalent to

Ā = A + BK (40)

and then (37) can be written as

(A + BK)T P̄(A + BK) − P̄ ≺ 0. (41)

Application of known results in Rogers et al. (2007) gives that the ILC dynamics written
as the discrete linear repetitive process (30)is stable along the pass and hence the monotonic
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Table 1 Plate parameters Parameter Value Unit

h-thickness 0.01 m

ρ-area density 25 kgm−2

E-Young’s modulus 70 × 109 Nm−2

ν-Poisson’s ratio 0.22 –

trial-to-trial error convergence occurs if there exists P̃ 	 0, where P̃ = diag
{P̃1, P̃2

}
and

Ñ = diag
{Ñ1, Ñ2

}
such that the Linear Matrix Inequality (LMI)

[ −P̃ P̃A
T + Ñ T

B
T

AP̃ + BÑ −P̃

]
≺ 0 (42)

is feasible. Moreover, if this LMI is feasible, the control law matrices K1 and K2 in (29) are
given by

K = Ñ P̃−1 = diag {K1,K2}
= diag

{
Ñ1P̃−1

1 , Ñ2P̃−1
2

}
.

(43)

5 Numerical case studies

The numerical value of the parameters used is given in Table 1 and discretization is by
applying the regular hexagonal grid of Fig. 4.

The first example addresses the key issues in obtaining the approximate finite-dimensional
model to be used for control law design.

Example 1

It is assumed that the edges of the membrane are clamped and hence both the deflection at
the edge and its derivative are zero. This leads to the boundary conditions

w(t, x, y)
∣∣∣
x,y∈B = 0,

∂w(t, x, y)

∂x

∣∣∣∣
x,y∈B

= 0,
∂w(t, x, y)

∂ y

∣∣∣∣
x,y∈B

= 0, (44)

where B denotes the boundary of the region where a solution is to be found.
Applying the discretization scheme, the conditions of (44) become

wk,l,m = 0,

wp,l,m − wp,l−2,m = 0, wp,l,m − wp,l,m−2 = 0 (45)

at the boundary nodal points. It follows from (45) thatwp,l,m = 0,wp,l−2,m = 0,wp,l,m−2 =
0 for all p at a boundary nodal point. The deflection is assumed to be zero at all boundary
nodal points and nodal points outside the plate. However, in the simulations, the derivatives
(44) are approximated using points on the boundary and outside the region where the solution
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Fig. 7 The circular membrane covered by the hexagonal grid with n = 5. The deflection at the red points are
zero because of the first line of (45) and those at the blue points are also zero by (46)

is sought. Derivatives in the x-direction are approximated by, see Fig. 7,

wp,l−6,m − wp,l−8,m = 0 at wp,l−6,m,

wp,l−5,m+1 − wp,l−7,m+1 = 0 at wp,l−5,m+1,

wp,l+4,m+2 − wp,l+6,m+2 = 0 at wp,l+4,m+2,

wp,l−4,m−2 − wp,l−6,m−2 = 0 at wp,l−4,m−2,

wp,l+3,m−3 − wp,l+5,m−3 = 0 at wp,l+3,m−3,

(46)

etc., with similar approximations for the derivatives in the y-direction. It follows from (46)
that the deflection is still zero at all boundary nodal points and all external nodal points
denoted, respectively, by the red and blue colors, in Fig. 7. Hence the deflections at these
points do not need to be computed.

The initial conditions of (17) are W0 and W1 and are given in Fig. 8. Note also that
alternative way to undertake the simulations is to solve (13) directly by amultigrid algorithm,
see Rabenstein and Steffen (2012).

The matrix representation (17) is used to compute the response for various values of the
sampling time with the node distances in the x , y directions, respectively, given by

δx = a

n + 1
, δy =

√
3

2
δx .

As a first case, consider the choice of a = 1 and n = 19, which results in δx = 0.05 m.
The deflection in the middle of the membrane for the sampling periods δt = 0.001secs and
δt = 0.01secs, respectively, are shown in Figs. 9 and 10.

From these plots, it is seen that the deflections for both sampling periods are equal as
required. Finally, the deflection of themembrane at time 1.5 sec for δt = 0.001sec is shown in
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Fig. 8 Initial conditions—membrane deflection at time 0secs

Fig. 9 Deflection at the membrane of the mirror, δt = 0.001secs

Fig. 10 Deflection at the middle of the membrane, δt = 0.01secs

123



1252 Multidimensional Systems and Signal Processing (2021) 32:1237–1258

Fig. 11 Membrane deflection at time 0.202s, δt = 0.001secs

Fig. 12 Deflection at the middle of the membrane, a = 25m, δt = 1s, δx = 1.25m, δy = 1.0825m

Fig. 11, where all values are finite, and this confirms that the difference scheme is numerically
stable.

As another case, consider δt = 1 sec and n = 19, a = 25m and hence δx = 1.25 m,
δy = 1.0825m. Figure 12 shows the deflections at the middle of the membrane and their
finite values confirm that the approximation (6) in this case is also numerically stable.

The following two examples illustrate ILC design using the total (Example 2) and then a
limited (Example 3) actuator set.

Example 2

The dynamics considered are those generated by the parameters of Table 1 and the discretiza-
tion is by the regular hexagonal grid of Fig. 7, with the same boundary conditions, i.e., (44)
and (45).

123



Multidimensional Systems and Signal Processing (2021) 32:1237–1258 1253

Fig. 13 Reference signal at time instants t = 4, 5, 6, 7

Consider the casewhen themembrane diameter is a = 1m and the consider the discretiza-
tion grid generated by n = 11. These values result in δx = 0.0833 m and δy = 0.0722 m.
Also let the sampling period be δt = 1 secs with zero initial conditions and a pass length of
t f = 11 secs (discrete time p = 0, 1, . . . , 11). The reference signal increases linearly within
discrete time period p = 0, 1, 2, 3 to achieve its maximum shown in Fig. 13 and remains
constant for p = 4, 5, 6, 7 and then decreases linearly for p = 8, 9, 10, 11 to zero. The
midpoint of the membrane corresponds to the maximum value of the reference signal within
the spatial region.

The matrix A of (13) in this case is nonsingular, and the Toeplitz structure makes it easy to
invert. Completing the ILC design results in the control law matricesK1 andK2 of (43) that
are not shown here due to their large dimensions (N×2 N = 91×182 and N×N = 91×91).
Also the Root Mean Square (RMS) error along the passes is defined as

RMS (E(k)) =
√(

E(k)T E(k)
)
/(β N ) (47)

and is given in Fig. 14, which shows fast pass-to-pass error convergence. For this case,β = 12
holds in (47) and hence the control law is applied at 19 of the N = 91 points: qp,l−2,m+2,
. . ., qp,l,m , . . ., qp,l+2,m−2. The control signal is shown in Fig. 15 for pass k = 20 for p = 5,
where it reaches its maximum value.

After 6 passes, the ILC has reduced the RMS to a very low value and maintains it for all
subsequent passes, i.e., in agreement with the theory.

Example 3

Again the parameters are those given in Table 1 and the discretization is undertaken using
the regular hexagonal grid of Fig. 7 with the same boundary conditions as in the previosu
example, i.e., (44) and (45) and the reference signal is again that of Fig. 13.

Spatially distributed control action was used in Example 2, which is difficult to implement
practically due to a large number of sensors and actuators distributed over the systemmust be
used. Here, an alternative ILC law is designed to achieve a given spatial/temporal reference
based on the application of a spatially homogeneous control signal at chosen excitation points.
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Fig. 14 RMS error (47) for Example 2

Fig. 15 Control signal at k = 20 and p = 5

The ILC law matricesK1 andK2 of (43) are not shown here due to their large dimensions
(1 × 2 N = 1 × 182 and 1 × N = 1 × 91). To limit the number of actuators required to
realize the control action, a spatially homogeneous input is available at 7 central points of
the plate, from a total of 91 points. This spatially homogeneous control signal is calculated
using by suitable selection of the matrix C in the state-space model. In this case, the matrix
applies actuation only at the selected seven points

(l − 1,m + 1), (l + 1,m + 1),

(l − 2,m), (l,m), (l + 2,m),

(l − 1,m − 1), (l + 1,m − 1), (48)

which correspond to the following set of numbers

{35, 36, 45, 46, 47, 56, 57}, (49)

123



Multidimensional Systems and Signal Processing (2021) 32:1237–1258 1255

Fig. 16 The seven actuation points marked in green

shown in Fig. 16. Hence, the matrix C according to (16) is replaced by the one given in (50)
below, which is a single-column matrix with unit entries in the selected positions and the
remainder set to zero

C̃T = 1

D

[
0︸︷︷︸

1−34

1 1 0︸︷︷︸
37−44

1 1 1 0︸︷︷︸
48−55

1 1 0︸︷︷︸
58−91

]
. (50)

The numbers under the braces in this last equation denote the positions on the membrane
where the input signal is not active.

The RMS is computed as in (47), where β = 12 is the number of temporal sampling
instants along a pass. The result is shown in Fig. 17 and confirms rapid convergence of the
ILC design.

Again, this RMS error plot is in agreement with the theory. To improve this result and
to speed up the pass-to-pass convergence, an optimization method developed in Cichy et al.
(2017) has been applied.

The input signal for the design is shown in Fig. 18 on pass k = 10 and p = 5 and over
the passes in Fig. 19.

Suppose the system model coincides with that used for the evaluation of RMS error.
In that case, the approach is identical to the design of an optimal dynamical feedforward
control sequence, as the ILC control is trial-independent. Therewould be amismatch between
the simulated model in experiments, and the actual behavior and adaptation of qk,p would
continue until the mismatch has been compensated.
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Fig. 17 RMS error (47) for Example 3

Fig. 18 Input signal at k = 10 and p = 5

Fig. 19 Input signal over the trials
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6 Conclusions and future research

This paper has produced new results on the 2D systems approach to ILC design for PDEs. To
form a basis, a particular PDE is considered, which allows for control to be applied over only
a subset of the domain. Supporting numerical examples have also been given. The use of the
hexagonal girds for circular domains is even more accurate than the rectangular alternative.

The results in this paper also form the basis for possible future research. Potential areas
include other forms of the ILC law and robust control design, which conceptually should be
straightforward. One difficulty, particularly in terms of computations, is high dimensional
matrices, resulting from the use of, in the main, the vectorWp of (20) (and the vectors from
which it is formed) and the need to have a large number of nodal points. Further research
could be directed to developing computationally more efficient algorithms for this task.

Funding Theworkwaspartially supportedby theNational ScienceCentre inPoland, grant no. 2020/37/B/ST7/03280.

Appendix A Notation

A =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
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⎢
⎣
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AT2 A
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1 A2 A3 O
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

AT3 AT2 A
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1 A2 A3 O
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. . .
. . .

. . .
. . .

. . .
.
.
.
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. . .
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.
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1 A2 A4
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. . .

. . .
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. . .

. . .
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.

.

.

.

.
. . .

. . .
. . .
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. . .
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.
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. . .

. . .
. . .

. . .
. . . AT3

. . .
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. . .
. . .
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.
.
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. . .
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. . .
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. . .
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.
. . .

. . .
. . .

. . .
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. . . O AT3 AT2 A
(n+5
2 )

1 A2 A3
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . . O AT3 AT2 A
( n+3
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1 A2

O · · · · · · · · · · · · · · · · · · · · · · · · O AT3 AT2 A
( n+1

2 )

1

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
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A(X)
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⎢
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. . .
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. . .
. . . 0
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, A2 =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

P P 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
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⎥
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, A3 =

⎡

⎢
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⎢
⎣

0 R 0 · · · · · · 0
0

. . .
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0
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. (51)
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