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Abstract

Fully probabilistic design (FPD) of control strategies models both the closed

control loop and control objectives by joint probabilities of involved variables.

It selects the optimal strategy as the minimiser of Kullback-Leibler (KL) diver-

gence of the closed-loop model to its ideal counterpart expressing the control

objectives. Since its proposal [1] and general algorithmisation [2], FPD has been

axiomatised [3] and successfully applied both theoretically [4] and practically

[5, 6]. This paper refines the FPD axiomatisation and bridges FPD to standard

stochastic control theory, which it encompasses, in a better way. This enhances

applicability of both as well as of its popular, independently proposed, special

case known as KL control [7].

Keywords: Closed-loop control, Control theory, Stochastic control, Stochastic

modelling, Performance indices

1. Introduction

The paper inspects an extension of the standard stochastic control [8, 9, 10].

The standard expresses the control aims by a performance index and it takes

the minimiser of its expectation as the optimal control strategy. The studied

fully probabilistic design [2] of control strategies specifies the control aims via

an ideal (desired) probability distribution of variables in the closed control loop

and minimizes Kullback-Leibler divergence [11] of their probability distribution

to the chosen ideal probability distribution.
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The optimal strategy design is studied under the presentation-simplifying

relaxable assumptions that the system input1 ut ∈ u is selected at discrete time

t ∈ t = {1, . . . , |t|}, |t| <∞, and the closed-loop state xt ∈ x is observed. The

state xt and input ut pairs form the closed-loop behaviour

b = (x|t|, u|t|, . . . , x1, u1) ∈ b = (x× u)|t|.

An uncertain response of the controlled system and randomised system inputs

(ut)t∈t make the behaviour b ∈ b random. The joint probability density cs(b)

(pd2) is thus the most general model of the closed loop [13]3. The joint pd cs(b)

depends on the used, generally randomised, control strategy s ∈ s. The chain

rule for pds [15] and the fact that xt is the state imply

cs(b) =

m(b)︷ ︸︸ ︷∏
t∈t

m(xt|ut, xt−1)

s(b)︷ ︸︸ ︷∏
t∈t

s(ut|xt−1) = m(b)s(b). (1)

The conditional pds m(xt|ut, xt−1) at all time instances t ∈ t model the con-

trolled system. They describe probabilities of the transition from the state xt−1

to the states xt ∈ x for the system input ut. The conditional pds s(ut|xt−1) at

all time instances t ∈ t model the strategy. They give probabilities of using the

inputs ut ∈ u at the state xt−1.

Any design chooses a strategy so ∈ s and takes it as optimal under the

design circumstances. Stochastic control theory arrives to it as follows. It

specifies a loss L(b) assigning a real value to each behaviour b ∈ b. The loss is

bounded from below by L(bo) > −∞, where bo ∈ b is the most desired behaviour.

The ex post accessible value L(b) ≥ L(bo) expresses the loss attributed to the

deviation of the realised behaviour b from the most desired behaviour bo. By

definition, stochastic nature of the closed-loop makes behaviour realisations b ∈

1Throughout z denotes a set of z’s and |z| is cardinality of z. If unspecified, z is a subset

of finite-dimensional real space. Mappings are distinguished by san serif fonts.
2Existence of this Radon-Nikodým derivative with respect to Lebesgue’s or counting mea-

sure is assumed, [12]. All statements on the behaviour b ∈ b are valid almost everywhere.
3Works analysing it mathematically call it strategic measure, e.g. [14].
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b dependent on the used strategy s ∈ s and “something else” [16], which is

inaccessible by the strategy designer. Irrespectively of the cause – randomness,

uncertainty, incomplete knowledge, vagueness, etc. – the loss does not a priori

order quality of strategies. Bayesian methodology [17, 18] provides the cause-

indifferent counteracting of this obstacle. It selects the optimal strategy so as

the minimiser of a suitable functional Ts acting on uncertain losses.

Theorem 9.3-5 in [12] represents the functional Ts as an expected perfor-

mance index Ts = Es[Is]. The design of the optimal control strategy facing any

uncertainty then reads

soI ∈ Arg min
s∈s

∫
b

Us(L(b), b)cs(b) db = Arg min
s∈s

Es[Is]

Is(b) = Us(L(b), b), Es[Is] =

∫
b

Is(b)cs(b) db. (2)

Us is a non-decreasing, real-valued utility function fulfilling Us(0, b) = 0. For

the assumed behaviours b ∈ b, the minimised functional in (2) guarantees that

so is Pareto optimal. The representation (2) of functionals Ts ordering control

strategies is universal4 whenever

A1 Ts is locally linear: Ts
[
Lα + Lβ

]
= Ts [Lα] + Ts

[
Lβ
]

for losses Lα, Lβ ∈ L

meeting LαLβ = 0.

A2 Ts is sequentially and boundedly continuous.

Local linearity is significantly weaker than the usual linearity required by the

standard Bayesian expected utility theory [18]. It only requires linearity on

loss functions L(b), which are non-zero on disjunct behaviour sets bα, bβ . The

continuity requirement represents no practical constraint.

Bayesian, cause-independent, handling of stochasticity and knowledge elic-

itation based on minimum cross-entropy principle [4, 19] provide a systematic

deductive methodology [20, 21, 15] giving the controlled-system model m(b) (1)

4It means that it serves to all control tasks dealing with the same behaviour set b, facing the

same uncertainty but possibly differing in control objectives or sets s of inspected strategies.
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needed for the optimal design (2). The construction of the loss L and utility

U, determining the performance index Is (2), is still a methodological problem.

There is no universal deductive way of combining multiple behaviour attributes

[22, 23] expressing desirability of behaviours b ∈ b by a scalar-valued perfor-

mance index Is(b). Its bad choice may make the optimal strategy soI (2) quite

poor. The probabilistic quantification of control objectives offers deductive rules

of probability theory for their combinations. Thus, the revised fully probabilis-

tic design conceptually overcomes the lack of rules for a deductive quantification

of control objectives, for the choice of the performance index Is (2).

2. FPD Axiomatisation

The performance indices giving the optimal strategies (2), which result into

the same closed-loop model are design-equivalent. Thus, a choice of a single

ideal closed-loop model ci(b), b ∈ b, meeting, cf. (1), (2),

ci = cs
o
I (3)

replaces the choice of equivalent performance indices. It should assign high

values to desired closed-loop behaviours and small values to undesired ones.

For a chosen ideal closed-loop model ci (3), it suffices to specify any rep-

resentant Is of the equivalent performance indices. The paper [3] formulated

several axioms (assumptions) under which such a representant is found. Their

modified, less restrictive and more intuitive, version is now presented.

A3 Let behaviours bα, bβ ∈ b have equal values of the closed-loop model,

cs(bα) = cs(bβ), and also the values of the loss equal, L(bα) = L(bβ). Then,

the corresponding values of the performance-index equal, Is(bβ) = Is(bβ).

A3 demands equal contributions of equally probable behaviours bα, bβ with

the equal losses L(bα), L(bβ) to the value of the optimised functional Ts =

Es[Is] (2). This “natural” wish is met iff the utility Us depends on the

behaviour b ∈ b and the strategy s only via the values of the loss L(b) and
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the values of the joint pd describing the closed loop cs(b)

Is(b) = Us(L(b), b) = Ũ(L(b), cs(b)).

There, the newly-introduced utility function Ũ preserves monotonicity of

utility U in the values of the loss L and its zero value for the zero loss.

A4 No bijective mapping b ↔ b̃ of behaviours changes the value Ts assigned

to a strategy s ∈ s.

A4 attributes a fixed quality to each strategy s ∈ s irrespectively of the

coordinate system of the behaviour b ∈ b. It is simply met when (tem-

porarily) assuming a strictly positive ideal closed-loop model

ci(b) > 0 ∀b ∈ b. (4)

Under (4), the substitution formula for multivariate integrals implies that

A4 is met iff the performance index

Is(b) = Ũs(L(b), cs) = V(L(b), ρs(b)), ρs(b) =
cs(b)

ci(b)
. (5)

There, the utility function V preserves monotonicity of the utility Ũ in the values

of the loss L and its zero value for the zero loss.

A5 Representant Is(b) is in the inspected equivalence class.

A5 is the elementary property of any class representant. Operationally,

it means that the optimal strategy soI (2) computed for this representant

Is is to guarantee (3) for the given ideal closed-loop model ci determining

the equivalence class.

Proposition 1 (Jensen’s Representant). Let the closed-loop ideal model ci

meet (4) and the utility function V (5) be a function W of the ratio ρs = cs

ci

Is(b) = V(L(b), ρs) = W(ρs(b)), (6)

while the function ρW(ρ) is strictly convex for ρ > 0 and the value W(1) is

finite. Then, the performance index Is (6) meets A1–A5.
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Proof A5, which remains to be proved, directly follows from Jensen’s inequality

[12], which can be seen as the definition of convexity. Indeed, for any s ∈ s,

Es[Is] =

∫
b

ρs(b)W(ρs(b))ci(b) db (7)

≥
∫
b

ρs(b)ci(b) db︸ ︷︷ ︸
=1

×W
(∫

b

ρs(b)ci(b) db︸ ︷︷ ︸
=1

)
= W(1).

The left-hand side of (7) reaches the minimum iff the strategy soI guarantees

ρs
o
I (b) = 1⇔ cs

o
I = ci on b. �

A6 The optimal strategy of concatenated but independent control tasks consists

of the optimal strategies obtained for the individual control tasks.

A6 prevents the design methodology to enforce dependence into the so-

lution of independent control problems. It singles out Kullback-Leibler

divergence [11] among I-divergences [24] given by (6).

Proposition 2 (FPD). The utility W(ρ) = ln(ρ) (6) meets A1-A6. It defines

the optimal strategy as the minimiser of KL divergence D(cs||ci)

so ∈ Arg min
s∈s

∫
b

cs(b) ln

(
cs(b)

ci(b)

)
db = Arg min

s∈s
D(cs||ci). (8)

The optimisation (8) is dubbed fully probabilistic design of decision strategies.

Proof It remains to inspect A6. A pair of independent control problems deals

with the behaviour b = (bα, bβ) ∈ b = bα × bβ , bα ∩ bβ = ∅. It uses the ideal

closed-loop model ci(b) = ciα(bα)ciβ(bβ). The optimised functional (6) on the

pair b = (bα, bβ) equals the sum of individual functionals

0 =

∫
bα

∫
bs

csα(bα)csβ(bβ)×[
W(ρsα(bα)ρsβ(bβ))−W(ρsα(bα))−W(ρsβ(bβ))

]
dbαdbβ .

This gives the functional equation for the utility function W (6), which has to

be met for arbitrary ratios ρα, ρβ > 0

W(ραρβ) = W(ρα) + W(ρα).

It has W(ρ) = ln(ρ) for ρ > 0 as its only smooth solution, [25]. �
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3. Relation to Standard Stochastic Control

The dependence of the performance index Is (2) on the optimised strategy

s ∈ s makes the optimised functional Es[Is] non-linear in the opted strategy s.

The standard stochastic control design deals with s-independent performance

indices I. For them, the minimised Es[I] =
∫
b
I(b)m(b)s(b) db is linear in the opted

strategy s. Consequently, the optimal strategy soI is deterministic feedback [8].

The ideal closed-loop model specified by (3) then violates (4). The following

proposition addresses this discrepancy and relates FPD to the standard stochas-

tic control. It uses the closed-loop neg-entropy Hs =
∫
b
cs(b) ln(cs(b)) db.

Proposition 3 (Stochastic Control as FPD Limit). Let the performance

I be strategy-independent. Then, the optimal strategy minimising Es[I] over

strategies with the closed-loop neg-entropy separated from its supremum,

Hs ≤ h < sup
s∈s

(Hs) = h ≤ ∞, (9)

coincides with the FPD-optimal strategy soλ given by the ideal closed-loop model

ci(b) =
exp[−I(b)/λ]∫

b
exp[−I(b)/λ] db

. (10)

The positive scalar λ = λ(h) converges to zero if the separating parameter h in

(9) converges to h. The FPD-optimal strategy soλ then converges to minimiser

of Es[I], i.e. to the strategy optimal in the standard stochastic-control sense.

Proof The deterministic unconstrained optimal strategy reaches the supremum

of the neg-entropy. Thus, the constraint (9) is active. The corresponding un-

constrained minimisation of the Kuhn-Tucker functional, given by the multiplier

λ = λ(h) > 0, reads

Arg min
s∈s

Es[I + λ ln(cs)] = Arg min
s∈s

Es[I/λ+ ln(cs)]

= Arg min
s∈s

Es[ln(cs/ exp(−I(b)/λ))] = Arg min
s∈s

D(cs||cs
o
λ).

The claimed convergence is then an obvious consequence of the relaxation of

the constraint (9). �
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Proposition 3 generalises its analogy in [3]. It origins in [26], where dual-

control features of FPD are studied. Their discussion, connections with the

theory of rational inattention [27], simulated annealing [28], Boltzmann ma-

chine, and etc., are out of scope of this brief paper. It is important to notice

that by focusing on FPD no stochastic control problem is omitted. Formula

(10) relates them constructively.

4. Concluding Remarks

Technically, the paper refines the axiomatisation [3]. Propositions 1, 2 lead

to FPD under weaker assumptions than the former version based on variational

arguments mimicking [29]. Proposition 3 provides a simpler connection of FPD

with the standard stochastic control than that presented in [3].

The existence of the axiomatisation allowed us to squeeze the FPD theory

into a short paper without entering subtleties of preference and strategy order-

ings. The interested reader is referred to it [3]. Even control experts who are

uninterested in subtleties of this type could care about FPD, which:

• provides a unified theory properly extending the standard stochastic con-

trol, Proposition 3;

• unifies otherwise disparate languages describing controlled systems and

control objectives;

• finds minimising strategy explicitly even in general setting [2, 30], which

makes approximate dynamic programming [31] simpler as only the ex-

pectation is to be approximated instead of the operation pair (expecta-

tion,minimisation) of the standard optimal stochastic control;

• allows to address hard non-Gaussian control problems [32, 33, 34];

• has approximation [29] and generalisation of minimum KL principles [19]

as simple consequences [4, 35];

• puts KL control [7, 36, 37] into a wider perspective;
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• feeds a proper exploration into an implementable adaptive control [26];

• transforms quantitative description of control objectives into the choice

of the ideal closed-loop model: this allows to employ estimation [38] and

approximation [39] to this purpose;

• reveals that any control-objectives quantification is to respect the model

of the controlled system [1, 6, 40] and in adaptive context it adapts per-

formance index [41];

• converts cooperation of simple filters or controllers (agents) into the pool-

ing problem [42] of mutually understandable shared pds [43, 44, 45, 46];

• offers unifying framework to probabilistic control design [47], etc.
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[2] M. Kárný, T. V. Guy, Fully probabilistic control design, Syst. & Con. Lett.

55 (4) (2006) 259–265.
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