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Abstract. Low concentrations of 106Ru were detected across
Europe at the turn of September and October 2017. The ori-
gin of 106Ru has still not been confirmed; however, current
studies agree that the release occurred probably near Mayak
in the southern Urals. The source reconstructions are mostly
based on an analysis of concentration measurements cou-
pled with an atmospheric transport model. Since reasonable
temporal resolution of concentration measurements is cru-
cial for proper source term reconstruction, the standard 1-
week sampling interval could be limiting. In this paper, we
present an investigation of the usability of the newly devel-
oped AMARA (Autonomous Monitor of Atmospheric Ra-
dioactive Aerosol) and CEGAM (carousel gamma spectrom-
etry) real-time monitoring systems, which are based on the
gamma-ray counting of aerosol filters and allow for deter-
mining the moment when 106Ru arrived at the monitoring
site within approx. 1 h and detecting activity concentrations
as low as several mBq m−3 in 4 h intervals. These high-
resolution data were used for inverse modeling of the 106Ru
release. We perform backward runs of the Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) at-
mospheric transport model driven with meteorological data
from the Global Forecast System (GFS), and we construct
a source–receptor sensitivity (SRS) matrix for each grid cell
of our domain. Then, we use our least squares with adap-
tive prior covariance (LS-APC) method to estimate possible
locations of the release and the source term of the release.
With Czech monitoring data, the use of concentration mea-
surements from the standard regime and from the real-time
regime is compared, and a better source reconstruction for
the real-time data is demonstrated in the sense of the loca-

tion of the source and also the temporal resolution of the
source. The estimated release location, Mayak, and the to-
tal estimated source term, 237± 107 TBq, are in agreement
with previous studies. Finally, the results based on the Czech
monitoring data are validated with the IAEA-reported (Inter-
national Atomic Energy Agency) dataset with a much bet-
ter spatial resolution, and the agreement between the IAEA
dataset and our reconstruction is demonstrated. In addition,
we validated our findings also using the FLEXPART (FLEX-
ible PARTicle dispersion) model coupled with meteorologi-
cal analyses from the European Centre for Medium-Range
Weather Forecasts (ECMWF).

1 Introduction

At the turn of September and October 2017, low concen-
trations of 106Ru of unknown origin were detected in the
atmosphere in the Czech Republic. Immediate communica-
tion with other European laboratories involved in the RO5
(Ring of Five) network (Masson et al., 2011) confirmed that
this was a Europe-wide occurrence. Although the concen-
tration was low (tens of mBq m−3) and was of no health
risk, the unknown origin of 106Ru raised concerns. There-
fore, very shortly after the first detections, efforts were made
to estimate the source location based on the RO5 data. Ini-
tial analyses pointed to a possible source located to the east
of the Czech Republic. As the dataset grew, this estimate
was refined to the Ural region as the most probable location
(Kovalets and Romanenko, 2017). The released 106Ru activ-

Published by Copernicus Publications on behalf of the European Geosciences Union.



804 O. Tichý et al.: Real-time measurement and inverse modeling of 106Ru

ity was estimated to be several hundred TBq (Saunier et al.,
2019; Western et al., 2020).

Since 106Ru is a fission product produced in a nuclear re-
actor, the question arose about the nature of the source. A
nuclear reactor accident was rejected because, in this case,
other radionuclides would have been detected besides 106Ru,
as during the Chernobyl nuclear power plant (NPP) accident
(UNSCEAR, 2000). For example, during post-Chernobyl
monitoring, the detected 106Ru was higher by 2 or 3 orders
of magnitude and was accompanied by a complex mix of ra-
dionuclides, including 131I, 132Te, 137Cs, 134Cs, 140La, and
103Ru (Chz, 1987).

Other working hypotheses included the melting of a ra-
dioisotope thermoelectric generator (RTG) or of a medical
source, since 106Ru is used in medicine for the treatment of
ophthalmic tumors (Takiar et al., 2015). In several samples
where the 106Ru activity was relatively high, we also detected
103Ru isotope but at much lower concentrations. The activity
ratio of 106Ru/103Ru was approx. 4000 (after the Chernobyl
accident, the ratio was approximately 0.12), which suggests
that the ruthenium was extracted from relatively fresh nuclear
fuel (approximately 2 years old). Since medical sources and
RTG would explain neither the occurrence of 106Ru nor the
large source of several hundred TBq, fresh nuclear fuel is the
most likely candidate.

In the end, an industrial source was identified as the most
probable explanation – most likely a fuel reprocessing plant.
This conclusion is supported by historical evidence, since
we have observed several such events in the past – Tomsk
(Tcherkezian et al., 1995), Savannah River (Carlton and Den-
ham, 1997), and La Hague (ACRO, 2002). Based on these
reports, it can be concluded that a selective release of 106Ru
is possible during certain stages of fuel reprocessing or vit-
rification of fuel in the form of highly volatile RuO4 which
can escape into the environment even when aerosol filters
are employed. RuO4 then condenses in the colder air and can
be further transported over long distances attached to atmo-
spheric aerosol. There are two known plants in the south-
ern Ural region which come into consideration – Mayak and
Dimitrovgrad. Both are located within the region estimated
by atmospheric transport modeling (ATM). Moreover, mea-
surements performed by Roshydromet (Russian Federal Ser-
vice for Hydrometeorology and Environmental Monitoring)
confirm a positive detection of 106Ru in aerosols and in the
fallout in the Chelyabinsk region (Shershakov et al., 2019).

Multiple investigations using different datasets and
methodologies have now been performed with the same con-
clusion, indicating the Mayak plant as the probable source
location (Masson et al., 2019; Saunier et al., 2019; Maffez-
zoli et al., 2019; De Meutter et al., 2020; Le Brazidec et al.,
2020). Masson et al. (2019) presented a comprehensive event
analysis, including a detailed radioruthenium forensic inves-
tigation, and speculated on the possibility of 106Ru release
during the production of the 144Ce source for the SOX (short
distance neutrino oscillations with Borexino) project at the

Gran Sasso National Laboratory (also suggested by Bossew
et al., 2019). Nonetheless, the Russian authorities deny any
leakage from the Mayak plant (Nikitina and Slobodenyuk,
2018). Current estimates of 106Ru source location and source
term are mainly based on an analysis of ambient measure-
ments of 106Ru concentrations.

There is always a trade-off between sensitivity and timely
reporting of concentration results, and the standard procedure
provides a rather poor time resolution of the concentration
monitoring data for the purposes of ATM analyses. The time
delay between the possible arrival of the contamination at
the monitoring site and its detection can easily be as long as
1 week. Long-term shortening of the sampling interval below
1 d is virtually unachievable, mainly for logistic reasons.

This limitation is of great research interest at the Na-
tional Radiation Protection Institute (NRPI), Czech Repub-
lic, where near real-time monitoring systems (AMARA and
CEGAM; see Sect. 2 for a detailed description ) are currently
under development. Both systems yield minimum detectable
activity (MDAC) at a level of 1 mBq m−3, which was suffi-
cient to detect 106Ru during the 2017 episode. We were able
to perform an experimental run of the AMARA device, and
we managed to detect the exact moment when the contam-
ination arrived. These real-time monitoring data were then
used for source localization, and the results were compared
with the standard time resolution. For this purpose, we use
a Bayesian inversion method, called the least squares with
an adaptive prior covariance (LS-APC) method (Tichý et al.,
2016), which was later extended also for the source location
problem (Tichý et al., 2017).

Our aim is to use the data from the Czech Radiation Moni-
toring Network to investigate two points. First, we will study
the influence of the real-time monitoring data on the result-
ing estimate of the temporal profile of the emission. Our hy-
pothesis is that the use of real-time monitoring data should
lead to more time-specific estimates. Second, we will inves-
tigate and discuss what information can be estimated from
the Czech monitoring data only. This task is very challeng-
ing, since it implies a very sparse monitoring network due
to the small area of the Czech Republic in comparison with
the relevant Eurasian spatial domain. The results will be val-
idated and will be compared with results of the much larger
International Atomic Energy Agency (IAEA) dataset (IAEA,
2017).

2 Measurement methodology and datasets

2.1 Standard sampling and measurement procedure

In the Czech Radiation Monitoring Network (RMN), aerosol
samples are taken from 10 permanent monitoring sites which
are equipped with high-volume aerosol samplers with a flow
rate in the range of 150–900 m3 h−1. In addition to these
monitoring sites, radionuclides are also monitored in the lo-
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cal networks in the vicinity of the nuclear power plants in the
Czech Republic – these data are not included in the analysis.

The standard sampling frequency is usually once or twice
a week. Combined weekly samples are subjected to semi-
conductor gamma spectrometry, with no further treatment, at
four RMN laboratories. Preliminary measurement of aerosol
filters starts a few hours after the end of the sampling to al-
low time for the short-lived radon progenies to decay. Other-
wise, they would significantly affect the measurement sensi-
tivity. The preliminary measurements last approximately 5 h,
after which the detection limit (minimum detectable activ-
ity – MDAC) is at a level of 10 µBq m−3. Consequently, a
detailed measurement lasting approx. 5 d is performed, after
which the sub-µBq m−3 MDAC level is achieved.

106Ru is a β emitter and therefore cannot itself be detected
by means of gamma-ray spectrometry. 106Ru activity is de-
termined on the basis of its short-lived progeny 106Rh, which
emits several gamma rays of convenient energy and intensity
(622 and 1050 keV being the most prominent). In order to de-
termine the activity accurately, it is necessary to correct for
true coincidence effects, as 106Rh emits gamma photons in
cascades. By failing to do this, one can easily underestimate
the activity by 15 %–20 %.

2.2 Real-time sampling and measurement procedure

2.2.1 AMARA system

The AMARA system employs a fully continuous measure-
ment regime where the aerosol filter is counted via gamma-
ray spectrometry already during sampling using a high-
volume (900 m3 h−1) sampler. In this setup, shown in Fig. 1,
a spectrometric module consisting of a high-purity germa-
nium (HPGe) detector is placed directly above the aerosol fil-
ter. This straightforward solution benefits from its simplicity
and from the real-time nature of the measurement. However,
the detection limits are higher due to the very high and vari-
able natural background caused mainly by 222Rn and 220Rn
decay products. Our approach for suppressing the high and
widely variable radon background is based on the NASVD
(Noise Adjusted Singular Value Decomposition) algorithm
(Minty and Hovgaard, 2002) and consists of extracting the
characteristic spectral shapes from a large dataset of back-
ground measurements. We adopted this approach already
in the previous version of the AMARA system, which was
based on a NaI (Tl) detector. The implementation details are
described by Hýža and Rulík (2017), and a demonstration of
the signal treatment is displayed in Fig. 2.

2.2.2 CEGAM system

The CEGAM system is based on semicontinuous sampling
where samples are taken at preset intervals and then mea-
sured via gamma spectrometry. The device is based on a
carousel sampling changer, which moves the aerosol filters

Figure 1. AMARA system schematics; the activity deposition is
measured using an HPGe detector above an aerosol filter during
sampling. LAN: local area network.

Figure 2. The response of the AMARA system to the 106Ru con-
tamination passing over during the corresponding sampling inter-
val. (a) The 106Ru signal increase in the 615–630 keV energy re-
gion after subtracting the radon background. (b) The example re-
constructed real-time 106Ru concentration and its 4 h averaged val-
ues, which corresponds to the CEGAM time resolution. Please note
that the date format in this figure is year month day (yyyy-mm-dd).

between the sampling position and the measuring position;
see the configuration in Fig. 3. This allows for the CEGAM’s
HPGe spectrometer to be placed inside a heavy lead shield-
ing, and it is also possible to let the radon progenies decay be-
fore the measurement. The natural background level is there-
fore much lower in comparison with the AMARA system,
and it yields similar MDAC values but at a much lower flow
rate (10 m3 h−1).

2.2.3 Measurement procedure and system comparison

Both the AMARA and CEGAM systems employ an
electrically cooled HPGe (Ortec–Canberra) detector in a
temperature- and humidity-controlled environment in order
to ensure smooth continuous operation even during demand-
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Figure 3. CEGAM system schematics. The activity deposition is
measured using an HPGe detector above an aerosol filter after sam-
pling in radiation shielding. LAN: local area network; DSP: digital
signal processing; GPRS: general packet radio service.

ing weather conditions. The signal processing is done by
digital multi-channel (DSPEC–Lynx) analyzer. The eventual
gain shift is automatically corrected by a stabilization algo-
rithm based on the position of background peaks. The effi-
ciency calibrations were done experimentally using aerosol
filters spiked with standard activity solutions provided by the
Czech Metrology Institute. For the purpose of calibration and
measurement respectively, the correction to the true coinci-
dence summation was taken into account. As the AMARA
system operates in a continuous regime, the spectrum ac-
quisition time was set to 5 min in order to make full use of
its time resolution. Consequently, the running spectral sums
of arbitrary lengths can be constructed. The actual activity
values are then computed using the numerical derivative of
smoothed cumulative response. On the other hand, the time
resolution of the CEGAM system is limited by the carousel
changer time steps. Typically, the spectrum acquisition time
is set to 24 h, and in case of emergency it is shortened to 4 h
or less.

The inherent time resolution of the monitoring system is
inevitably related to the accuracy of the contamination arrival
time. For the 106Ru case, the AMARA system estimated its
arrival with approx. 1 h accuracy depending on the chosen
level of statistical significance and the type of statistical test.

Although the detector efficiency and flow rate are deter-
mined relatively accurately, there are other effects negatively
influencing the final activity uncertainty. For instance, the
radon decay product concentration and therefore the MDAC
and the activity uncertainty vary significantly. In case of pos-
itive detection, there is also an additional uncertainty contri-
bution due to the deposition dynamics, as the system needs to
subtract the contribution from the already deposited contam-
ination. Comparing the real-time values with those obtained
by laboratory measurements (106Ru case or natural 7Be), we

estimate the uncertainty of (10–15) % for the 4 h integration
time and the activity of several mBq m−3.

Although both systems are intended for the rapid detec-
tion of artificial radionuclides in the air, they differ in their
typical use. The CEGAM system is an autonomous sys-
tem with a high filter capacity, and it is suitable for remote
places with difficult access for the operating personnel. The
power consumption is also much lower in comparison with
the AMARA system due to the employment of a low-volume
sampler with an adjustable throughput. During a normal situ-
ation, the CEGAM system could be used within a monitoring
network as a standby device (low flow rate and long sam-
pling intervals) which could quickly switch to an emergency
mode (higher flow rate and more frequent sampling). The
switching command could be based on some prior informa-
tion about arriving contamination or on the positive detection
in a laboratory or by a more sensitive or rapid device, such as
the AMARA system.

The AMARA system is intended to be an upgrade to an al-
ready existing monitoring site equipped with a high-volume
sampler with operational personnel because the filters are not
changed automatically. The advantage of this approach is a
better time resolution and therefore rapid response. Moni-
toring sites with high-volume samplers are usually equipped
with a gamma-ray spectrometry laboratory, and therefore the
filters from AMARA are consequently measured in a dedi-
cated counting room and potentially investigated further by
radiochemical procedures to determine the activities of non-
gamma-ray emitters. The proximity of the laboratory also
solves to a certain degree the dilemma between the sensitiv-
ity of measurement and sampling duration, as the final most
sensitive measurement will be performed in a laboratory after
the sampling using the standard analytic procedure.

Both systems together provide a very good solution for
rapid radiation monitoring response to various release sce-
narios. The technical parameters are summarized in Table 1.

2.3 Dataset description

The monitoring data come from 10 standard monitoring
sites in the Czech Republic from the time period between
25 September 2017 and 13 October 2017. Once 106Ru was
confirmed by the AMARA system (located in Prague), the
filters were changed, and the monitoring interval was short-
ened at all monitoring sites. The previous, less sensitive ver-
sion of the AMARA system equipped with a NaI (Tl) spec-
trometer operated in the Hradec Králové location. Unfor-
tunately, the CEGAM system was not yet operational dur-
ing the 106Ru incident; hence, all used data come from the
AMARA system.

A total of 47 samples were collected, and 24 of them were
positive results with reported activity above the MDAC level.
Four distinct datasets were derived on the basis of this moni-
toring campaign:
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Table 1. Technical specification of the AMARA and CEGAM systems. FWHM: full width at half maximum.

Parameter AMARA CEGAM

Detector type HPGe (electrically cooled) HPGe (electrically cooled)
Relative efficiency 30 % 50 %
FWHM 1.9 keV 1.9 keV
Shielding None 10 cm Pb
Filter size 57 cm× 27 cm 10 cm diameter disc
Filter material FPM 1545 GF/A glass microfiber
Spectrum stabilization Automatic Automatic
Mode of operation Continuous Carousel type sample changer
MDAC ∼mBq m−3 a

∼mBq m−3 b

Flow rate 900 m3 h−1 0 to 10 m3 h−1

Filter cartridge capacity No cartridge 300 filters

a Integration time of 1 h and 12 h of sampling. b Per 4 h sampling–measurement period.

1. The RAW dataset comprises raw monitoring, as reported
by the individual standard monitoring sites. The real-
time measurements are not included.

2. The WEEKS dataset is derived from the raw dataset by
weekly averaging. This dataset corresponds to the stan-
dard RMN monitoring regime.

3. The FAST dataset comprises raw data complemented by
real-time values from the AMARA and CEGAM (sim-
ulated) systems. The integration window was set within
the interval of 3–13 h during the concentration peak pe-
riod.

4. The CUT dataset is created by cutting off the time inter-
val between the start of sampling and the arrival of the
106Ru contamination at the particular monitoring site.
As there was no real-time measurement apart from the
Prague and Hradec Králové AMARA measurements,
the arrival times were estimated on the basis of an
overall analysis of the atmospheric transport across the
Czech Republic, using the Hybrid Single-Particle La-
grangian Integrated Trajectory (HYSPLIT) model.

Note that the artificial WEEKS and CUT datasets are derived
from the RAW and FAST datasets and are rather experimen-
tal. All four datasets are attached as a Supplement to this
article.

For illustration, the measurements from the Prague station
(equipped by the AMARA system) are given in Fig. 4, where
much better temporal specificity is demonstrated.

3 Inverse modeling

The general purpose of inverse atmospheric modeling is to
estimate the time profile of an unknown emission, called the
source term, in the so-called top-down approach (Nisbet and
Weiss, 2010), where ambient measurements are combined

Figure 4. The measurements from the Prague station are displayed
for each dataset using coloring given in the legend.

with the result of an atmospheric transport model (ATM).
The source term can be estimated using optimization of the
differences between the measurements and the correspond-
ing simulated values predicted by an ATM. An even more
challenging task is to identify the location of the release. This
can be done, e.g., using possible source location selection
and comparison as in the case of the 131I release in January–
February 2017 (Masson et al., 2018), using computed corre-
lation or cost function maps as in the case of radioxenon after
the third North Korean nuclear test (De Meutter et al., 2018),
or using a Bayesian approach as in the case of the 131I release
in the fall of 2011 (Tichý et al., 2017) or in the case of the
75Se leakage in 2019 (De Meutter and Hoffman, 2020).

In this paper, we follow the general concept of a linear
model of the atmospheric dispersion using a source–receptor
sensitivity (SRS) matrix (e.g., Seibert, 2001; Seibert and
Frank, 2004). Here, an atmospheric transport model is used
to calculate the linear relation between the potential source
and the measured concentrations. Aggregating all possible
time steps of the release in a source term vector x ∈ Rn and
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measurements from all sites and times in the vector y ∈ Rp,
we can define the model

y =Mx+ e, (1)

where M ∈ Rp×n is the SRS matrix and e ∈ Rp is an obser-
vation error, where the model errors and the measurements
errors are aggregated. This concept has been largely used
previously to recover the source term within larger-scale sce-
narios such as nuclear power plant accidents (Stohl et al.,
2012; Evangeliou et al., 2017), estimates of the emission of
greenhouse gases (Stohl et al., 2009), or volcanic emission
(Kristiansen et al., 2010).

The estimation of the source term vector x from Eq. (1)
is non-trivial, since the SRS matrix M is typically ill-
conditioned and some regularization is needed. One possible
approach is to minimize a suitable cost function (Eckhardt
et al., 2008; Evangeliou et al., 2017) such as

J = (y−Mx)TR(y−Mx)+ xTBx+ εxTDTDx, (2)

where the first term stands for the deviation of the model
from the measurement, including the error in the meteorolog-
ical data; the second term penalizes high values of the source
term using diagonal matrix B; and the third term favors the
smoothness of the estimated source term using tridiagonal
matrix D (numerically representing the second derivative)
and weighting coefficient ε. The key issue of the minimiza-
tion is then to select matrices R, B, and ε.

The minimization of Eq. (2) can be interpreted using a
probabilistic model, and the proper Bayesian inference can
be used to estimate the source term x. Consider the logarithm
of the likelihood function

N lnp(y|x,R)= lnN
(

Mx,R−1
)

∝ (y−Mx)TR(y−Mx) , (3)

where the symbol ∝ denotes equality up to the normalizing
constant and then lnp(y|x,R) is the probabilistic equivalent
to the first term of J . Equivalents for the second term and
for the third term can be found in a similar way. However,
one benefit of the Bayesian inference is that the elements of
R, B, and ε do not need to be fixed in advance but can also
be estimated and optimized within the method. The second
benefit is the model selection property of the Bayesian infer-
ence (Bernardo and Smith, 2009). This approach can be used
to select the most likely setting of the dispersion model or
the most likely matrix M when it is computed for multiple
locations (Tichý et al., 2017).

In the following sections, we review the Bayesian inver-
sion method based on similar probabilistic formulation as in
Eq. (3), which is called the least squares with adaptive prior
covariance (LS-APC) (Tichý et al., 2016). We then discuss
an extension of the method using a covariance model of the
measurements.

3.1 Probabilistic LS-APC model

The probabilistic inversion model of Tichý et al. (2016),
called LS-APC (least squares with adaptive prior covari-
ance), is briefly reviewed, and its extension is discussed. In
Tichý et al. (2016), the covariance structure has been simpli-
fied as R= ωI, where I is the identity matrix. This simplifi-
cation may be misleading. We therefore consider the likeli-
hood in Eq. (3) with covariance R scaled by the scalar param-
eter ω being considered unknown. In variational Bayesian in-
ference, all unknown parameters need to be accompanied by
their prior distribution. We select the gamma distribution for
ω due to its conjugacy with the Gaussian likelihood (Tipping
and Bishop, 1999), obtaining the data model in the form of

p(y|x,ω)=N
(

Mx,ω−1R−1
)
, (4)

p(ω)= G (ϑ0,ρ0) , (5)

where ϑ0 and ρ0 are selected constants needed for numeri-
cal stability; however, they are selected to be very low, e.g.,
10−10, providing a non-informative prior. The construction
of the precision matrix R (inverse covariance) will be dis-
cussed in the next section.

The prior model of x is a probabilistic relaxation of
the second and third terms in Eq. (2). The prior is cho-
sen to be Gaussian truncated to positive support (notation
tN (µ,σ, [a,b]); see Tichý et al., 2016, for details) with a
covariance matrix in the specific form of the Cholesky de-
composition of

p(x|ϒ,L)= tN
(

0,
(

LϒLT
)−1

, [0,+∞]
)
, (6)

where ϒ is a diagonal matrix with diagonal entries υj and
L is a lower bidiagonal matrix with ones on the diagonal
and sub-diagonal entries of lj . The prior models for the un-
knowns υ1, . . .,υn and l1, . . ., ln−1 are selected as

p
(
υj
)
= G (α0,β0) , (7)

p
(
lj |ψj

)
=N

(
−1,ψ−1

j

)
, (8)

p
(
ψj
)
= G (ζ0,η0) , (9)

where parameters of υj model the sparsity of the source term
x and parameters of lj model the smoothness using prior se-
lection of the mean value as −1. The prior constants α0 and
β0 are selected similarly to Eq. (5) as 10−10, while the prior
constants ζ0 and η0 are selected as 10−2 to favor a smooth
solution; see the discussion in Tichý et al. (2016) for more
details. We also note that the algorithm is shown to be robust
with respect to the choice of starting and tuning parameters;
see the discussion in Tichý et al. (2020) for more details.

The key parameter in the inversion method, which has
not yet been discussed, is the error covariance matrix R in
Eq. (4). The definition of this matrix will be given and will
be discussed in the next section.
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3.2 Measurement error covariance

There are various approaches in the literature for selecting
the shape of the covariance matrix R. A straightforward as-
sumption is the diagonal model with the same (Tichý et al.,
2016; Liu et al., 2017) entries where this scalar value can
be estimated. When considering different entries on the di-
agonal of R, they may be selected on the basis of physical
information, when available, rather than by estimating them
because numerical issues arise during convergence (Berchet
et al., 2013). A common assumption is to compose the di-
agonal entries from three sources of error: (i) the absolute
error of the measurement, (ii) the relative error of the mea-
surement, and (iii) the application-dependent error, such as
the model–observation mismatch (Brunner et al., 2012; Song
et al., 2015) or the error-based differences between observa-
tions and simulations (Henne et al., 2016).

Similarly to Stohl et al. (2012) and Evangeliou et al.
(2017), we adopt the first two error terms in our covariance
structure while introducing the third term based on the length
of the measurement. In sum, the R is

R= diag

√
σ 2

abs+ (σ rel ◦ y)
2
+

1
σ 2

length
, (10)

where σ 2
abs is the absolute measurement error which is se-

lected between 0.2 and 1.4 mBq based on the maximum a
posteriori estimate; σ rel is the uncertainty level of measure-
ments, which is between 5.5 % and 30 % for our dataset; and
1/σ 2

length is the term considering the length of the measure-

ment as σ length =
measurement hours

6 h (in mBq) where the selec-
tion of a 6 h window is motivated by the Global Forecast Sys-
tem (GFS) meteorological data resolution. Here, a shorter
measurement time implies higher uncertainty, and a longer
measurement time implies lower uncertainty.

3.3 Variational Bayesian inference and source location

Within the variational Bayesian (VB) framework (Šmídl and
Quinn, 2006), the posterior distributions are found in the
same functional form as their priors. The moments of the
posteriors are determined using an iterative algorithm with
details in Tichý et al. (2016). Here, the reference MATLAB
implementation can be downloaded as a Supplement. The
method will be denoted here as the LS-APC-VB method.

Moreover, we consider the scenario where we have a finite
set of SRS matrices {M1,M2, . . .,Mr}, representing differ-
ent considered locations of the release here. For each SRS
matrix from the set, we can evaluate the posterior probability
p(M=Mk|y) as

p(M=Mk|y)∝ p(M=Mk)exp
(
LMk

)
,

k = 1, . . ., r, (11)

where p(M=Mk) is the prior probability of Mk which can
be omitted here, since each location has the same prior prob-

ability and LMk
is a variational lower bound on p(y|Mk)

(Bishop, 2006). Finally, the term LMk
can be computed as

(Tichý et al., 2017)

LMk
= E

[
lnp(y,x,ϒ,L,ψ,ω,Mk)

]
−E

[
ln p̃(ω)

]
−E

[
ln p̃(x)

]
−E

[
ln p̃(ϒ)

]
−E

[
ln p̃(L)

]
−E

[
ln p̃(ψ)

]
, (12)

where E[.] denotes the expected value with respect to the
distribution of the variable in its argument and p̃() is ap-
proximate posterior probability distributions. These terms
are given in the Supplement of Tichý et al. (2017).

Note that to display and to compare the computed proba-
bilities for each computational domain in following sections,
we need to normalize results due to the proportional equal-
ity in Eq. (11). We use normalization using the maximum of
each domain so that the maximum of each normalized do-
main is equal to 1.

4 Experiments and discussion

The aims of our experiments are to estimate the location of
the 106Ru source, to estimate the source term, and to com-
pare results obtained using four datasets from the Czech Ra-
diation Monitoring Network introduced in Sect. 2 and with
results obtained using the dataset reported by the Interna-
tional Atomic Energy Agency (IAEA) (IAEA, 2017). For
this purpose, we use the HYSPLIT atmospheric transport
model (Stein et al., 2015; Draxler and Hess, 1997), coupled
with the NCEP–NOAA (National Centers for Environmental
Prediction–National Oceanic and Atmospheric Administra-
tion) Global Forecast System (GFS) meteorological data.

To validate our results, we also use the FLEXPART
(FLEXible PARTicle dispersion) model (Pisso et al., 2019)
coupled with meteorological analyses from the European
Centre for Medium-Range Weather Forecasts (ECMWF) to
study the release based on the location selected using HYS-
PLIT model simulations.

4.1 Atmospheric transport modeling

4.1.1 HYSPLIT model configuration

We use the HYSPLIT model in backward mode to com-
pute all the required SRS matrices for a domain. The spa-
tial domain is selected to cover the region spanning from 5 to
115◦ E in longitude and from 25 to 65◦ N in latitude, covering
central and eastern Europe and the western half of the Rus-
sian Federation. Note that the displayed domain in the fol-
lowing figures is cropped in order to focus on the important
area only. Spatially, the domain was discretized with a resolu-
tion of 0.5◦× 0.5◦. Vertically, there is no discretization of the
domain, and sensitivities are calculated for a layer 0–300 m
above the ground, which allows for both ground releases and
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somewhat elevated releases, e.g., through a stack. The tem-
poral resolution is selected as 6 h, starting on 20 Septem-
ber and ending on 10 October 2017. Runs were forced with
GFS meteorological fields with a horizontal resolution of
0.5◦× 0.5◦, 26 vertical layers, and 6 h temporal resolution.

The SRS matrices for the domain are computed from
HYSPLIT backward runs for each domain grid cell. The
backward run configuration is selected, since the number of
domain grid cells (17 600) is much higher than the number of
measuring sites (tens, depending on the dataset, or hundreds
in the case of the IAEA dataset). Each backward run starts
at the point location of each measuring site and releases par-
ticles during the period corresponding to the measurement
time of the sample. For each run, 1 million particles were
simulated. Each of the backward runs corresponding to one
measurement provides an SRS field of a particular measure-
ment to all spatiotemporal sources in the selected domain.
We assume that the release occurred from a point source and
that we can therefore calculate SRS matrices for the whole
domain at once. We end up with 17 600 SRS matrices for
each dataset, all of which are source location candidates.

4.1.2 FLEXPART model configuration

FLEXPART version 10.4 (Pisso et al., 2019) releases compu-
tational particles that are tracked in time following 3-hourly
operational meteorological analyses from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) with
137 vertical layers and a horizontal resolution of 1◦× 1◦.
The model accounts for dry and wet deposition (Grythe
et al., 2017), turbulence (Cassiani et al., 2015), unresolved
mesoscale motions (Stohl et al., 2005), and convection
(Forster et al., 2007). SRSs were calculated for 30 d back-
ward in time, at temporal intervals that matched measure-
ments at each receptor site. 106Ru is tracked assuming grav-
itational settling for spherical particles with an aerosol mean
diameter of 0.6 µm and a normalized standard deviation of
3.3 and a particle density of 2500 kg m−3 (Masson et al.,
2019).

4.2 Results for the Czech monitoring data

For each dataset and each SRS matrix, we apply the LS-
APC-VB method to compute the probability of each spatial
grid cell according to Eq. (11). Note that no prior informa-
tion on source location, p(M=Mk), in Eq. (11) is used. This
corresponds to the assumption that all locations are equally
possible. The resulting maps with source location probabili-
ties for the RAW (top left), WEEKS (top right), FAST (bot-
tom left), and CUT (bottom right) datasets are displayed in
Fig. 5. Here, a darker color means a more probable location
of the release while the scale is relative and dimensionless
due to the proportional equality in Eq. (11).

In all four cases, an estimated probability region of source
locations forms the strip spanning from southern Romania to

approximately the Ob River in the Russian Federation. No-
tably, these regions are computed on the basis of data from
the Czech monitoring stations only. Limited ability of the
method to determine one specific location was therefore ex-
pected. During the period in question, the wind mostly blew
towards the west, which is in agreement with the probable
source region located to the east of the Czech Republic. The
RAW dataset tends to prefer the northern part of the esti-
mated source location strip, leaving the south part less prob-
able. Similar behavior is observed in the case of the WEEKS
dataset, where, in addition, low probability was also observed
in wide areas in the south and north of the strip. This is prob-
ably caused by the lower temporal resolution of the measure-
ments, implying a wider possibility of radionuclide transport.
The results obtained using the FAST and CUT datasets are
more homogeneous, covering the whole strip. However, the
CUT dataset provides locations with very low probability in-
side the strip. These are probably artifacts caused by the ar-
tificial adjustment of the data. Note that better source loca-
tion is possible with better spatial distribution of the measur-
ing sites. This is, indeed, available and will be discussed in
Sect. 4.3 on the IAEA dataset.

Based on Fig. 5 and a review of the situation in the liter-
ature (see Table 2), we consider four source locations. Two
of them are Russian nuclear facilities capable of producing
a significant amount of 106Ru (Saunier et al., 2019; Mas-
son et al., 2019; Sørensen, 2018): the Research Institute of
Atomic Reactors (RIAR) in Dimitrovgrad (location 1) and
the Mayak Production Association, a spent fuel reprocess-
ing facility in Ozersk (location 2); see Fig. 6. Location 3
is selected as a location with high probability in all four
datasets and is situated to the east of Perm, to the north of
the Mayak location. Location 4 is situated in southern Ro-
mania and is also a candidate according to all datasets. We
are aware that, according to further analyses (Le Brazidec
et al., 2020; Saunier et al., 2019; Shershakov et al., 2019;
De Meutter et al., 2020; Western et al., 2020), all locations
except Mayak, location 2, could be rejected. However, we
have considered them here, since they are candidate locations
based on just Czech monitoring data. Dimitrovgrad, location
1, was later rejected due to inconsistency with the concen-
tration measurements to the south and east of Dimitrovgrad
(Saunier et al., 2019; Maffezzoli et al., 2019). Location 3 is
hypothetical, with no known nuclear facility around the loca-
tion capable of producing a substantial amount of 106Ru that
would explain the concentration measurements thousands of
kilometers away from this location. A release at location 4
in southern Romania would contradict ground-based obser-
vations to the east of the location and was thus also rejected
(see Masson et al., 2019). Nevertheless, we will discuss all
four possible source terms in these locations in this section,
in order to demonstrate the effects of the fast measuring sys-
tems.

The estimated source terms are displayed in Fig. 7 for all
the considered datasets and locations; see the titles and la-
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Figure 5. Source location of the 106Ru release via the marginal log likelihood, where the observed data are explained by a release from a
grid cell using the LS-APC-VB method HYSPLIT atmospheric transport model coupled with GFS 0.5◦ meteorological data. The dataset that
has been used is indicated in the titles of each map. The measuring sites are displayed using green dots.

Table 2. This table summarizes and compares previous studies on the 106Ru release in 2017, focusing on the total release, the source location,
and the temporal character. The last row contains results based on the Czech FAST dataset.

Study Probable source location Total release Temporal character (year 2017)

Kovalets and Romanenko
(2017)

Urals, southern Russia 1 TBq to 1 PBq –

Sørensen (2018) Dimitrovgrad or Mayak < 1.1 PBq 26 September, between 05:00 and 13:00
(Mayak)

De Meutter et al. (2020) Mayak < 1 PBq –

Maffezzoli et al. (2019) Mayak – –

Shershakov et al. (2019) Mayak ∼ 500 TBq 25 and 26 September

Saunier et al. (2019) Mayak 250± 13 TBq 26 September (small activity also on 23
and 24 September)

Le Brazidec et al. (2020) Mayak Between 100 and 200 TBq 26 September

Western et al. (2020) Mayak 441± 13 TBq 24 September, between 12:00 and 18:00

Source term based on
Czech FAST dataset

Mayak 237± 107 TBq Between 06:00 on 25 September and
06:00 on 26 September

bels. Note that in Fig. 7 we have cropped zero activities at
the beginning and at the end of the source terms to main-
tain better visibility. All source terms are associated with the
95 % (2σ ) highest posterior density region, using gray-filled
regions. The total estimated activities are further summarized
in Table 3. Note that only the Dimitrovgrad and Mayak lo-
cations are in agreement with the previously reported total
activities of approximately 100–500 TBq (Shershakov et al.,

2019; Saunier et al., 2019; Le Brazidec et al., 2020; Western
et al., 2020). Estimates from all datasets for these locations
fit this interval.

As regards the temporal specification of the release, the
estimated lengths of the release are displayed in Table 4.
The release probably occurred at Mayak between 25 and
26 September; see the literature review in Table 2. Sher-
shakov et al. (2019) estimated the 2 d interval (both 25
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Figure 6. The four considered locations are displayed using green
squares and labels. The measuring sites are displayed using green
dots.

Table 3. Estimated total source terms in TBq for a specific dataset
(columns) and for a specific location (rows). ST: source term.

Estimated total ST (TBq) RAW WEEKS FAST CUT

Location 1 (Dimitrovgrad) 352 363 241 439
Location 2 (Mayak) 245 203 237 445
Location 3 (north of Mayak) 1737 1755 1583 2075
Location 4 (southern Romania) 853 248 787 603

and 26 September), while further analyses by Saunier et al.
(2019) and by Le Brazidec et al. (2020) indicate a higher
probability of the release on 26 September, with a possible
minor release on 23 and 24 September (Saunier et al., 2019).
This is consistent with our findings, where 26 September was
estimated using the WEEKS and CUT datasets; most of 25
and 26 September was estimated using the RAW dataset; and
the time period between 06:00 on 25 September and 06:00 on
26 September was estimated by the FAST dataset. Further
validation with the IAEA dataset, Sect. 4.3, shows that the
estimates from the WEEKS and FAST datasets are in better
agreement with the IAEA-reported concentration measure-
ments than the estimates from the RAW and CUT datasets.
Considering that the bulk of the release was probably within
1 d, we conclude that the FAST dataset provides the most
consistent results, estimating a 1 d (24 h) release for loca-
tions 1, 2, and 3 and 30 h for location 4. The RAW dataset
estimated that the release lasted between 30 and 36 h. Wider
ranges were obtained in the case of the WEEKS dataset (be-
tween 18 and 96 h) and the CUT dataset (between 18 and
66 h). This wide ranges of the release from different loca-
tions are probably caused by the natural assumption of the
LS-APC model that the shorter release is more probable than
a longer one using selection of a zero prior mean value of the
source term in Eq. (6). These findings support the hypothesis
that the fast measuring systems have better time specificity
than the standard measurement procedure.

4.3 Validation and comparison with the IAEA dataset

The same atmospheric transport modeling procedure as in
Sect. 4.1 is applied here to the dataset of the 106Ru measure-

Table 4. Estimated length of non-zero activity (higher than 1 TBq
in a period of 6 h) of source terms in hours for a specific dataset
(columns) and for a specific location (rows).

Estimated length RAW WEEKS FAST CUT

Location 1 (Dimitrovgrad) 36 78 24 42
Location 2 (Mayak) 36 18 24 18
Location 3 (north of Mayak) 30 42 24 30
Location 4 (southern Romania) 30 96 30 66

ments available from the IAEA report (IAEA, 2017). This
consists of 451 relevant measurements, mostly from north-
ern, eastern, and central Europe and the Russian Federation;
see Fig. 10 for the exact locations of the measuring sites. This
dataset will serve as a validation set (Czech monitoring data
have been removed).

First, scatterplots between the measured data reported by
the IAEA and a reconstruction using estimated source terms
from the four studied Czech datasets studied here are dis-
played in Fig. 8 for location 2, Mayak. Here, the same col-
ors as in Fig. 7 for each dataset are used. The scatterplots
are accompanied by the computed correlation coefficients (R
value) and correlation coefficients of the logarithm of con-
centrations (Rlog value) given in the legend of each plot.
We observed that the highest correlations coefficients are for
the WEEKS (0.383) and FAST (0.381) datasets. The RAW
dataset has a lower correlation coefficient (0.378), and the
CUT dataset has a significantly lower correlation coefficient
(0.345). Similar results are obtained also for correlation coef-
ficients of the logarithm of concentrations. This demonstrates
that the fast measuring systems provide comparable or even
better results than the standard measurement procedure. The
artificially constructed CUT dataset has a significantly lower
agreement with the IAEA dataset, which may indicate, e.g.,
inaccuracy in cutting the time intervals of the measurements
in this dataset.

Second, the scatterplots between the measured data re-
ported by the IAEA and the reconstruction using the FAST
dataset for all four considered locations are displayed in
Fig. 9, accompanied by the computed correlation coefficients
and correlation coefficients of the logarithm of concentra-
tions. Here, the reconstruction for location 2 (Mayak) is in
better agreement with the IAEA data than any other con-
sidered location. Note that similar results are also obtained
for all other datasets, indicating that the Mayak location is
the most consistent with the IAEA dataset. This confirms the
findings of previous studies (Saunier et al., 2019; Maffez-
zoli et al., 2019; De Meutter et al., 2018; Le Brazidec et al.,
2020), which suggest the Mayak location as the most proba-
ble.

Third, as for the Czech monitoring data, the source loca-
tion methodology from Sect. 3.3 is also applied to the IAEA
dataset. The results are displayed in Fig. 10. Again, a darker
color denotes a more likely location of the release, while the
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Figure 7. Estimated source terms from the locations considered in Fig. 6 (indicated in the titles of each column) for the RAW (blue lines),
WEEKS (magenta lines), FAST (red lines), and CUT (green lines) datasets. The estimated source terms are accompanied by the 95 %
uncertainty regions (gray-filled regions). Note that the vertical axis has a different scales for each location.

Figure 8. Scatterplots between the IAEA measurements and recon-
structions using the RAW, WEEKS, FAST, and CUT datasets (spec-
ified in titles) for location 2, Mayak. Computed correlation coeffi-
cients and correlation coefficients of the logarithm of concentrations
are given in the legends.

scale is relative and dimensionless due to the proportional
equality in Eq. (11). In direct comparison with the source
locations using the smaller datasets studied in Fig. 5, the pat-
terns are very similar. Indeed, the source location using the
IAEA dataset rejected locations that cannot be rejected on

Figure 9. Scatterplots between the IAEA measurements and recon-
structions using the FAST dataset for all four considered locations
(specified in the titles). Computed correlation coefficients and cor-
relation coefficients of the logarithm of concentrations are given in
the legends.

the basis of the Czech data alone, due to the lack of data; see,
e.g., the locations in Romania, Ukraine, and Finland. How-
ever, the estimates using all datasets in the southern Urals
are consistent with the IAEA dataset results and also with,
e.g., the results of Saunier et al. (2019). For a numeric com-
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parison of the source location maps using the Czech datasets
and the map using the IAEA dataset, we compute four sta-
tistical coefficients used for evaluations of atmospheric mod-
eling results. Concretely, we compute the normalized mean
square error (NMSE) which may be, however, biased (Poli
and Cirillo, 1993). Therefore, we also compute the normal-
ized mean square error of the distribution of the normalized
ratios (NNR) suggested by Poli and Cirillo (1993) accom-
panied also by the figure of merit in space (FMS) (Abida
and Bocquet, 2009) and the fractional bias (FB) (Chang and
Hanna, 2004). Note that coefficients closer to zeros are bet-
ter in all cases except the FMS, where higher is better. These
statistical coefficients are defined as

NMSE=
1
q

∑q

j=1
(
pIAEA,j −pset,j

)2(
1
q

∑q

j=1pIAEA,j

)(
1
q

∑q

j=1pset,j

) , (13)

NNR=

∑q

j=1

(
1− exp

(
−

∣∣∣ln pIAEA,j
pset,j

∣∣∣))2

∑q

j=1 exp
(
−

∣∣∣ln pIAEA,j
pset,j

∣∣∣) , (14)

FMS=

∑q

j=1min
(
pIAEA,j ,pset,j

)∑q
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) , (15)

FB= 2
1
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1
q
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1
q

∑q

j=1pIAEA,j +
1
q

∑q

j=1pset,j
, (16)

where q is the number of map tiles, pIAEA is the vector with
the probabilities of the source location computed using the
IAEA dataset, and pset is the vector with the probabilities
of the source location computed using the selected Czech
dataset. The results are summarized in Fig. 10, below the
probability map.

We conclude that in all cases, results obtained using the
FAST dataset are better than those obtained using other
datasets. The CUT dataset performs slightly worse than
the FAST dataset, while results obtained using RAW and
WEEKS datasets are significantly worse than obtained us-
ing FAST and CUT datasets. This demonstrates that the use
of fast measurement systems could better reflect the variabil-
ity of the release even when it is located far from the release
site and could better match the results of the IAEA dataset,
which has a far better spatial distribution of the measurement
stations.

4.4 Results using the FLEXPART model

In this section, we aim to demonstrate that a better time
resolution of measurement is beneficial independently on
the used atmospheric transport model and the used time-
resolution. Concretely, we use the FLEXPART model (Pisso
et al., 2019) in backward mode with a finer, 3 h output tem-
poral resolution as described in Sect. 4.1.

We present results for considered location 2, Mayak, in
Fig. 11. There are source terms estimated using the LS-APC

Figure 10. Top: source location of the release of 106Ru via marginal
log likelihood, using the IAEA dataset. Bottom: the computed nor-
malized mean square error (NMSE), the normalized mean square
error of the distribution of the normalized ratios (NNR), the fig-
ure of merit in space (FMS), and the fractional bias (FB) between
the source location results obtained using the IAEA dataset and the
RAW, WEEKS, FAST, and CUT datasets.

algorithm in the top row and a scatterplot between measured
data reported by the IAEA and a reconstruction using each
dataset in the bottom row. Note that the coloring of panels is
the same as in Figs. 7 and 8. The totals of the source terms are
1388, 1459, 852, and 948 TBq for datasets RAW, WEEKS,
FAST, and CUT respectively. The lengths of releases are 18,
24, 9, and 12 h for datasets RAW, WEEKS, FAST, and CUT
respectively.

The following differences are observed in comparison
with results based on HYSPLIT runs. First, we observe sig-
nificant releases between 22 and 23 September in the case of
the RAW and WEEKS datasets. These releases are not ob-
served for the FAST and CUT datasets. However, note also
that the response on this initial release in, e.g., the IAEA
dataset is relatively low; see the comparison of R values in
Fig. 11. Second, the release periods are estimated in the be-
ginning of 25 September rather than in the end as in the case
of the HYSPLIT runs; however, this difference is negligible
considering the spatiotemporal domain. Third, totals of re-
leases are in all cases significantly larger than in the case of
the HYSPLIT runs. The reason for this disproportion may
be in the different parametrization of the atmospheric model.
Considering the scatterplots on the bottom of Fig. 11, we as-
sume the estimated releases are slightly overestimated, while
they are on the upper limit of estimates in the literature as in
Table 2.

From this perspective, the better temporal resolution of the
output temporal grid seems to better reflect the better tempo-
ral resolution of the measurements. Similarly to Sect. 4.3,
we also validate (with the use of FLEXPART) the esti-
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Figure 11. Estimated (est.) source terms for location 2, Mayak, using SRS matrices computed using the FLEXPART atmospheric transport
model (top row) associated with scatterplots between the IAEA-reported measurements and reconstruction using specified dataset (bottom
row). The coloring of panels is the same as in Figs. 7 and 8.

mated source terms with the IAEA-reported measurements
and compute the associated R value for each scatterplot in
Fig. 11. The R value is slightly better for the FAST dataset
(0.710) than for the RAW dataset (0.695), while it is 0.578
for the RAW dataset and even lower for the WEEKS dataset
(0.288). These results support the hypothesis that better tem-
poral resolution of measurements is beneficial for source
term inversion.

5 Conclusions

We have investigated the occurrence of 106Ru in Europe in
the fall of 2017. We have used data from the Czech Radiation
Monitoring Network, which also includes measurement data
from novel real-time monitoring systems. Based on this case
study, it can be concluded that both systems are suitable for
the task of rapid detection of radioactive contamination in the
atmosphere at the level of mBq m−3. Each of the developed
devices employs a different sampling–measurement proce-
dure, and therefore there are also different possibilities for
their integration into a large-scale monitoring network. The
combination of the AMARA system and laboratory measure-
ment seems to be an optimal setup, balancing response sensi-
tivity and timeliness. On the other hand, the CEGAM system
can be operated unattended in remote locations in a standby
regime with a relatively low power consumption and can be
switched to an emergency regime if needed. Regarding the
employed electrically cooled HPGe detectors, they proved to
be resilient enough to be deployed long term. For the past
3 years we have not experienced any malfunction or need of

excessive maintenance, so the only drawback of HPGe detec-
tors is the accompanied costs compared to the NaI (Tl) setup
which we used in the past.

Using the inversion modeling technique, we have com-
pared the results obtained from four datasets ranging from
raw data, using the standard measuring procedure, to real-
time monitoring data with a much better temporal resolution.
The results have been compared with the published state-of-
the-art estimates of the 106Ru release in 2017. Based on this
comparison, we have observed that the results obtained us-
ing real-time monitoring data are comparable in terms of the
total estimated release and are better for the temporal speci-
fication of the release, and they are consistent with the pre-
viously reported findings regarding the location of the 106Ru
source term.

In addition, we have compared our results based on the
Czech monitoring data with the dataset reported by the
IAEA, which has a much better spatial coverage. The source
location results have been compared using the NMSE, NNR,
FMS, and FB coefficients between the IAEA results and
the results based on the Czech monitoring data. We have
concluded that the real-time monitoring data result is close
to the IAEA result. Four source location hypotheses have
been tested based on the correlation coefficient between
the IAEA measurements and the model reconstruction us-
ing Czech monitoring data. Here, the results are in agree-
ment with previous studies, with the Mayak location being
the most probable (R = 0.381) in comparison with Dimitro-
vgrad (R = 0.349), southern Romania (R = 0.139), and the
location to the north of Mayak (R = 0.109).
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Concerning the real-time monitoring capabilities of the
Czech Radiation Monitoring Network, we have shown that
a single operating device can enhance the inverse modeling
predictions even for a relatively low radionuclide concentra-
tion at the level of mBq m−3. Although the continental-scale
scenario such as the 106Ru case in 2017 may not be ideal for
quantification of a real-time monitoring system due to the
diffusion over several days of transport, we believe that the
benefits are still observable. It is safe to state that the installa-
tion of multiple devices such as AMARA and CEGAM over
a larger region (on a European scale) would certainly yield
additional improvements in source location and in source
term estimation in the event of a radionuclide atmospheric
release.
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Stohl, A.: Bayesian inverse modeling and source location of an
unintended 131I release in Europe in the fall of 2011, Atmos.
Chem. Phys., 17, 12677–12696, https://doi.org/10.5194/acp-17-
12677-2017, 2017.

Tichý, O., Ulrych, L., Šmídl, V., Evangeliou, N., and Stohl, A.: On
the tuning of atmospheric inverse methods: comparisons with the
European Tracer Experiment (ETEX) and Chernobyl datasets
using the atmospheric transport model FLEXPART, Geosci.
Model Dev., 13, 5917–5934, https://doi.org/10.5194/gmd-13-
5917-2020, 2020.

Tipping, M. and Bishop, C.: Probabilistic principal component anal-
ysis, J. R. Stat. Soc., 61, 611–622, 1999.

UNSCEAR: Sources and effects of ionizing radiation: sources,
United Nations Publications, New York, USA, 2000.

Western, L., Millington, S., Benfield-Dexter, A., and Witham, C.:
Source estimation of an unexpected release of Ruthenium-106 in
2017 using an inverse modelling approach, J. Environ. Radioac-
tiv., 220, 106304, https://doi.org/10.1016/j.jenvrad.2020.106304,
2020.

Atmos. Meas. Tech., 14, 803–818, 2021 https://doi.org/10.5194/amt-14-803-2021

https://doi.org/10.1007/0-306-47460-3_38
https://doi.org/10.5194/acp-4-51-2004
https://doi.org/10.5194/acp-4-51-2004
https://doi.org/10.5194/acp-15-7103-2015
https://doi.org/10.5194/acp-5-2461-2005
https://doi.org/10.5194/acp-9-1597-2009
https://doi.org/10.5194/acp-12-2313-2012
https://doi.org/10.5194/acp-12-2313-2012
https://doi.org/10.5194/gmd-9-4297-2016
https://doi.org/10.5194/acp-17-12677-2017
https://doi.org/10.5194/acp-17-12677-2017
https://doi.org/10.5194/gmd-13-5917-2020
https://doi.org/10.5194/gmd-13-5917-2020
https://doi.org/10.1016/j.jenvrad.2020.106304

	Abstract
	Introduction
	Measurement methodology and datasets
	Standard sampling and measurement procedure
	Real-time sampling and measurement procedure
	AMARA system
	CEGAM system
	Measurement procedure and system comparison

	Dataset description

	Inverse modeling
	Probabilistic LS-APC model
	Measurement error covariance
	Variational Bayesian inference and source location

	Experiments and discussion
	Atmospheric transport modeling
	HYSPLIT model configuration
	FLEXPART model configuration

	Results for the Czech monitoring data
	Validation and comparison with the IAEA dataset
	Results using the FLEXPART model

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Financial support
	Review statement
	References

