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ON A SEMISMOOTH* NEWTON METHOD FOR SOLVING
GENERALIZED EQUATIONS\ast 
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Abstract. In the paper, a Newton-type method for the solution of generalized equations (GEs)
is derived, where the linearization concerns both the single-valued and the multivalued part of the
considered GE. The method is based on the new notion of semismoothness\ast , which, together with a
suitable regularity condition, ensures the local superlinear convergence. An implementable version
of the new method is derived for a class of GEs, frequently arising in optimization and equilibrium
models.
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1. Introduction. Starting in the seventies, we observed a considerable number
of works devoted to the solution of generalized and nonsmooth equations via a Newton-
type method (cf., e.g., the papers [18] and [22], the monographs [21] and [17], and
the references therein). Concerning generalized equations (GEs), first results can be
found in the papers of Josephy [19], [20]. The idea consists of the linearization of
the single-valued part of the GE so that in the Newton step one solves typically an
affine variational inequality or a linear complementarity problem. Other Newton-like
schemes for the solution of GEs or inclusions with general multifunctions can be found,
e.g., in [1], [3], or [22].

Concerning the solution of nonsmooth equations, various ideas have been devel-
oped starting with a pioneering paper by Kummer [24]. Let us mention at least the
papers [25], [31], [33], and [16]. In [24] one finds a general approximation procedure
for the Newton step, which is then specialized to continuous selection functions and
locally Lipschitzian mappings. In these specializations and also in the above cited
papers one makes use of the Clarke generalized Jacobians and directional/graphical
derivatives. The approach via Clarke generalized Jacobians is closely related to the
notion of semismoothness introduced by Mifflin [27] for real-valued functions. Later,
this notion was extended to vector-valued mappings [32] and gave rise to a family of
semismooth Newton-type methods which are based on the conceptual scheme from
[24] and tailored to various types of nonsmooth equations.

In connection with the radius of metric subregularity analyzed in a recent paper
[4] the authors made use of a special condition relating, for a given multifunction, the
variables and the directions arising in the respective directional limiting coderivative
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490 HELMUT GFRERER AND JI\v R\'I V. OUTRATA

[9], [10]. This condition defines a property of sets and mappings which amounts,
when specified to Lipschitzian functions, to a slightly less restrictive version of the
semismoothness property from [32]. That is why we call it semismoothness*. In fact,
in the case of Lipschitzian vector-valued mappings this property already appeared
(under a different name) in the literature. For example, it is equivalent to assumption
(H2) in [16].

The semismoothness* enables us to construct a new Newton-type method for GEs
which is substantially different from the methods mentioned above. In contrast to [19],
[20], namely, also the multivalued part of the GE is approximated and our approxi-
mation is different from those which are used in [1] and [3]. Indeed, for instance, in
[1] and [3] the authors work with appropriate selections of the graphical derivative of
the considered multifunction, whereas our approximation is constructed on the basis
of a finite number of points from the graph of the limiting (Mordukhovich) coderiva-
tive. This has the advantage that, in concrete situations, the rather rich calculus of
limiting coderivatives can be employed and the Newton step reduces to the solution
of a linear system. The used approximations for the set-valued mapping have further
to be sufficiently accurate. In [1] this is, for instance, ensured by the concept of strict
lower differentiability whereas we use the semismoothness* property.

Finally, in comparison with the general Newton-like scheme in [22], we provide
here a precise description of the iteration process.

The outline of the paper is as follows. In the preliminary section 2 one finds the
necessary background from variational analysis together with some useful auxiliary
results. In section 3 we introduce the semismooth\ast sets and mappings, characterize
them in terms of standard (regular and limiting) coderivatives, and investigate thor-
oughly their relationship to semismooth sets from [15] and the semismooth vector-
valued mappings introduced in [32]. Moreover, in this section also some basic classes
of semismooth\ast sets and mappings are presented. The main results are collected in
sections 4 and 5. In particular, section 4 contains the basic conceptual version of the
new method suggested for the numerical solution of the general inclusion

0 \in F (x),

where F : \BbbR n \rightrightarrows \BbbR n. In this version the ``linearization"" in the Newton step is per-
formed on the basis of the limiting coderivative of F . In many situations of practical
importance, however, F is not semismooth\ast at the solution. Nevertheless, on the basis
of a modified regular coderivative it is often possible to construct a modification of the
limiting coderivative, with respect to which F is semismooth\ast in a generalized sense.
This enables us to suggest a generalized version of the new method which exhibits
essentially the same convergence properties as the basic one.

Both the basic as well as the generalized version include the so-called approxi-
mation step in which one computes an approximative projection of the outcome from
the Newton step onto the graph of F . This is a big difference with respect to most
Newton-type methods in the literature, except, e.g., [1] and the modification of the
(inexact) Josephy--Newton method made in [8], which are related to our approxima-
tion step.

The algorithms presented in section 4 are rather general and can be considered as
a template for an actual implementation. Hence, in section 5 we apply the generalized
variant to a frequently arising GE, where F amounts to the sum of a smooth mapping
and the normal-cone mapping related to a constraint system. A suitable modifica-
tion of the regular coderivative is found and it is shown that F is semismooth\ast with
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ON A SEMISMOOTH* NEWTON METHOD 491

respect to the respective modification of the limiting coderivative. Finally, we derive
implementable procedures both for the approximation as well as for the Newton step.
As a result one thus obtains a locally superlinearly convergent Newton-type method
for a class of GEs without assuming the metric regularity of F. As shown by a sim-
ple example, the method of Josephy may not be always applicable to this class of
problems because the linearized problems need not have a solution.

Our notation is standard. Given a linear space \scrL , \scrL \bot denotes its orthogonal com-
plement and, for a closed cone K with vertex at the origin, K\circ signifies its (negative)
polar. \scrS \BbbR n stands for the unit sphere in \BbbR n and \scrB \delta (x) denotes the closed ball around
x with radius \delta . Further, given a multifunction F , gphF := \{ (x, y) | y \in F (x)\} 
stands for its graph. For an element u \in \BbbR n, \| u\| denotes its Euclidean norm
and [u] is the linear space generated by u. In a product space we use the norm
\| (u, v)\| :=

\sqrt{} 
\| u\| 2 + \| v\| 2. Given a matrix A, we employ the operator norm \| A\| with

respect to the Euclidean norm and the Frobenius norm \| A\| F . Ids is the identity ma-
trix in \BbbR s. Sometimes we write only Id. Given a set \Omega \subset \BbbR s, we define the distance
of a point x to \Omega by d\Omega (x) := dist(x,\Omega ) := inf\{ \| y  - x\| | y \in \Omega \} .

2. Preliminaries. Throughout the whole paper, we will make extensive use of
the following basic notions of modern variational analysis.

Definition 2.1. Let A be a closed set in \BbbR n and \=x \in A. Then
(i) TA(\=x) := Lim supt\searrow 0

A - \=x
t is the tangent (contingent, Bouligand) cone to A

at \=x and \widehat NA(\=x) := (TA(\=x))
\circ is the regular (Fr\'echet) normal cone to A at \=x,

(ii) NA(\=x) := Lim sup A
x\rightarrow \=x

\widehat NA(x) is the limiting (Mordukhovich) normal cone to

A at \=x and, given a direction d \in \BbbR n, NA(\=x; d) := Lim sup t\searrow 0

d\prime \rightarrow d

\widehat NA(\=x + td\prime )

is the directional limiting normal cone to A at \=x in direction d.

If A is convex, then \widehat NA(\=x) = NA(\=x) amounts to the classical normal cone in
the sense of convex analysis and we will write NA(\=x). By the definition, the limiting
normal cone coincides with the directional limiting normal cone in direction 0, i.e.,
NA(\=x) = NA(\=x; 0), and NA(\=x; d) = \emptyset whenever d \not \in TA(\=x).

In what follows, we will also employ the so-called critical cone. In the setting of
Definition 2.1 with a given normal d\ast \in \widehat NA(\=x), the cone

\scrK A(\=x, d
\ast ) := TA(\=x) \cap [d\ast ]\bot 

is called the critical cone to A at \=x with respect to d\ast .
The above listed cones enable us to describe the local behavior of set-valued maps

via various generalized derivatives. Consider a closed-graph multifunction F : \BbbR n \rightrightarrows 
\BbbR m and the point (\=x, \=y) \in gphF .

Definition 2.2.
(i) The multifunction DF (\=x, \=y) : \BbbR n \rightrightarrows \BbbR m, defined by

DF (\=x, \=y)(u) := \{ v \in \BbbR m| (u, v) \in TgphF (\=x, \=y)\} , u \in \BbbR n,

is called the graphical derivative of F at (\=x, \=y).

(ii) The multifunction \widehat D\ast F (\=x, \=y) : \BbbR m \rightrightarrows \BbbR n, defined by

\widehat D\ast F (\=x, \=y)(v\ast ) := \{ u\ast \in \BbbR n| (u\ast , - v\ast ) \in \widehat NgphF (\=x, \=y)\} , v\ast \in \BbbR m,

is called the regular (Fr\'echet) coderivative of F at (\=x, \=y).
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492 HELMUT GFRERER AND JI\v R\'I V. OUTRATA

(iii) The multifunction D\ast F (\=x, \=y) : \BbbR m \rightrightarrows \BbbR n, defined by

D\ast F (\=x, \=y)(v\ast ) := \{ u\ast \in \BbbR n| (u\ast , - v\ast ) \in NgphF (\=x, \=y)\} , v\ast \in \BbbR m,

is called the limiting (Mordukhovich) coderivative of F at (\=x, \=y).
(iv) Given a pair of directions (u, v) \in \BbbR n \times \BbbR m, the multifunction

D\ast F ((\=x, \=y); (u, v)) : \BbbR n \rightrightarrows \BbbR m, defined by

D\ast F ((\=x, \=y); (u, v))(v\ast )

:= \{ u\ast \in \BbbR n| (u\ast , - v\ast ) \in NgphF ((\=x, \=y); (u, v))\} , v\ast \in \BbbR m,

is called the directional limiting coderivative of F at (\=x, \=y) in direction (u, v).

For the properties of the cones TA(\=x), \widehat NA(\=x), and NA(\=x) from Definition 2.1 and
generalized derivatives (i), (ii), and (iii) from Definition 2.2 we refer the interested
reader to the monographs [35] and [28]. The directional limiting normal cone and
coderivative were introduced by the first author in [9] and various properties of these
objects can be found also in [13] and the references therein. Note that D\ast F (\=x, \=y) =
D\ast F ((\=x, \=y); (0, 0)) and that domD\ast F ((\=x, \=y); (u, v)) = \emptyset whenever v \not \in DF (\=x, \=y)(u).

If F is single-valued, \=y = F (\=x) and we write simply DF (\=x), \widehat D\ast F (\=x), and D\ast F (\=x).
If F is Fr\'echet differentiable at \=x, then

(2.1) \widehat D\ast F (\=x)(v\ast ) = \{ \nabla F (\=x)T v\ast \} ,

and if F is even strictly differentiable at \=x, then D\ast F (\=x)(v\ast ) = \{ \nabla F (\=x)T v\ast \} .
If a single-valued mapping F is Lipschitzian near \=x, denote by \Omega F the set

\Omega F := \{ x \in \BbbR n | F is differentiable at x\} .

The set

\nabla F (\=x) := \{ A \in \BbbR m\times n | \exists (uk)
\Omega F - \rightarrow \=x such that \nabla F (uk) \rightarrow A\} 

is called the B-subdifferential of F at \=x. The Clarke generalized Jacobian of F at \=x
amounts then to conv\nabla F (\=x). One can prove (see, e.g., [35, Theorem 9.62]) that

(2.2) convD\ast F (\=x)(v\ast ) = \{ AT v\ast | A \in conv\nabla F (\=x)\} .

By the definition of \nabla F (\=x) and (2.1) we readily obtain

\{ AT v\ast | A \in \nabla F (\=x)\} \subseteq D\ast F (\=x)(v\ast ).

The following iteration scheme, which goes back to Kummer [24], is an attempt
for solving the nonlinear system F (x) = 0, where F : \BbbR n \rightarrow \BbbR n is assumed to be
locally Lipschitzian.

Algorithm 1 (Newton-type method for nonsmooth systems).
1. Choose a starting point x(0); set the iteration counter k := 0.
2. Choose A(k) \in conv\nabla F (x(k)) and compute the new iterate x(k+1) = x(k)  - 

A(k) - 1
F (x(k)).

3. Set k := k + 1 and go to 2.
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In order to ensure the locally superlinear convergence of this algorithm to a zero

\=x one has to impose some assumptions. First, all the matrices A(k) - 1
should be

uniformly bounded, which can be ensured by the assumption that all matrices A \in 
conv\nabla F (\=x) are nonsingular. Second, we need an estimate of the form

0 = F (\=x) = F (x(k)) +A(k)(\=x - x(k)) + o(\| \=x - x(k)\| ).

A popular tool for how the validity of this estimate could be ensured is the notion of
semismoothness [27], [32].

Definition 2.3. Let U \subseteq \BbbR n be nonempty and open. A function F : U \rightarrow \BbbR m is
semismooth at \=x \in U if it is Lipschitz near \=x and if

lim
A\in conv\nabla F (\=x+tu\prime )

u\prime \rightarrow u, t\downarrow 0

Au\prime 

exists for all u \in \BbbR n. If F is semismooth at all \=x \in U , we call F semismooth on U .

Given a closed convex cone K \subset \BbbR n with vertex at the origin, then

linK := K \cap ( - K)

denotes the lineality space of K, i.e., the largest linear space contained in K. Denoting
by spanK the linear space spanned by K, it holds that

spanK = K + ( - K), (linK)\bot = spanK\circ , (spanK)\bot = linK\circ .

A subset C \prime of a convex set C \subset \BbbR n is called a face of C if it is convex and if for
each line segment [x, y] \subseteq C with (x, y) \cap C \prime \not = \emptyset one has x, y \in C \prime . The faces of a
polyhedral convex cone K are exactly the sets of the form

\scrF = K \cap [v\ast ]\bot for some v\ast \in K\circ .

Lemma 2.4. Let D \subset \BbbR s be a convex polyhedral set. For every pair (d, \lambda ) \in 
gphND there holds

linTD(d) = lin\scrK D(d, \lambda ) \subseteq \scrK D(d, \lambda ) \subseteq TD(d),(2.3)

ND(d) \subseteq \scrK D(d, \lambda )\circ \subseteq (linTD(d))\bot = spanND(d).(2.4)

Furthermore, for every ( \=d, \=\lambda ) \in gphND there is a neighborhood U of ( \=d, \=\lambda ) such that
for every (d, \lambda ) \in gphND \cap U there is a face \scrF of the critical cone \scrK D(\=x, \=\lambda ) such that
linTD(d) = span\scrF and consequently spanND(d) = (span\scrF )\bot .

Proof. For every w \in linTD(d) we have \pm w \in TD(d) and therefore \pm \langle \lambda ,w\rangle \leq 0
because of \lambda \in ND(d). This yields \langle \lambda ,w\rangle = 0 and consequently

linTD(d) \subseteq \scrK D(d, \lambda ) \subseteq TD(d)

and, by dualizing, (2.4) follows. Since we also have \scrK D(d, \lambda ) \subseteq TD(d), we obtain
lin\scrK D(d, \lambda ) \subseteq linTD(d) \subseteq lin\scrK D(d, \lambda ) implying (2.3).

By [6, Lemma 4H.2] there is a neighborhood U of ( \=d, \=\lambda ) such that for every (d, \lambda ) \in 
gphND\cap U there are two faces \scrF 2 \subseteq \scrF 1 of \scrK D( \=d, \=\lambda ) such that \scrK D(d, \lambda ) = \scrF 1 - \scrF 2. We
claim that lin (\scrF 1  - \scrF 2) = \scrF 2  - \scrF 2. The inclusion lin (\scrF 1  - \scrF 2) \supseteq \scrF 2  - \scrF 2 trivially
holds since \scrF 2  - \scrF 2 = span\scrF 2 is a subspace. Now consider w \in lin (\scrF 1  - \scrF 2) =
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(\scrF 1  - \scrF 2) \cap (\scrF 2  - \scrF 1). Then there are u1, u2 \in \scrF 1 and v1, v2 \in \scrF 2 such that
w = u1 - v1 = v2 - u2, implying 1

2u1+
1
2u2 = 1

2 (v1+v2), i.e., the point
1
2 (v1+v2) \in \scrF 2

is the midpoint of the line segment connecting u1, u2 \in \scrF 1 \subseteq \scrK D(g(\=x), \=\lambda ). Since \scrF 2

is a face of \scrK D(g(\=x), \=\lambda ), u1, u2 \in \scrF 2 follows and thus w \in \scrF 2  - \scrF 2. Thus our claim
holds true and from (2.3) we obtain linTD(d) = lin\scrK D(d, \lambda ) = \scrF 2  - \scrF 2 = span\scrF 2.
This completes the proof of the lemma.

3. On semismooth\ast sets and mappings.

Definition 3.1.
1. A set A \subseteq \BbbR s is called semismooth\ast at a point \=x \in A if for all u \in \BbbR s it

holds that

(3.1) \langle x\ast , u\rangle = 0 \forall x\ast \in NA(\=x;u).

2. A set-valued mapping F : \BbbR n \rightrightarrows \BbbR m is called semismooth\ast at a point (\=x, \=y) \in 
gphF if gphF is semismooth\ast at (\=x, \=y), i.e., for all (u, v) \in \BbbR n\times \BbbR m we have

(3.2) \langle u\ast , u\rangle = \langle v\ast , v\rangle \forall (v\ast , u\ast ) \in gphD\ast F ((\=x, \=y); (u, v)).

In the above definition the semismooth\ast sets and mappings have been defined via
directional limiting normal cones and coderivatives. In some situations, however, it is
convenient to make use of equivalent characterizations in terms of standard (regular
and limiting) normal cones and coderivatives, respectively.

Proposition 3.2. Let A \subset \BbbR s and \=x \in A be given. Then the following three
statements are equivalent:

(i) A is semismooth\ast at \=x.
(ii) For every \epsilon > 0 there is some \delta > 0 such that

(3.3) | \langle x\ast , x - \=x\rangle | \leq \epsilon \| x - \=x\| \| x\ast \| \forall x \in \scrB \delta (\=x) \forall x\ast \in \widehat NA(x).

(iii) For every \epsilon > 0 there is some \delta > 0 such that

(3.4) | \langle x\ast , x - \=x\rangle | \leq \epsilon \| x - \=x\| \| x\ast \| \forall x \in \scrB \delta (\=x) \forall x\ast \in NA(x).

Proof. Assuming that A is not semismooth\ast at \=x, there is u \not = 0, 0 \not = u\ast \in 
NA(\=x;u) such that \epsilon \prime := | \langle u\ast , u\rangle | > 0. By the definition of directional limiting normals

there are sequences tk \downarrow 0, uk \rightarrow u, u\ast 
k \rightarrow u\ast such that u\ast 

k \in \widehat NA(\=x+ tkuk). Then for
all k sufficiently large we have | \langle u\ast 

k, uk\rangle | > \epsilon \prime /2, implying

| \langle u\ast 
k, (\=x+ tkuk) - \=x\rangle | > \epsilon \prime 

2
tk =

\epsilon \prime 

2\| u\ast 
k\| \| uk\| 

\| (\=x+ tkuk) - \=x\| \| u\ast 
k\| .

Hence statement (ii) does not hold for \epsilon = \epsilon \prime /
\bigl( 
4\| u\ast \| \| u\| 

\bigr) 
and the implication (ii)\Rightarrow (i)

is shown.
In order to prove the reverse implication we assume that (ii) does not hold, i.e.,

there is some \epsilon > 0 together with sequences xk \rightarrow \=x and x\ast 
k such that x\ast 

k \in \widehat NA(xk)
and

| \langle x\ast 
k, xk  - \=x\rangle | > \epsilon \| xk  - \=x\| \| x\ast 

k\| 

holds for all k. It follows that xk - \=x \not = 0 and x\ast 
k \not = 0 for all k and, by possibly passing

to a subsequence, we can assume that the sequences (xk  - \=x)/\| xk  - \=x\| and x\ast 
k/\| x\ast 

k\| 

D
ow

nl
oa

de
d 

03
/0

1/
21

 to
 1

40
.7

8.
3.

11
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON A SEMISMOOTH* NEWTON METHOD 495

converge to some u and u\ast , respectively. Then u\ast \in NA(\=x;u) and

| \langle u\ast , u\rangle | = lim
k\rightarrow \infty 

| \langle x\ast 
k, xk  - \=x\rangle | 

\| xk  - \=x\| \| x\ast 
k\| 

> \epsilon ,

showing that A is not semismooth\ast at \=x. This proves the implication (i)\Rightarrow (ii).
Finally, the equivalence between (ii) and (iii) is an immediate consequence of the

definition of limiting normals.

By simply using Definition 3.1 (part 2) we obtain from Proposition 3.2 the fol-
lowing corollary.

Corollary 3.3. Let F : \BbbR n \rightrightarrows \BbbR m and (\=x, \=y) \in gphF be given. Then the
following three statements are equivalent:

(i) F is semismooth\ast at (\=x, \=y).
(ii) For every \epsilon > 0 there is some \delta > 0 such that

| \langle x\ast , x - \=x\rangle  - \langle y\ast , y  - \=y\rangle | (3.5)

\leq \epsilon \| (x, y) - (\=x, \=y)\| \| (x\ast , y\ast )\| \forall (x, y) \in \scrB \delta (\=x, \=y) \forall (y\ast , x\ast ) \in gph \widehat D\ast F (x, y).

(iii) For every \epsilon > 0 there is some \delta > 0 such that

| \langle x\ast , x - \=x\rangle  - \langle y\ast , y  - \=y\rangle | (3.6)

\leq \epsilon \| (x, y) - (\=x, \=y)\| \| (x\ast , y\ast )\| \forall (x, y) \in \scrB \delta (\=x, \=y) \forall (y\ast , x\ast ) \in gphD\ast F (x, y).

On the basis of Definition 3.1, Proposition 3.2, and Corollary 3.3 we may now
specify some fundamental classes of semismooth\ast sets and mappings.

Proposition 3.4. Let A \subset \BbbR s be a closed convex set. Then A is semismooth\ast at
each \=x \in A.

Proof. Since NA(\=x;u) = \{ x\ast \in NA(\=x)| \langle x\ast , u\rangle = 0\} by virtue of [10, Lemma 2.1],
the statement follows immediately from the definition.

Proposition 3.5. Assume that we are given closed sets Ai \subset \BbbR s, i = 1, . . . p,
and \=x \in A :=

\bigcup p
i=1 Ai. If the sets Ai, i \in \=I := \{ j | \=x \in Aj\} , are semismooth\ast at \=x,

then so is the set A.

Proof. Fix any \epsilon > 0 and choose according to Proposition 3.2 \delta i > 0, i \in \=I, such
that for every i \in \=I, every x \in \scrB \delta i(\=x), and every x\ast \in \widehat NAi(x) there holds

| \langle x\ast , x - \=x\rangle | \leq \epsilon \| x\ast \| \| x - \=x\| .

Since the sets Ai, i = 1, . . . , p, are assumed to be closed, there is some 0 < \delta \leq 
min\{ \delta i | i \in \=I\} such that

I(x) := \{ j | x \in Aj\} \subset \=I \forall x \in \scrB \delta (\=x).

Using the identity \widehat NA(x) =
\bigcap 

i\in I(x)
\widehat NAi

(x) valid for every x \in A it follows that (3.3)
holds. Thus the assertion follows from Proposition 3.2.

Thus, in particular, the union of finitely many closed convex sets is semismooth\ast 

at every point. We obtain the following:
1. A closed convex multifunction F : \BbbR n \rightrightarrows \BbbR m is semismooth\ast at every point

(\=x, \=y) \in gphF .
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2. A polyhedral multifunction1 F : \BbbR n \rightrightarrows \BbbR m is semismooth\ast at every point
(\=x, \=y) \in gphF . In particular, for every convex polyhedral set D \subset \BbbR s the
normal cone mapping ND is semismooth\ast at every point of its graph.

Since the semismoothness\ast of mappings is defined via the graph, it follows from
Corollary 3.3 that F : \BbbR n \rightrightarrows \BbbR m is semismooth\ast at (\=x, \=y) \in gphF if and only if
F - 1 : \BbbR m \rightrightarrows \BbbR n is semismooth\ast at (\=y, \=x). Indeed, the relation (3.6) can be rewritten

| \langle y\ast , y  - \=y\rangle  - \langle x\ast , x - \=x\rangle | \leq \varepsilon \| (y, x) - (\=y, \=x)\| \| (y\ast , x\ast )\| \forall (y, x) \in \scrB \delta (\=y, \=x)

\forall ( - x\ast , - y\ast ) \in gphD\ast F - 1(y, x),

which is, in turn, equivalent to the semismoothness\ast of F - 1 at (\=y, \=x).
In some cases of practical importance one has

F (x) = f(x) +Q(x),

where f : \BbbR n \rightarrow \BbbR n is continuously differentiable and Q : \BbbR n \rightrightarrows \BbbR n is a closed-graph
multifunction.

Proposition 3.6. Let \=y \in F (\=x) and Q be semismooth\ast at (\=x, \=y - f(\=x)). Then F
is semismooth\ast at (\=x, \=y).

Proof. Let (u, v) be an arbitrary pair of directions and u\ast \in D\ast F ((\=x, \=y); (u, v))(v\ast ).
By virtue of [13, formula (2.4)] it holds that

D\ast F ((\=x, \=y); (u, v))(v\ast ) = \nabla f(\=x)T v\ast +D\ast Q((\=x, \=y  - f(\=x)); (u, v  - \nabla f(\=x)u))(v\ast ).

Thus, \langle u\ast , u\rangle = \langle \nabla f(\=x)T v\ast + z\ast , u\rangle with some z\ast \in D\ast Q((\=x, \=z); (u,w))(v\ast ), where
\=z = \=y  - f(x) and w = v  - \nabla f(\=x)u. It follows that

\langle u\ast , u\rangle = \langle v\ast ,\nabla f(\=x)u\rangle + \langle z\ast , u\rangle = \langle v\ast ,\nabla f(\=x)u\rangle + \langle v\ast , w\rangle 

due to the assumed semismoothness\ast of Q at (\=x, \=y - f(\=x)). We conclude that \langle u\ast , u\rangle =
\langle v\ast , v\rangle and the proof is complete.

From this statement and the previous development we easily deduce that the
solution map S : y \mapsto \rightarrow x, related to the canonically perturbed GE

y \in f(x) +N\Gamma (x),

is semismooth\ast at any (\=y, \=x) \in gphS provided \Gamma is convex polyhedral. Results of
this sort in terms of the standard semismoothness property can be found, e.g., in [30,
Theorems 6.20 and 6.21].

Let us now figure out the relationship of semismoothness\ast and the classical semis-
moothness in case of single-valued mappings (Definition 2.3). To this purpose note
that for a continuous single-valued mapping F : \BbbR n \rightarrow \BbbR m condition (3.6) is equivalent
(with a possibly different \delta ) to the requirement

| \langle x\ast , x - \=x\rangle  - \langle y\ast , F (x) - F (\=x)\rangle | (3.7)

\leq \epsilon \| (x, F (x)) - (\=x, F (\=x))\| \| (x\ast , y\ast )\| \forall x \in \scrB \delta (\=x) \forall (y\ast , x\ast ) \in gphD\ast F (x).

Proposition 3.7. Assume that F : \BbbR n \rightarrow \BbbR m is a single-valued mapping which
is Lipschitzian near \=x. Then the following two statements are equivalent:

1A mapping whose graph is the union of finitely many convex polyhedral sets.
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(i) F is semismooth\ast at \=x.
(ii) For every \epsilon > 0 there is some \delta > 0 such that

(3.8) \| F (x) - F (\=x) - C(x - \=x)\| \leq \epsilon \| x - \=x\| \forall x \in \scrB \delta (\=x) \forall C \in conv\nabla F (x).

Proof. Let L denote the modulus of Lipschitz continuity of F in some neighbor-
hood of \=x. In order to show the implication (i)\Rightarrow (ii), fix any \epsilon \prime > 0 and choose \delta > 0
such that (3.7) holds with \epsilon = \epsilon \prime /(1 + L2). Consider x \in \scrB \delta (\=x), C \in conv\nabla F (x) and
choose y\ast \in \scrS \BbbR m with

\| F (x) - F (\=x) - C(x - \=x)\| = \langle y\ast , F (x) - F (\=x) - C(x - \=x)\rangle .

By (2.2) there holds CT y\ast \in convD\ast F (x)(y\ast ) and therefore, by the Carath\'eodory
theorem, there are elements x\ast 

i \in D\ast F (x)(y\ast ) and scalars \alpha i \geq 0, i = 1, . . . , N , with\sum N
i=1 \alpha i = 1 and CT y\ast =

\sum N
i=1 \alpha ix

\ast 
i . It follows from (3.7) that

\| F (x) - F (\=x) - C(x - \=x)\| 
= \langle y\ast , F (x) - F (\=x) - C(x - \=x)\rangle = \langle y\ast , F (x) - F (\=x)\rangle  - \langle CT y\ast , x - \=x\rangle 

=

N\sum 
i=1

\alpha i

\bigl( 
\langle y\ast , F (x) - F (\=x)\rangle  - \langle x\ast 

i , x - \=x\rangle 
\bigr) 

\leq 
N\sum 
i=1

\alpha i\epsilon \| (x, F (x)) - (\=x, F (\=x))\| \| (x\ast 
i , y

\ast )\| \leq \epsilon (1 + L2)\| x - \=x\| 

= \epsilon \prime \| x - \=x\| ,

where we have taken into account \| x\ast 
i \| \leq L\| y\ast \| = L and \| F (x) - F (\=x)\| \leq L\| x - \=x\| .

This inequality justifies (3.8) and the implication (i)\Rightarrow (ii) is verified.
Now let us show the reverse implication. Let \epsilon > 0 and choose \delta > 0 such that

(3.8) holds. Consider x \in \scrB \delta (\=x) and (y\ast , x\ast ) \in gphD\ast F (x). Then by (2.2) there is
some C \in conv\nabla F (x) such that x\ast \in CT y\ast and we obtain

| \langle x\ast , x - \=x\rangle  - \langle y\ast , F (x) - F (\=x)\rangle | 
= \langle y\ast , C(x - \=x) - (F (x) - F (\=x))\rangle \leq \| y\ast \| \| F (x) - F (\=x) - C(x - \=x)\| 
\leq \| y\ast \| \epsilon \| x - \=x\| \leq \epsilon \| (x, F (x)) - (\=x, F (\=x))\| \| (x\ast , y\ast )\| .

Thus the implication (ii)\Rightarrow (i) is established and the proposition is shown.

Condition (ii) of Proposition 3.7 can be equivalently written in the form that, for
any C \in conv\nabla F (\=x+ d),

(3.9) \| F (\=x+ d) - F (\=x) - Cd\| = o(\| d\| ) as d \rightarrow 0.

In the terminology of [22, Definition 2] this condition states that the mapping x \rightrightarrows 
conv\nabla F (x) is a Newton map of F at \=x. This is one of the conditions used in
[21, Lemma 10.1] for guaranteeing superlinear convergence of a generalized Newton
method.

If the directional derivative F \prime (\=x; \cdot ) exists (which is the same as the requirement
that the graphical derivative DF (\=x)(\cdot ) is single-valued), then we have (cf. [36]) that

F (\=x+ d) - F (\=x) - F \prime (\=x; d) = o(\| d\| ) as d \rightarrow 0.

This relation, together with (3.9) and [32, Theorem 2.3], now leads directly to the
following result.
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Corollary 3.8. Assume that F : \BbbR n \rightarrow \BbbR m is a single-valued mapping which is
Lipschitzian near \=x. Then the following two statements are equivalent:

(i) F is semismooth at \=x (Definition 2.3).
(ii) F is semismooth\ast at \=x and F \prime (\=x; \cdot ) exists.
In [23] one finds a Lipschitzian univariate function illustrating the difference be-

tween the semismoothness and the semismoothness*.
In Definition 3.1 we have started with semismoothness\ast of sets and extended this

property to mappings via their graphs. For the reverse direction we may use the
distance function.

Proposition 3.9. Let A \subset \BbbR s be closed, \=x \in A. Then A is semismooth\ast at \=x if
and only if the distance function dA is semismooth\ast at \=x.

Proof. The distance function dA(\cdot ) is Lipschitzian with constant 1 and

(3.10) \partial dA(x) =

\Biggl\{ 
NA(x) \cap \scrB 1(0) if x \in A,
x - \Pi A(x)
dA(x) otherwise,

where \Pi A(x) := \{ z \in A | \| z - x\| = dA(x)\} denotes the projection on A (see, e.g., [28,
Theorem 1.33]). Here, \partial dA(x) denotes the limiting (Mordukhovich) subdifferential of
the distance function dA at x (see, e.g., [28, Definition 1.18]). Further, by [35, Theorem
9.61] we have

conv\nabla dA(x) = conv \partial dA(x)

for all x.
We first show the implication ``dA is semismooth\ast at \=x \Rightarrow A is semismooth\ast 

at \=x."" For every x \in A and every 0 \not = x\ast \in NA(x) we have x\ast /\| x\ast \| \in \partial dA(x) \subseteq 
conv\nabla dA(x). Thus, if dA is semismooth\ast at \=x, then it follows from Proposition 3.7
that for every \epsilon > 0 there is some \delta > 0 such that for every x \in \scrB \delta (\=x) \cap A we have

| dA(x) - dA(\=x) - 
\biggl\langle 

x\ast 

\| x\ast \| 
, x - \=x

\biggr\rangle 
| = | 

\biggl\langle 
x\ast 

\| x\ast \| 
, x - \=x

\biggr\rangle 
| \leq \epsilon \| x - \=x\| \forall 0 \not = x\ast \in NA(x).

By taking into account that (3.4) trivially holds for x\ast = 0 and that NA(x) = \emptyset for
x \in \scrB \delta (\=x) \setminus A, by virtue of Proposition 3.2 the set A is semismooth\ast at \=x.

In order to show the reverse implication, assume that A is semismooth\ast at \=x. Fix
any \epsilon > 0 and choose \delta > 0 such that (3.4) holds. We claim that for every x \in \scrB \delta /2(\=x),

and every x\ast \in conv\nabla dA(x) there holds

(3.11) | dA(x) - dA(\=x) - \langle x\ast , x - \=x\rangle | \leq 2\epsilon \| x - \=x\| .

Consider x \in \scrB \delta /2(\=x). We first show the inequality (3.11) for x\ast \in \partial dA(x). Indeed, if
x \in A, then (3.4) implies

| \langle x\ast , x - \=x\rangle | = | dA(x) - dA(\=x) - \langle x\ast , x - \=x\rangle | 
\leq \epsilon \| x\ast \| \| x - \=x\| \leq \epsilon \| x - \=x\| \forall x\ast \in NA(x) \cap \scrB = \partial dA(x).

Otherwise, if x \not \in A, for every x\ast \in \partial dA(x) there is some x\prime \in \Pi A(x) satisfying
x\ast = (x - x\prime )/dA(x). The vector x - x\prime is a so-called proximal normal to A at x\prime and

therefore x - x\prime \in \widehat NA(x
\prime ) \subset NA(x

\prime ) (see [35, Example 6.16]). From \| x\prime  - x\| \leq \| \=x - x\| 
we obtain \| x\prime  - \=x\| \leq 2\| x - \=x\| \leq \delta and we may conclude that

| \langle x - x\prime , x\prime  - \=x\rangle | = | \langle x - x\prime , x\prime  - x\rangle + \langle x - x\prime , x - \=x\rangle | 
= |  - dA(x)

2 + \langle x - x\prime , x - \=x\rangle | \leq \epsilon \| x - x\prime \| \| x\prime  - \=x\| 
\leq 2\epsilon dA(x)\| x - \=x\| .
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Dividing by dA(x) we infer

| dA(x) - 
\biggl\langle 
x - x\prime 

dA(x)
, x - \=x

\biggr\rangle 
| = | dA(x) - dA(\=x) - 

\biggl\langle 
x - x\prime 

dA(x)
, x - \=x

\biggr\rangle 
| \leq 2\epsilon \| x - \=x\| ,

showing that (3.11) holds true in this case as well.
Now consider any x\ast \in conv\nabla dA(x) = conv \partial dA(x). By the Carath\'eodory theo-

rem there are finitely many elements x\ast 
i \in \partial dA(x) together with positive scalars \alpha i,

i = 1, . . . , N , such that
\sum N

i=1 \alpha i = 1 and x\ast =
\sum N

i=1 \alpha ix
\ast 
i , implying

| dA(x) - dA(\=x) - \langle x\ast , x - \=x\rangle | =
\bigm| \bigm| \bigm| \bigm| N\sum 
i=1

\alpha i

\bigl( 
dA(x) - dA(\=x) - \langle x\ast 

i , x - \=x\rangle 
\bigr) \bigm| \bigm| \bigm| \bigm| 

\leq 
N\sum 
i=1

\alpha i| dA(x) - dA(\=x) - \langle x\ast 
i , x - \=x\rangle | 

\leq 
N\sum 
i=1

\alpha i2\epsilon \| x - \=x\| = 2\epsilon \| x - \=x\| .

Thus the claimed inequality (3.11) holds for all x \in \scrB \delta /2(\=x) and all x\ast \in conv\nabla dA(x)
and from Proposition 3.7 we conclude that dA is semismooth\ast at \=x.

Remark 3.10. Combining Proposition 3.2 with the formula (3.10) implies that a
set A is semismooth\ast at \=x if and only if for every \epsilon > 0 there is some \delta > 0 such that\bigm| \bigm| \bigm| \bigm| \biggl\langle x\ast ,

x - \=x

\| x - \=x\| 

\biggr\rangle \bigm| \bigm| \bigm| \bigm| \leq \epsilon \forall x \in A \cap \scrB \delta (\=x), x \not = \=x, \forall x\ast \in \partial dA(x).

From this relation it follows that a set is semismooth\ast at \=x if and only if it is semi-
smooth in the sense of [15, Definition 2.3].

4. A semismooth\ast Newton method. Given a set-valued mapping F : \BbbR n \rightrightarrows 
\BbbR n with closed graph, we want to solve the inclusion

(4.1) 0 \in F (x).

Given (x, y) \in gphF , we denote by \scrA F (x, y) the collection of all pairs of n \times n
matrices (A,B), such that there are n elements (v\ast i , u

\ast 
i ) \in gphD\ast F (x, y), i = 1, . . . , n,

and the ith rows of A and B are u\ast 
i
T and v\ast i

T , respectively. Further we denote

\scrA regF (x, y) := \{ (A,B) \in \scrA F (x, y) | A nonsingular\} .

It turns out that the strong metric regularity of F around (x, y) is a sufficient condition
for the nonemptiness of \scrA regF (x, y). Recall that a set-valued mapping F : \BbbR n \rightrightarrows \BbbR m

is strongly metrically regular around (x, y) \in gphF (with modulus \kappa ) if its inverse
F - 1 has a Lipschitz continuous single-valued localization near (y, x) (with Lipschitz
constant \kappa ) (cf. [28, Definition 5.12]).

Theorem 4.1. Assume that F is strongly metrically regular around (\^x, \^y) \in gphF
with modulus \kappa > 0. Then there is an n \times n matrix C with \| C\| \leq \kappa such that
(Id, C) \in \scrA regF (\^x, \^y).

Proof. Note that  - y\ast \in D\ast F - 1(\^y, \^x)( - x\ast ) if and only if x\ast \in D\ast F (\^x, \^y)(y\ast )
(cf. [35, equation 8(19)]). Let s denote the single-valued localization of the inverse
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mapping F - 1 around (\^y, \^x) which is Lipschitzian with modulus \kappa near \^y. Next take
any element C from the B-subdifferential \nabla s(\=y). Then \| C\| \leq \kappa and for any u\ast we
have  - CTu\ast \in D\ast F - 1(\^y, \^x)( - u\ast ) and consequently u\ast \in D\ast F (\^x, \^y)(CTu\ast ). Taking
u\ast 
i as the ith unit vector and v\ast i = CTu\ast 

i , we obtain that (Id, C) \in \scrA regF (\^x, \^y).

Corollary 4.2. Let (\^x, \^y) \in gphF and assume that there is \kappa > 0 and a se-
quence (xk, yk) \in gphF converging to (\^x, \^y) such that for each k the mapping F is
strongly metrically regular around (xk, yk) with modulus \kappa . Then there is an n \times n
matrix C with \| C\| \leq \kappa such that (Id, C) \in \scrA regF (\^x, \^y).

Proposition 4.3. Assume that the mapping F : \BbbR n \rightrightarrows \BbbR n is semismooth\ast at
(\=x, 0) \in gphF . Then for every \epsilon > 0 there is some \delta > 0 such that for every
(x, y) \in gphF \cap \scrB \delta (\=x, 0) and every pair (A,B) \in \scrA regF (x, y) one has

(4.2) \| (x - A - 1By) - \=x\| \leq \epsilon \| A - 1\| \| (A
...B)\| F \| (x, y) - (\=x, 0)\| .

Proof. Let \epsilon > 0 be arbitrarily fixed, choose \delta > 0 such that (3.6) holds, and
consider (x, y) \in gphF \cap \scrB \delta (\=x, 0) and (A,B) \in \scrA regF (x, y). By the definition of
\scrA F (x, y) we obtain that the ith component of the vector A(x  - \=x)  - By equals
\langle u\ast 

i , x  - \=x\rangle  - \langle v\ast i , y  - 0\rangle and can be bounded by \epsilon \| (x, y)  - (\=x, 0)\| \| (u\ast 
i , v

\ast 
i )\| by (3.6).

Since the Euclidean norm of the vector with components \| (u\ast 
i , v

\ast 
i )\| is exactly the

Frobenius norm of the matrix (A
...B), we obtain

\| A(x - \=x) - By\| \leq \epsilon \| (A
...B)\| F \| (x, y) - (\=x, 0)\| .

By taking into account that

\| (x - A - 1By) - \=x\| = \| A - 1
\bigl( 
A(x - \=x) - By

\bigr) 
\| \leq \| A - 1\| \| A(x - \=x) - By\| ,

the estimate (4.2) follows.

The Newton method for solving generalized equations is not uniquely defined in
general. Given some iterate x(k), we cannot expect in general that F (x(k)) \not = \emptyset or
that 0 is close to F (x(k)), even if x(k) is close to a solution \=x. Thus we first perform
some step which yields (\^x(k), \^y(k)) \in gphF as an approximate projection of (x(k), 0)
on gphF . Further we require that \scrA regF (\^x(k), \^y(k)) \not = \emptyset and compute the new iterate
as x(k+1) = \^x(k)  - A - 1B\^y(k) for some (A,B) \in \scrA regF (\^x(k), \^y(k)).

Algorithm 2 (semismooth\ast Newton-type method for generalized equations).
1. Choose a starting point x(0); set the iteration counter k := 0.
2. If 0 \in F (x(k)), stop the algorithm.
3. Compute (\^x(k), \^y(k)) \in gphF close to (x(k), 0) such that \scrA regF (\^x(k), \^y(k)) \not = \emptyset .
4. Select (A,B) \in \scrA regF (\^x(k), \^y(k)) and compute the new iterate x(k+1) = \^x(k) - 

A - 1B\^y(k).
5. Set k := k + 1 and go to 2.

Of course, the heart of this algorithm is steps 3 and 4. We will call step 3 the
approximation step and step 4 the Newton step.

Before we continue with the analysis of this algorithm let us consider the Newton
step for the special case of a single-valued smooth mapping F : \BbbR n \rightarrow \BbbR n. We have
\^y(k) = F (\^x(k)) and D\ast F (\^x(k))(v\ast ) = \nabla F (\^x(k))T v\ast , yielding

\scrA F (\^x(k), F (\^x(k))) = \{ (B\nabla F (x(k)), B) | B is n\times n matrix\} .
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Thus the requirement (A,B) \in \scrA regF (\^x(k), F (\^x(k))) means that A = B\nabla F (\^x(k))
is nonsingular, i.e., both B and \nabla F (x(k)) are nonsingular. Then the Newton step
amounts to

x(k+1) = \^x(k)  - (B\nabla F (\^x(k))) - 1BF (\^x(k)) = \^x(k)  - \nabla F (\^x(k)) - 1F (\^x(k)).

We see that it coincides with the classical Newton step for smooth functions F . Note
that the requirement that B is nonsingular in order to have

(A,B) \in \scrA regF (\^x(k), F (\^x(k)))

is possibly not needed for general set-valued mappings F (see (5.18) below).
Next let us consider the case of a single-valued Lipschitzian mapping F : \BbbR n \rightarrow 

\BbbR n. As before we have \^y(k) = F (\^x(k)) and for every C \in \nabla F (\^x(k)) we have CT v\ast \in 
D\ast F (\^x(k))(v\ast ). Thus

(4.3) \scrA F (\^x(k), F (\^x(k))) \supseteq 
\bigcup 

C\in \nabla F (\^x(k))

\{ (BC,B) | B is an n\times n matrix\} .

Similarly as above we have that (BC,B) \in \scrA regF (\^x(k), F (\^x(k))) if and only if both
B and C are nonsingular and in this case the Newton step reads as x(k+1) = \^x(k)  - 
C - 1F (\^x(k)). Thus the classical semismooth Newton method of [32], restricted to the
B-subdifferential\nabla F (\^x(k)) instead of the generalized Jacobian conv\nabla F (\^x(k)), fits into
the framework of Algorithm 2. However, note that the inclusion (4.3) will be strict
whenever \nabla F (\^x(k)) is not a singleton: for every u\ast 

i , i = 1, . . . , n, forming the rows
of the matrix B we can take a different Ci \in \nabla F (\^x(k)), i = 1, . . . , n, for generating
the rows CT

i u
\ast 
i of the matrix A. When using such a construction it is no longer

mandatory to require B nonsingular in order to have (A,B) \in \scrA regF (\^x(k), F (\^x(k)))
and thus Algorithm 2 offers a variety of other possibilities for how the Newton step
can be performed.

Given two reals L, \kappa > 0 and a solution \=x of (4.1), we denote

\scrG L,\kappa 
F,\=x (x)

:= \{ (\^x, \^y,A,B) | \| (\^x - \=x, \^y)\| \leq L\| x - \=x\| , (A,B)\in \scrA regF (\^x, \^y), \| A - 1\| \| (A
...B)\| F \leq \kappa \} .

Theorem 4.4. Assume that F is semismooth\ast at (\=x, 0) \in gphF and assume
that there are L, \kappa > 0 such that for every x \not \in F - 1(0) sufficiently close to \=x we

have \scrG L,\kappa 
F,\=x (x) \not = \emptyset . Then there exists some \delta > 0 such that for every starting point

x(0) \in \scrB \delta (\=x) Algorithm 2 either stops after finitely many iterations at a solution or
produces a sequence x(k) which converges superlinearly to \=x, provided we choose in
every iteration (\^x(k), \^y(k), A,B) \in \scrG L,\kappa 

F,\=x (x
(k)).

Proof. By Proposition 4.3, we can find some \=\delta > 0 such that (4.2) holds with
\epsilon = 1

2L\kappa for all (x, y) \in gphF \cap \scrB \delta (\=x, 0) and all pairs (A,B) \in \scrA regF (x, y). Set

\delta := \=\delta /L and consider an iterate x(k) \in \scrB \delta (\=x) \not \in F - 1(0). Then

\| (\^x(k), \^y(k)) - (\=x, 0)\| \leq L\| x(k)  - \=x\| \leq \=\delta 

and consequently

\| x(k+1)  - \=x\| \leq 1

2L\kappa 
\| A - 1\| \| (A

...B)\| FL\| x(k)  - \=x\| \leq 1

2
\| x(k)  - \=x\| 

by Proposition 4.3. It follows that for every starting point x(0) \in \scrB \delta (\=x) Algorithm
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2 either stops after finitely many iterations with a solution or produces a sequence
x(k) converging to \=x. The superlinear convergence of the sequence x(k) is now an easy
consequence of Proposition 4.3.

Remark 4.5. The bound \| (\^x - \=x, \^y)\| \leq L\| x - \=x\| is in particular fulfilled if (\^x, \^y) \in 
gphF satisfies

(4.4) \| (\^x - x, \^y)\| \leq \beta dist((x, 0), gphF )

with some constant \beta > 0, because then we have

\| (\^x - \=x, \^y)\| \leq \| (\^x - x, \^y)\| +\| x - \=x\| \leq \beta dist((x, 0), gphF )+\| x - \=x\| \leq (\beta +1)\| x - \=x\| .

According to Theorem 4.4, the outcome (\^x(k), \^y(k)) \in gphF from the approxima-
tion step has to fulfill the inequality

(4.5) \| (\^x(k), \^y(k)) - (\=x, 0)\| \leq L\| x(k)  - \=x\| .

This estimate, in view of (4.4), holds true in particular if

\| (\^x(k), \^y(k)) - (x(k), 0))\| \leq \beta dist((x(k), 0), gphF ),

i.e., (\^x(k), \^y(k)) is some approximate projection of (x(k), 0) on gphF . In fact, it suffices
when the deviation of (\^x(k), \^y(k)) from the exact projection is proportional to the
distance dist((x(k), 0), gphF ). So the approximation of the projection can be rather
crude.

Note that the requirement (4.5) is stronger than the condition dist(\^x(k), F - 1(0)) \leq 
Ldist(x(k), F - 1(0)) used in the modification of the Josephy--Newton method [8]. The
reason is that we perform a linearization of the set-valued mapping F around the point
(\^x(k), \^y(k)) \in gphF , whereas in the variant of the Josephy--Newton method from [8]
the set-valued part of F is not linearized.

Remark 4.6. Note that in the case of a single-valued mapping F : \BbbR n \rightarrow \BbbR n an ap-
proximation step of the form (\^x(k), \^y(k)) = (x(k), F (x(k))) requires \| (x(k) - \=x, F (x(k)))\| 
\leq L\| x(k) - \=x\| , which is in general only fulfilled if F is calm at \=x, i.e., there is a positive
real L\prime such that \| F (x) - F (\=x)\| \leq L\prime \| x - \=x\| for all x sufficiently near \=x.

Theorem 4.7. Assume that the mapping F is both semismooth\ast at (\=x, 0) and
strongly metrically regular around (\=x, 0). Then all assumptions of Theorem 4.4 are
fulfilled.

Proof. Let s denote the single-valued Lipschitzian localization of F - 1 around
(0, \=x) and let \kappa denote its Lipschitz constant. We claim that for every \beta \geq 1 the

set \scrG 1+\beta ,
\surd 

n(1+\kappa 2)

F,\=x (x) \not = \emptyset for every x sufficiently close to \=x. Obviously there is a

real \rho > 0 such that s is a single-valued localization of F - 1 around (\^y, \^x) for every
(\^x, \^y) \in gphF \cap \scrB \rho (\=x, 0) and, since s is Lipschitzian with modulus \kappa , we obtain
that F is strongly metrically regular around (\^x, \^y) with modulus \kappa . Consider now
x \in \scrB \rho \prime (\=x), where \rho \prime < \rho /(1 + \beta ) and (\^x, \^y) \in gphF satisfying \| (\^x  - x, \^y)\| \leq 
\beta dist((x, 0), gphF ) \leq \beta \| x  - \=x\| . Then \| \^x  - \=x, \^y  - 0\| \leq \beta \| x  - \=x\| + \| (x  - \=x, 0)\| =
(1 + \beta )\| x  - \=x\| < \rho and by Theorem 4.1 there is some matric C with \| C\| \leq \kappa such
that (Id, C) \in \scrA regF (\^x, \^y). Since \| (Id

...C)\| 2F = n+ \| C\| 2F \leq n(1 + \| C\| 2), we obtain

(\^x, \^y, Id, C) \in \scrG 1+\beta ,
\surd 

n(1+\kappa 2)

F,\=x (x) \not = \emptyset .
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To achieve superlinear convergence of the semismooth\ast Newton method, the con-
ditions of Theorem 4.7 need not be fulfilled. We now introduce a generalization
of the concept of semismoothness\ast which enables us to deal with mappings F that
are not semismooth\ast at (\=x, 0) with respect to the directional limiting coderivative
in the sense of Definition 3.1. Our approach is motivated by the characterization
of semismoothness\ast in Corollary 3.3. If F fails to be semismooth\ast at (\=x, 0), then
condition (3.5) does not hold for all (x, y) \in gphF \cap \scrB \delta (\=x, 0) and all elements

(y\ast , x\ast ) \in gph \widehat D\ast F (x, y). However, we can possibly characterize the elements of
the graph of the regular coderivative for which (3.5) holds true. If we use only those
coderivatives in the algorithm, then we can again achieve superlinear convergence.
Further, there is no reason to restrict ourselves to (regular) coderivatives; we can
possibly use other objects which are easier to compute. Namely, the computation
of coderivatives is in general a nontrivial task and in many cases we only have some
inclusions at our disposal. However, we can use the elements from the right-hand side
of this inclusion without hesitation as long as condition (3.5) is fulfilled.

In order to formalize these ideas we introduce the mapping \widehat \scrD \ast F : gphF \rightarrow (\BbbR n \rightrightarrows 
\BbbR n) having the property that for every pair (x, y) \in gphF the set gph \widehat \scrD \ast F (x, y) is a
cone. Further we define the associated limiting mapping \scrD \ast F : gphF \rightarrow (\BbbR n \rightrightarrows \BbbR n)
via

gph\scrD \ast F (x, y) = lim sup

(x\prime ,y\prime )
gphF - \rightarrow (x,y)

gph \widehat \scrD \ast F (x\prime , y\prime ).

Definition 4.8. The mapping F : \BbbR n \rightrightarrows \BbbR n is called semismooth\ast at (\=x, \=y) \in 
gphF with respect to \scrD \ast F if for every \epsilon > 0 there is some \delta > 0 such that

| \langle x\ast , x - \=x\rangle  - \langle y\ast , y  - \=y\rangle | (4.6)

\leq \epsilon \| (x, y) - (\=x, \=y)\| \| (x\ast , y\ast )\| \forall (x, y) \in \scrB \delta (\=x, \=y) \forall (y\ast , x\ast ) \in gph \widehat \scrD \ast F (x, y).

For an example of such a mapping \widehat \scrD \ast F we refer the reader to the next section.
Given (x, y) \in gphF , we denote by \scrA \scrD \ast 

F (x, y) the collection of all pairs of n\times n
matrices (A,B), such that there are n elements (v\ast i , u

\ast 
i ) \in gph\scrD \ast F (x, y), i = 1, . . . , n,

and the ith row of A and B are u\ast 
i
T and v\ast i

T , respectively. Further we denote

\scrA \scrD \ast 

regF (x, y) := \{ (A,B) \in \scrA \scrD \ast 
F (x, y) | A nonsingular\} .

Now we can generalize the previous results by replacing \scrA regF by \scrA \scrD \ast 

regF .

Algorithm 3 (generalized semismooth\ast Newton-like method for generalized equa-
tions).

1. Choose a starting point x(0); set the iteration counter k := 0.
2. If 0 \in F (x(k)), stop the algorithm.
3. Compute (\^x(k), \^y(k)) \in gphF close to (x(k), 0) such that \scrA \scrD \ast 

regF (\^x(k), \^y(k)) \not = \emptyset .
4. Select (A,B) \in \scrA \scrD \ast 

regF (\^x(k), \^y(k)) and compute the new iterate x(k+1) = \^x(k) - 
A - 1B\^y(k).

5. Set k := k + 1 and go to 2.

Given two reals L, \kappa > 0 and a solution \=x of (4.1), we denote

\scrG L,\kappa 
F,\=x,\scrD \ast (x)

:= \{ (\^x, \^y,A,B) | \| (\^x - \=x, \^y)\| \leq L\| x - \=x\| , (A,B)\in \scrA \scrD \ast 

regF (\^x, \^y), \| A - 1\| \| (A
...B)\| F \leq \kappa \} .
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Theorem 4.9. Assume that F is semismooth\ast at (\=x, 0) \in gphF with respect to
\scrD \ast F and assume that there are L, \kappa > 0 such that for every x \not \in F - 1(0) sufficiently

close to \=x we have \scrG L,\kappa 
F,\=x,\scrD \ast (x) \not = \emptyset . Then there exists some \delta > 0 such that for every

starting point x(0) \in \scrB \delta (\=x) Algorithm 3 either stops after finitely many iterations at a
solution or produces a sequence x(k) which converges superlinearly to \=x, provided we
choose in every iteration (\^x(k), \^y(k), A,B) \in \scrG L,\kappa 

F,\=x,\scrD \ast (x(k)).

The proof can be conducted along the same lines as the proof of Theorem 4.4.

5. Solving generalized equations. The algorithms presented in the previous
section are rather general and can be considered as a roadmap for solving the general
inclusion (4.1). For an actual implementation of the approximation step and the
Newton step we need, however, some more information about the mapping F . We
will now illustrate Algorithm 3 by means of a frequently arising class of problems.
Consider the GE

(5.1) 0 \in f(x) +\nabla g(x)TND

\bigl( 
g(x)

\bigr) 
,

where f : \BbbR n \rightarrow \BbbR n is continuously differentiable, g : \BbbR n \rightarrow \BbbR s is twice continuously
differentiable, and D \subseteq \BbbR s is a convex polyhedral set. Denoting \Gamma := \{ x \in \BbbR n | 
g(x) \in D\} , we conclude \nabla g(x)TND

\bigl( 
g(x)

\bigr) 
\subseteq \widehat N\Gamma (x) \subseteq N\Gamma (x) (cf. [35, Theorem 6.14]).

If in addition some constraint qualification is fulfilled, we also have N\Gamma (x) = \widehat N\Gamma (x) =
\nabla g(x)TND(g(x)) and in this case (5.1) is equivalent to the GE

(5.2) 0 \in f(x) + \widehat N\Gamma (x).

Unfortunately, in many situations we cannot apply Algorithm 2 directly to the
GE (5.1) since this would require finding some \^x \in g - 1(D) close to a given x such
that dist(0, f(\^x) + \nabla g(\^x)TND

\bigl( 
g(\^x)

\bigr) 
) is small. This subproblem seems to be of the

same difficulty as the original problem.
A widespread approach is to introduce multipliers and to consider, e.g., the prob-

lem \biggl( 
0
0

\biggr) 
\in \~F (x, \lambda ) :=

\biggl( 
f(x) +\nabla g(x)T\lambda 

(g(x), \lambda 
\bigr) \biggr) 

 - \{ 0\} \times gphND.(5.3)

We suggest here another equivalent reformulation

(5.4)

\biggl( 
0
0

\biggr) 
\in F (x, d) :=

\biggl( 
f(x) +\nabla g(x)TND(d)

g(x) - d

\biggr) 
which avoids the introduction of multipliers as problem variables. Obviously, \=x solves
(5.1) if and only if (\=x, g(\=x)) solves (5.4).

In what follows we define for every \lambda \in \BbbR s the Lagrangian \scrL \lambda : \BbbR n \rightarrow \BbbR n by

\scrL \lambda (x) := f(x) +\nabla g(x)T\lambda .

Next let us consider the regular coderivative of F at some point \^z := ((\^x, \^d),

(\^p\ast , g(\^x)  - \^d)) \in gphF and choose any \^\lambda \in ND( \^d) with \^p\ast = \scrL \^\lambda (\^x). If (x\ast , d\ast ) \in 
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\widehat D\ast F (\^z)(p, q\ast ), we have

0 \geq lim sup

((x,d),(p\ast ,g(x) - d))
gphF - \rightarrow \^z

\langle x\ast , x - \^x\rangle + \langle d\ast , d - \^d\rangle  - \langle p, p\ast  - \^p\ast \rangle  - \langle q\ast , g(x) - d - (g(\^x) - \^d)\rangle 
\| (x - \^x, d - \^d, p\ast  - \^p\ast , g(x) - d - (g(\^x) - \^d))\| 

\geq lim sup
x\rightarrow \^x

(d,\lambda )
gphND - \rightarrow ( \^d,\^\lambda )

\langle x\ast , x - \^x\rangle + \langle d\ast , d - \^d\rangle  - \langle p,\scrL \lambda (x) - \scrL \^\lambda (\^x)\rangle  - \langle q\ast , g(x) - d - (g(\^x) - \^d)\rangle 
\| (x - \^x, d - \^d,\scrL \lambda (x) - \scrL \^\lambda (\^x), g(x) - d - (g(\^x) - \^d))\| 

= lim sup
x\rightarrow \^x

(d,\lambda )
gphND - \rightarrow ( \^d,\^\lambda )

\langle x\ast  - \nabla \scrL \^\lambda (\^x)
T p - \nabla g(\^x)T q\ast , x - \^x\rangle + \langle d\ast + q\ast , d - \^d\rangle  - \langle \nabla g(x)p, \lambda  - \^\lambda \rangle 

\| (x - \^x, d - \^d,\scrL \lambda (x) - \scrL \^\lambda (\^x), g(x) - d - (g(\^x) - \^d))\| 
.

Fixing (d, \lambda ) = ( \^d, \^\lambda ), we obtain

0 \geq lim sup
x\rightarrow \^x

\langle x\ast  - \nabla \scrL \^\lambda (\^x)
T p - \nabla g(\^x)T q\ast , x - \^x\rangle 

\| (x - \^x, 0,\scrL \^\lambda (x) - \scrL \^\lambda (\^x), g(x) - g(\^x))\| 
.

By our differentiability assumption, \scrL \^\lambda and g are Lipschitzian near \^x and therefore
we have

x\ast = \nabla \scrL \^\lambda (\^x)
T p+\nabla g(\^x)T q\ast .

Similarly, when fixing x = \^x, we may conclude that

0 \geq lim sup

(d,\lambda )
gphND - \rightarrow ( \^d,\^\lambda )

\langle d\ast + q\ast , d - \^d\rangle  - \langle \nabla g(\^x)p, \lambda  - \^\lambda \rangle 
\| (0, d - \^d,\nabla g(\^x)T (\lambda  - \^\lambda ), d - \^d)\| 

,

implying d\ast + q\ast \in \widehat D\ast ND( \^d, \^\lambda )(\nabla g(\^x)p). Thus we have shown the inclusion

(5.5)\widehat D\ast F (\^z)(p, q\ast ) \subseteq T (\^x, \^d, \^\lambda )(p, q\ast )

:=
\bigl\{ 
(\nabla \scrL \^\lambda (\^x)

T p+\nabla g(\^x)T q\ast , d\ast ) | d\ast + q\ast \in \widehat D\ast ND( \^d, \^\lambda )(\nabla g(\^x)p)
\bigr\} 
.

It is clear from the existing theory on coderivatives that this inclusion is strict in
general. In order to proceed we introduce the following nondegeneracy condition.

Definition 5.1. We say that (x, d) \in \BbbR n \times \BbbR s is nondegenerate with modulus
\gamma > 0 if

(5.6) \| \nabla g(x)T\mu \| \geq \gamma \| \mu \| \forall \mu \in spanND(d).

We simply say that (x, d) is nondegenerate if (5.6) holds with some modulus \gamma > 0.

Remark 5.2. The point (\^x, \^d) is nondegenerate if and only if

ker\nabla g(\^x)T \cap spanND( \^d) = \{ 0\} ,

which in turn is equivalent to\nabla g(\^x)\BbbR n+linTD( \^d) = \BbbR s. Thus, (\^x, \^d) is nondegenerate
if and only if \^x is a nondegenerate point in the sense of [34] (or [29, Assumption (A2)])

of the mapping g(x) - (g(\^x) - \^d) with respect to D. By [2, equation (4.172)], this is
also related to the nondegenerate points in the sense of [2, Definition 4.70] without
describing the C1-reducibility of the set D.

Remark 5.3. It is not difficult to show that (5.5) holds with equality if (\^x, \^d) is
nondegenerate. However, this property is not important for the subsequent analysis.
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Lemma 5.4. Consider ((\^x, \^d), (\^p\ast , g(\^x)  - \^d)) \in gphF and assume that (\^x, \^d) is
nondegenerate. Then the system

(5.7) \^p\ast = f(\^x) +\nabla g(\^x)T\lambda (= \scrL \lambda (\^x)), \lambda \in ND( \^d)

has a unique solution denoted by \^\lambda (\^x, \^d, \^p\ast ).

Proof. By the definition of F , system (5.7) has at least one solution. Now let us

assume that there are two distinct solutions \lambda 1 \not = \lambda 2. Then 0 \not = \lambda 1 - \lambda 2 \in spanND( \^d)
and

\nabla g(\^x)T (\lambda 1  - \lambda 2) = f(\^x) +\nabla g(\^x)T\lambda 1  - (f(\^x) +\nabla g(\^x)T\lambda 2) = \^p\ast  - \^p\ast = 0,

contradicting the nondegeneracy of (\^x, \^d). Hence the solution to (5.7) is unique.

We are now in the position to define the mapping \widehat \scrD \ast F . Given some real \^\gamma > 0,
we define

\widehat \scrD \ast F (\^z)(p, q\ast )

:=

\left\{         
T (\^x, \^d, \^\lambda (\^x, \^d, \^p\ast ))(p, q\ast ) if (\^x, \^d) is nondegenerate with modulus \^\gamma ,

\{ (0, 0)\} if (\^x, \^d) is not nondegenerate

with modulus \^\gamma and (p, q\ast ) = (0, 0),

\emptyset otherwise

(5.8)

for every \^z := (\^x, \^d, \^p\ast , g(\^x)  - \^d) \in gphF with T given by (5.5). We neglect in the
notation the dependence on \^\gamma , which will be specified later.

Theorem 5.5. The mapping F is semismooth\ast with respect to \scrD \ast F at every point
(\=x, g(\=x), 0, 0).

Proof. The proof is by contraposition. Assume on the contrary that there is a
solution (\=x, g(\=x)) to (5.4) together with \epsilon > 0 and sequences

((xk, dk), (p
\ast 
k, g(xk) - dk))

gphF - \rightarrow ((\=x, g(\=x)), (0, 0)),

(x\ast 
k, d

\ast 
k, pk, q

\ast 
k) \in gph \widehat \scrD \ast F ((xk, dk), (p

\ast 
k, g(xk) - dk))

such that

| \langle x\ast 
k, xk  - \=x\rangle + \langle d\ast k, dk  - g(\=x)\rangle  - \langle pk, p\ast k\rangle  - \langle q\ast k, g(xk) - dk\rangle | (5.9)

> \epsilon \| (xk  - \=x, dk  - g(\=x), p\ast k, g(xk) - dk)\| \| (x\ast 
k, d

\ast 
k, pk, q

\ast 
k)\| \forall k.

We may conclude that (x\ast 
k, d

\ast 
k, pk, q

\ast 
k) \not = (0, 0, 0, 0) and consequently (xk, dk) is non-

degenerate with modulus \^\gamma . It follows that the sequence \lambda k := \^\lambda (xk, dk, p
\ast 
k) defined

by Lemma 5.4 fulfills

\^\gamma \| \lambda k\| \leq \| \nabla g(xk)
T\lambda k\| = \| p\ast k  - f(xk)\| 

and hence it is bounded. By possibly passing to a subsequence we can assume that
\lambda k converges to some \=\lambda . It is easy to see that \=\lambda \in ND(g(\=x)) and \scrL \=\lambda (\=x) = 0 and by
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the definition of \widehat \scrD \ast F we obtain from (5.9)

| \langle x\ast 
k, xk  - \=x\rangle + \langle d\ast k, dk  - g(\=x)\rangle  - \langle pk, p\ast k\rangle  - \langle q\ast k, g(xk) - dk\rangle | 

= | \langle \nabla \scrL \lambda k
(xk)

T pk +\nabla g(xk)
T q\ast k, xk  - \=x\rangle + \langle d\ast k + q\ast k, dk  - g(\=x)\rangle  - \langle q\ast k, g(xk) - g(\=x)\rangle 

 - \langle pk,\scrL \lambda k
(xk) - \scrL \=\lambda (\=x)\rangle | 

= | \langle pk,\scrL \lambda k
(\=x) - \scrL \lambda k

(xk) +\nabla \scrL \lambda k
(xk)(xk  - \=x)

+ (\nabla g(xk) - \nabla g(\=x))T (\lambda k  - \=\lambda ) - \nabla g(xk)
T (\lambda k  - \=\lambda )\rangle 

+ \langle q\ast k, g(\=x) - g(xk) +\nabla g(xk)(xk  - \=x)\rangle + \langle d\ast k + q\ast k, dk  - g(\=x)\rangle | 
> \epsilon \| (xk  - \=x, dk  - g(\=x),\scrL \lambda k

(xk), g(xk) - dk)\| \| (x\ast 
k, d

\ast 
k, pk, q

\ast 
k)\| 

\geq \epsilon \| (xk  - \=x, dk  - g(\=x),\scrL \lambda k
(xk))\| \| (d\ast k, pk, q\ast k)\| .

For all k sufficiently large we have

| \langle pk,\scrL \lambda k
(\=x) - \scrL \lambda k

(xk) +\nabla \scrL \lambda k
(xk)(xk  - \=x) + (\nabla g(xk) - \nabla g(\=x))T (\lambda k  - \=\lambda )\rangle 

+ \langle q\ast k, g(\=x) - g(xk) +\nabla g(xk)(xk  - \=x)\rangle | 

\leq \epsilon 

2
\| xk  - \=x\| \| (pk, q\ast k)\| \leq \epsilon 

2
\| (xk  - \=x, dk  - g(\=x),\scrL \lambda k

(xk))\| \| (d\ast k, pk, q\ast k)\| ,

implying
(5.10)

| \langle d\ast k+q\ast k, dk - g(\=x)\rangle  - \langle \nabla g(xk)pk, \lambda k - \=\lambda \rangle | > \epsilon 

2
\| (xk - \=x, dk - g(\=x),\scrL \lambda k

(xk))\| \| (d\ast k, pk, q\ast k)\| .

Next observe that

\| \scrL \lambda k
(xk)\| = \| \scrL \lambda k

(xk) - \scrL \=\lambda (\=x)\| = \| \nabla g(xk)
T (\lambda k  - \=\lambda ) + \scrL \=\lambda (xk) - \scrL \=\lambda (\=x)\| 

and let L > 0 denote some real such that \| \scrL \=\lambda (xk)  - \scrL \=\lambda (\=x)\| \leq L\| xk  - \=x\| \forall k. If
\| xk  - \=x\| < \| \nabla g(xk)

T (\lambda k  - \=\lambda )\| /(L+ 1), then we have

\| \scrL \lambda k
(xk)\| \geq \| \nabla g(xk)

T (\lambda k  - \=\lambda )\|  - \| \scrL \=\lambda (xk) - \scrL \=\lambda (\=x)\| > \| \nabla g(xk)
T (\lambda k  - \=\lambda )\| /(L+ 1),

implying

\| (xk  - \=x,\scrL \lambda k
(xk))\| \geq \| \nabla g(xk)

T (\lambda k  - \=\lambda )\| /(L+ 1).

Obviously this inequality holds as well when \| xk  - \=x\| \geq \| \nabla g(xk)
T (\lambda k  - \=\lambda )\| /(L+1).

Further, by Lemma 2.4 for every k sufficiently large there is a face \scrF k of \scrK D(g(\=x), \=\lambda )
with spanND(dk) = (span\scrF k)

\bot and, since a convex polyhedral set has only finitely
many faces, by possibly passing to a subsequence, we may assume that \scrF k = \scrF 
\forall k. Then \=\lambda = limk\rightarrow \infty \lambda k \in (span\scrF )\bot and consequently \lambda k  - \=\lambda \in (span\scrF )\bot =
spanND(dk). This yields \| \nabla g(xk)

T (\lambda k  - \=\lambda )\| \geq \^\gamma \| \lambda k  - \=\lambda \| by the nondegeneracy of
(xk, dk) and we obtain the inequality

\| (xk  - \=x, dk  - g(\=x),\scrL \lambda k
(xk))\| \geq min\{ \^\gamma 

L+ 1
, 1\} \| (dk  - g(\=x), \lambda k  - \=\lambda )\| .

Now let us choose some upper bound C \geq 1 for the bounded sequence \| \nabla g(xk)\| in
order to obtain

\| (d\ast k, pk, q\ast k)\| \geq \| (d\ast k + q\ast k, pk)\| \surd 
2

\geq \| (d\ast k + q\ast k,\nabla g(xk)pk)\| 
C
\surd 
2

.
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508 HELMUT GFRERER AND JI\v R\'I V. OUTRATA

Thus we derive from (5.10)

| \langle d\ast k + q\ast k, dk  - g(\=x)\rangle  - \langle \nabla g(xk)pk, \lambda k  - \=\lambda \rangle | 

>
\epsilon 

2
\surd 
2C

min\{ \^\gamma 

L+ 1
, 1\} \| dk  - g(\=x), \lambda k  - \=\lambda \| \| (d\ast k + q\ast k,\nabla g(xk)pk)\| ,

showing, together with d\ast k + q\ast k \in \widehat D\ast ND(dk, \lambda k)(\nabla g(xk)pk), that the mapping ND is
not semismooth\ast at (g(\=x), \=\lambda ). This contradicts our result from section 3.1 and the
theorem is proven.

Note that the mapping F will in general not be semismooth\ast in the sense of
Definition 3.1 at a solution (\=x, g(\=x)) to (5.4), provided (\=x, g(\=x)) is not nondegenerate.

It is quite surprising that no constraint qualification is required in Theorem 5.5.
In fact, there is a constraint qualification hidden in our assumption because usually
we are interested in solutions of (5.2) and here we assume that a solution to (5.1)
is given. Based on Theorem 5.5, in a forthcoming paper we will present a locally
superlinearly convergent Newton-type algorithm which does not require, apart from
the solvability of (5.1), any other constraint qualification. In this paper we want just
to demonstrate the basic principles of how the approximation step and the Newton
step can be performed. Therefore, for the ease of presentation, in the remainder of
this section we will impose the following.

Assumption 1. (\=x, g(\=x)) is a nondegenerate solution to (5.4) with modulus \=\gamma .

In the following lemma we summarize two easy consequences of Assumption 1.
Recall that a mapping G : \BbbR n \rightrightarrows \BbbR m is metrically regular around (\=x, \=y) \in gphG if
there are neighborhoods U of \=x and V of \=y along with a positive real \kappa such that

dist(x,G - 1(y)) \leq \kappa dist(y,G(x)) \forall (x, y) \in U \times V.

Lemma 5.6. Assume that Assumption 1 is fulfilled. Then there is a neighborhood
W of (\=x, g(\=x)) such that all points (x, d) \in W are nondegenerate with modulus \=\gamma /2.
Further, the mapping x \rightrightarrows g(x) - D is metrically regular around (\=x, 0) and the mapping
u \rightrightarrows g(\=x) +\nabla g(\=x)u - D is metrically regular around (0, 0).

Proof. We show the first assertion by contraposition. Assume on the contrary that
there are sequences (xk, dk) \rightarrow (\=x, g(\=x)) and (\mu k) such that \mu k \in spanND(dk) \cap \scrS \BbbR s

and \| \nabla g(xk)
T\mu k\| < \=\gamma /2 for all k. By possibly passing to a subsequence we can assume

that \mu k converges to some \=\mu \in \scrS \BbbR s satisfying \| \nabla g(\=x)T \=\mu \| \leq \=\gamma /2. SinceD is polyhedral
we have ND(dk) \subset ND(g(\=x)) for all k sufficiently large implying \=\mu \in spanND(g(\=x)),
which contradicts our assumption on the modulus of nondegeneracy at (\=x, g(\=x)). In
order to show the metric regularity property of the two mappings just note that
Assumption 1 implies

\nabla g(\=x)T\mu = 0, \mu \in ND(g(\=x)) \subset spanND(g(\=x)) \Rightarrow \mu = 0.

Now the assertion follows from [35, Example 9.44].

We now want to specialize the approximation step and the Newton step for the
GE (5.4). In this case the approximation step can be performed as follows.

Algorithm 4 (approximation step). Input: x \in \BbbR n.
1. Compute a solution \^u of the strictly convex quadratic program

QP (x) min
u\in \BbbR n

1

2
\| u\| 2 + f(x)Tu

subject to g(x) +\nabla g(x)u \in D
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together with an associated multiplier \^\lambda \in ND(g(x) +\nabla g(x)\^u) satisfying

(5.11) \^u+ f(x) +\nabla g(x)T \^\lambda = \^u+ \scrL \^\lambda (x) = 0.

2. Set \^x := x, \^d := g(x) +\nabla g(x)\^u, \^p\ast := \scrL \^\lambda (\^x), \^y := (\^p\ast , g(\^x) - \^d).

Obviously we have
\bigl( 
(\^x, \^d), \^y

\bigr) 
\in gphF . Program QP (x) amounts exactly to prob-

lem \scrP (x) in [8, p. 708] in the case when (5.1) describes first-order optimality conditions
for a nonlinear program, i.e., when f = \nabla \phi for some objective \phi and D = \BbbR s

 - . In
fact, both QP (x) and \scrP (x) serve the same purpose, namely, the computation of an
appropriate modification of the current iterate. The modified Wilson method, inves-
tigated in [8], is, however, completely different from our method, e.g., in [8] a system
in variables (x, \lambda ) related to (5.3) is solved and we consider the inclusion (5.4) with
variables (x, d).

In the following proposition we state some properties of the output of Algorithm 4
when the input x is sufficiently close to \=x. We denote by \=\lambda := \^\lambda (\=x, g(\=x), 0) the unique
multiplier associated with the nondegenerate solution (\=x, g(\=x)) of (5.4) (cf. Lemma
5.4).

Proposition 5.7. Under Assumption 1 there is a positive radius \rho and positive
reals \beta , \beta u, and \beta \lambda such that for all x \in \scrB \rho (\=x) the problem QP (x) has a unique

solution and the output \^x, \^d, \^\lambda , \^y, and \^u of Algorithm 4 fulfills

\| \^u\| \leq \beta u\| x - \=x\| ,(5.12)

\| 
\bigl( 
(\^x, \^d), \^y

\bigr) 
 - 
\bigl( 
(\=x, g(\=x)), (0, 0)

\bigr) 
\| \leq \beta \| \^u\| ,(5.13)

\| \^\lambda  - \=\lambda \| \leq \beta \lambda \| x - \=x\| .(5.14)

Further, (\^x, \^d) is nondegenerate with modulus \=\gamma /2 and ND( \^d) \subseteq ND(g(\=x)).

Proof. Let \~\Gamma (x) := \{ u | \~g(x, u) := g(x)+\nabla g(x)u \in D\} denote the feasible region
of the problem QP (x). By Lemma 5.6 the mapping u \rightrightarrows \~g(\=x, u)  - D is metrically
regular around (0, 0). Considering x as a parameter and u as the decision variable,
by [11, Corollary 3.7] the system \~g(x, u) \in D has the so-called Robinson stability
property at (\=x, 0), implying \~\Gamma (x) \not = \emptyset for all x belonging to some neighborhood U \prime of
\=x. Thus the feasible region of the quadratic program QP (x) is not empty and, since
the objective is strictly convex, for every x \in U \prime the existence of a unique solution
\^u follows. Obviously, \^u = 0 is the unique solution of QP (\=x). The convexity of the
quadratic program QP (x) ensures that \^u is a solution if and only if the first-order
optimality condition

(5.15) 0 \in \~f(x, \^u) +\nabla u\~g(x, \^u)
TND(\~g(x, \^u))

with \~f(x, u) := u + f(x) is fulfilled. Defining for every \lambda \in \BbbR s the linear mapping
\~\scrF \lambda : \BbbR n \rightarrow \BbbR n by \~\scrF \lambda v := \nabla u

\~f(\=x, 0)v + \nabla 2
u\langle \lambda T \~g(\cdot )\rangle (\=x, 0)v = v, we obviously have

\langle \~\scrF \lambda v, v\rangle = \| v\| 2 > 0 \forall v \not = 0 and therefore all assumptions of [12, Theorem 6.2] for
the isolated calmness property of the solution map to the parameterized variational
system (5.15) are fulfilled. Thus there is a positive radius \rho \prime and some constant
\beta u > 0 such that \scrB \rho \prime \subset U \prime and for every x \in B\rho \prime (\=x) the solution \^u to QP (x) fulfills
the inequality \| \^u\| \leq \beta u\| x - \=x\| . Setting L := sup\{ \| \nabla g(x)\| | x \in \scrB \rho \prime (\=x)\} , we obtain

\| \^d - g(\=x)\| \leq \| g(x) - g(\=x)\| + \| \nabla g(x)\^u\| \leq L(\| x - \=x\| + \| \^u\| ) \leq L(1 + \beta u)\| x - \=x\| 
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and

\| \^y\| = \| (\^p\ast , g(\^x) - \^d)\| = \|  - (\^u,\nabla g(x)\^u)\| \leq 
\sqrt{} 
1 + L2\| \^u\| \leq 

\sqrt{} 
1 + L2\beta u\| x - \=x\| ,

implying that (5.13) holds with \beta 2 = 1 + L2(1 + \beta u)
2 + (1 + L2)\beta 2

u. Next we choose
0 < \rho \leq \rho \prime such that \scrB \rho (\=x)\times \scrB \beta \rho (g(\=x)) is contained in the neighborhood W given by

Lemma 5.6. Then (\^x, \^d) is nondegenerate with modulus \=\gamma /2 and we obtain

\=\gamma 

2
\| \^\lambda \| \leq \| \nabla g(x)T \^\lambda \| = \|  - \^u - f(x)\| ,

D is polyhedral, there is some neighborhood O of g(\=x) such that ND(d) \subseteq ND(g(\=x))
for all d \in D\cap O, and we may assume that \rho is chosen small enough so that \scrB \beta \rho (g(\=x)) \subset 
O. Then \^\lambda  - \=\lambda \in spanND(g(\=x)) and we obtain

\=\gamma \| \^\lambda  - \=\lambda \| 
\leq \| \nabla g(\=x)T (\^\lambda  - \=\lambda )\| \leq \| \nabla g(x)T \^\lambda  - \nabla g(\=x)T \=\lambda \| + \| \nabla g(x)T \^\lambda  - \nabla g(\=x)T \^\lambda \| 
= \|  - f(x) - \^u+ f(\=x)\| + \| \nabla g(x) - \nabla g(\=x)\| \| \^\lambda \| \leq (Lf + \beta u + L\nabla g\| \^\lambda \| )\| x - \=x\| ,

where Lf and L\nabla g denote the Lipschitz moduli of f and \nabla g in \scrB \rho (\=x), respectively.
This implies (5.14).

Having performed the approximation step, we now turn to the Newton step. We
start with the following auxiliary lemma.

Lemma 5.8. Let \^d \in D and let \^l := dim(linTD( \^d)). Then for every s \times (s  - \^l)

matrix \^W , whose columns belong to ND( \^d) and form a basis for spanND( \^d), and for
every \^x \in \BbbR n there holds

(5.16) \{ u | \nabla g(\^x)u \in linTD( \^d)\} = \{ u | \^WT\nabla g(\^x)u = 0\} .

Moreover, if (\^x, \^d) is nondegenerate, then \^WT\nabla g(\^x) has full row rank s - \^l.

Proof. Equation (5.16) is an immediate consequence of the relation

\nabla g(\^x)u\in linTD( \^d) = (spanND( \^d))\bot = (Range \^W )\bot \leftrightarrow \forall w \in \BbbR s - \^l\langle \^Ww,\nabla g(\^x)u\rangle = 0

\leftrightarrow \^WT\nabla g(\^x)u = 0.

Now assume that \^WT\nabla g(\^x) does not have full row rank and there is some 0 \not = \mu \in 
\BbbR s - \^l with \mu T \^WT\nabla g(\^x) = 0. Then 0 \not = \^W\mu \in spanND( \^d) and \nabla g(\^x)T ( \^W\mu ) = 0,

contradicting the nondegeneracy of (\^x, \^d).

Assume now that (\^x, \^d) is nondegenerate with modulus \^\gamma . One can extract from
[5, proof of Theorem 2] that

\widehat NgphND
( \^d, \^\lambda ) = \scrK D( \^d, \^\lambda )\circ \times \scrK D( \^d, \^\lambda ).

Thus, by (5.8), for (p, q\ast ) \in \BbbR n \times \BbbR s the set \^\scrD F
\bigl( 
(\^x, \^d), (\^p\ast , g(\^x) - \^d)

\bigr) 
(p, q\ast ) consists

of the elements (\nabla \scrL \^\lambda (\^x)
T p+\nabla g(\^x)T q\ast , d\ast ) such that

d\ast + q\ast \in \widehat D\ast ND( \^d, \^\lambda )(\nabla g(\^x)p) =

\Biggl\{ 
\scrK D( \^d, \^\lambda )\circ if  - \nabla g(\^x)p \in \scrK D( \^d, \^\lambda ),

\emptyset else.
(5.17)
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We have to compute suitable matrices (A,B) \in \scrA \scrD \ast 

regF
\bigl( 
(\^x, \^d), (\^p\ast , g(\^x) - \^d)

\bigr) 
. This is

done by choosing suitable elements (pi, q
\ast 
i , d

\ast 
i ), i = 1, . . . , n + s, fulfilling (5.17), and

setting Ai, Bi, the ith row of A and B, respectively, to

Ai :=
\Bigl( 
pTi \nabla \scrL \^\lambda (\^x) + q\ast i

T\nabla g(\^x)
... d\ast i

T
\Bigr) 
, Bi :=

\Bigl( 
pTi

... q\ast i
T
\Bigr) 
, i = 1, . . . , n+ s.

Denoting \^l := dim(linTD( \^d)), we have dim(spanND( \^d)) = s - \^l and we can find an

s\times (s - \^l) matrix \^W , whose columns belong to ND( \^d) and form a basis for spanND( \^d)

(cf. Lemma 5.8). The (s  - \^l) \times n matrix \^WT\nabla g(x) has full row rank s  - \^l and thus

we can find vectors pi, i = 1, . . . , n  - (s  - \^l), constituting an orthonormal basis for

ker \^WT\nabla g(x) and set d\ast i = q\ast i = 0, i = 1, . . . , n - (s - \^l). By (2.3) and (5.16) we have

 - \nabla g(\^x)pi \in \scrK D( \^d, \^\lambda ) and d\ast i + q\ast i = 0 \in \scrK D( \^d, \^\lambda )\circ trivially holds. The next elements

pi, i = n  - (s  - \^l) + 1, . . . , n + s, are all chosen as 0. Further we choose the s  - \^l

elements q\ast i , i = n - (s - \^l)+1, . . . , n, as the columns of the matrix \^W and set d\ast i = 0.
Finally we set q\ast i :=  - d\ast i := ei - n, i = n+ 1, . . . , n+ s, where ej denotes the jth unit
vector.

With this choice, the corresponding matrices (A,B) \in \scrA \scrD \ast 
F
\bigl( 
(\^x, \^d), (\^p\ast , g(\^x) - \^d)

\bigr) 
are given by

(5.18) A =

\left(      
\^ZT\nabla \scrL \^\lambda (\^x)

... 0
\cdot \cdot \cdot \cdot \cdot \cdot 

\^WT\nabla g(\^x)
... 0

\cdot \cdot \cdot \cdot \cdot \cdot 
\nabla g(\^x)

...  - Ids

\right)      , B =

\left(      
\^ZT

... 0
\cdot \cdot \cdot \cdot \cdot \cdot 
0

... \^WT

\cdot \cdot \cdot \cdot \cdot \cdot 
0

... Ids

\right)      ,

where \^Z is the n \times (n  - (s  - \^l)) matrix with columns pi, i = 1, . . . , n  - (s  - \^l). In
particular, we have \^ZT \^Z = Idn - (s - \^l) and \^WT\nabla g(x) \^Z = 0. Note that the matrix B

in (5.18) is certainly not nonsingular.

Lemma 5.9. Assume that the matrix G := \^ZT\nabla \scrL \^\lambda (\^x)
\^Z is nonsingular. Then the

matrix A in (5.18) is nonsingular and

(5.19) A - 1 =

\left(  \^ZG - 1
... (Idn  - \^ZG - 1 \^ZT\nabla \scrL \^\lambda (\^x))C

\dagger ... 0
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 

\nabla g(\^x) \^ZG - 1
... \nabla g(\^x)(Idn  - \^ZG - 1 \^ZT\nabla \scrL \^\lambda (\^x))C

\dagger ...  - Ids

\right)  ,

where the n \times (s  - \^l) matrix C\dagger := CT (CCT ) - 1 is the Moore--Penrose inverse of
C := \^WT\nabla g(\^x).

Proof. The proof follows by the observation that the product of A with the matrix
on the right-hand side of (5.19) is the identity matrix.

Since D is polyhedral, there are only finitely many possibilities for ND( \^d) and we
assume that for identical normal cones we always use the same matrix \^W .

Note that the matrix \^Z and consequently also the matrices G and G - 1 are not
uniquely given. Let Z1, Z2 be two n\times (n - (s - \^l)) matrices whose columns form an
orthogonal basis of kerC and Gi := ZT

i \nabla \scrL \^\lambda (\^x)Zi, i = 1, 2. Then Z2 = Z1V , where
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the matrix V := ZT
1 Z2 is orthogonal, and consequently

G2 = V TG1V, G - 1
2 = V TG - 1

1 V, Z2G
 - 1
2 = Z1G

 - 1
1 V, Z2G

 - 1
2 ZT

2 = Z1G
 - 1
1 ZT

1 ,

\| G2\| = \| G1\| , \| G2\| F = \| G1\| F , \| Z2G
 - 1
2 \| = \| Z1G

 - 1
1 \| , \| Z2G

 - 1
2 \| F = \| Z1G

 - 1
1 \| F .

It follows that the property of invertibility of G (and consequently the invertibility
of A), the matrix \^ZG - 1 \^ZT , and the quantity \| A - 1\| F \| (A

...B)\| F are independent of
the particular choice of \^Z. In order to ensure that A - 1 exists and is bounded, a
suitable second-order condition has to be imposed. By Lemma 5.9 this is ensured by
the following assumption.

Assumption 2. For every face \scrF of the critical cone \scrK D(g(\=x), \=\lambda ) there is a matrix
Z\scrF , whose columns form an orthogonal basis of \{ u | \nabla g(\=x)u \in span\scrF \} , such that
the matrix ZT

\scrF \scrL \=\lambda (\=x)Z\scrF is nonsingular.

In fact, if ZT
\scrF \scrL \=\lambda (\=x)Z\scrF is nonsingular, then ZT\scrL \=\lambda (\=x)Z is nonsingular for every

matrix Z representing the subspace \{ u | \nabla g(\=x)u \in span\scrF \} .
Remark 5.10. In the case when D = \BbbR s

 - , let \=I := \{ i \in \{ 1, . . . , s\} | gi(\=x) = 0\} 
denote the index set of active inequality constraints and let \=I+ := \{ i \in \=I | \=\lambda i > 0\} 
denote the index set of positive multipliers. Then the faces of \scrK \BbbR s

 - 
(g(\=x), \=\lambda ) are exactly

the sets
\{ d \in \BbbR s | di = 0, i \in J, di \leq 0, i \in \=I \setminus J\} , \=I+ \subseteq J \subseteq \=I.

Thus Assumption 2 says that for every index set \=I+ \subseteq J \subseteq \=I and every matrix ZJ ,
whose columns form an orthogonal basis of the subspace \{ u | \nabla gi(\=x)u = 0, i \in 
J\} , the matrix ZT

J \scrL \=\lambda (\=x)ZJ is nonsingular. However, we do not require that all the
matrices ZT

J \scrL \=\lambda (\=x)ZJ have the same determinantal sign and therefore Assumption 2
is weaker than the so-called strong coherent orientation condition (SCOC) of [7] (cf.
the discussion on SCOC in [26]).

Proposition 5.11. Assume that at the solution \=x of (5.1) both Assumptions 1

and 2 are fulfilled and let \widehat \scrD \ast F be given by (5.8) with \^\gamma = \=\gamma /2. Then there are con-
stants \~L, \kappa > 0 such that for every x sufficiently close to \=x not solving (5.1) and for

every d \in \BbbR s
 - the quadruple ((\^x, \^d), (\^p\ast , g(\^x) - \^d), A,B) belongs to \scrG \~L,\kappa 

F,(\=x,g(\=x)),\scrD \ast (x, d),

where \^x, \^d, \^p\ast are the result of Algorithms 4 and A,B are given by (5.18). In partic-

ular, \scrG \~L,\kappa 
F,(\=x,g(\=x)),\scrD \ast (x, d) \not = \emptyset .

Proof. Let \rho , \beta , \beta u, \beta \lambda , and U be as in Proposition 5.7 and Lemma 5.8, respec-
tively, and set \~L := \beta \beta u. By possibly reducing \rho we may assume that \scrB \rho (\=x) \times 
\scrB \beta \lambda \rho (

\=\lambda ) \subset U . Then, for every x \in \scrB \rho (\=x) and every d \in \BbbR s
 - we have

(5.20) \| (\^x, \^d, \^p\ast , g(\^x) - \^d) - (\=x, g(\=x), 0, 0)\| \leq \beta \beta u\| x - \=x\| \leq \~L\| (x, d) - (\=x, g(\=x))\| 

by Proposition 5.7 and it remains to show that \| A - 1\| F \| (A
...B)\| F is uniformly bounded

for x close to \=x. We consider the following possibility for computing a matrix \^Z,
whose columns are an orthonormal basis for a given m \times n matrix C. Let Q be
an n \times n orthogonal matrix such that CQ = (L

... 0), where L is an m \times m lower
triangular matrix. If rankC = m, then \^Z can be taken as the last n  - m col-
umns of Q (cf. [14, section 5.1.3]). This can be practically done by so-called House-
holder transformations (see, e.g., [14, section 2.2.5.3]). When performing the House-
holder transformations, the signs of the diagonal elements of L are usually chosen
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in such a way that cancellation errors are avoided. However, when modifying the
Householder transformations in order to obtain nonnegative diagonal elements Lii,
it can be easily seen that the algorithm produces Q and L depending in a contin-
uously differentiable way on C, provided C has full row rank. Since the quantity
\| A - 1\| F \| (A

...B)\| F does not depend on the particular choice of \^Z, we can assume
that \^Z is computed in such a way. Now assume that the statement of the proposi-
tion does not hold true. In view of (5.20) there must be a sequence xk converging

to \=x such that Algorithm 4 produces with input xk the quantities \^xk, \^\lambda k, \^p\ast k, and
\^dk, resulting by (5.18) in matrices \^Wk, \^Zk, Ak, Bk, where either Ak is singular or
\| Ak

 - 1\| F \| (Ak

...Bk)\| F \rightarrow \infty as k \rightarrow \infty . Since there are only finitely many possibili-
ties for \^Wk and there are only finitely many faces of \scrK D(g(\=x), \=\lambda ), we can assume that
\^Wk = \^W and linTD( \^d) = span\scrF \forall k for some face \scrF of \scrK D(g(\=x), \=\lambda ) by Lemma 2.4. In
view of (5.16) we have \{ u | \nabla g(\=x)u \in span\scrF \} = ker( \^WT\nabla g(\=x)) and we can assume
that the matrix Z\scrF is computed as above via an orthogonal factorization of the ma-
trix \^WT\nabla g(\=x). It follows that \^Zk converges to Z\scrF and thus \^ZT

k \scrL \^\lambda k
(\^xk) \^Zk converges

to the nonsingular matrix ZT
\scrF \scrL \=\lambda (\=x)Z\scrF . Thus for all k sufficiently large the matri-

ces \^ZT
k \scrL \^\lambda k

(\^xk) \^Zk are nonsingular and their inverses are uniformly bounded. Since

the matrices \^WT\nabla g(\^xk) converge to the matrix \^WT\nabla g(\=x) having full row rank, its
Moore--Penrose inverses converge to the one of \^WT\nabla g(\=x). From Lemma 5.9 we may
conclude that the matrices Ak are nonsingular and \| Ak

 - 1\| F \| (Ak

...Bk)\| F remains
bounded. Thus the statement of the proposition must hold true.

We are now in position to explicitly write down the Newton step. By Algorithm
3 the new iterate amounts to (\^x, \^d) + (sx, sd) with\biggl( 

sx
sd

\biggr) 
=  - A - 1B

\biggl( 
\^p\ast 

g(\^x) - \^d

\biggr) 
,

i.e., (sx, sd) solves the linear system

\^ZT
\bigl( 
\nabla \scrL \^\lambda (\^x)sx + \scrL \^\lambda (\^x)

\bigr) 
= 0,

\^WT (g(\^x) +\nabla g(\^x)sx  - \^d) = 0,

g(\^x) +\nabla g(\^x)sx  - ( \^d+ sd) = 0.

Note that by the definition of \^W the second equation can be equivalently written as

g(\^x) +\nabla g(\^x)sx  - \^d \in ker \^WT = (RangeW )\bot = (spanND( \^d))\bot = linTD( \^d).

It appears that we need not compute the auxiliary variables d, sd and the columns of
\^W need not necessarily belong to ND( \^d).

Algorithm 5 (semismooth\ast Newton method for solving (5.1)).
1. Choose a starting point x(0). Set k := 0.
2. If x(k) is a solution of (5.1), stop the algorithm.

3. Run Algorithm 4 with input x(k) in order to compute \^\lambda (k), \^d(k), and \^p\ast (k) =
\scrL \^\lambda (k)(x(k)).

4. Set \^l(k) = dim(linTD( \^d(k))) and compute an s\times (s - \^l(k)) matrix \^W (k), whose

columns form a basis for spanND( \^d(k)) and then an n\times (n - (s - \^l(k))) matrix

\^Z(k), whose columns are an orthogonal basis for ker( \^W (k)T\nabla g(x(k))).
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5. Compute the Newton direction s
(k)
x by solving the linear system

\^Z(k)T
\bigl( 
\nabla \scrL \^\lambda (k)(x

(k))sx + \scrL \^\lambda (k)(x
(k))

\bigr) 
= 0,

\^W (k)T
\bigl( 
g(x(k)) +\nabla g(x(k))sx  - \^d(k)

\bigr) 
= 0

and set x(k+1) := x(k) + s
(k)
x .

6. Increase k := k + 1 and go to step 2.

Theorem 5.12. Assume that \=x solves (5.1) and both Assumptions 1 and 2 are
fulfilled. Then there is a neighborhood U of \=x such that for every starting point x(0) \in 
U Algorithm 5 either stops after finitely many iterations at a solution of (5.1) or
produces a sequence x(k) converging superlinearly to \=x.

Proof. The proof follows from Theorem 4.9 and Proposition 5.11.

We now want to compare Algorithm 5 with the usual Josephy--Newton method for
solving (5.1) via (5.3). Given an iterate (x(k), \lambda (k)), the new iterate (x(k+1), \lambda (k+1))
is computed as a solution of the partially linearized system

(5.21)\biggl( 
0
0

\biggr) 
\in 
\biggl( 

\scrL \lambda (k)(x(k)) +\nabla \scrL \lambda (k)(x(k))(x(k+1)  - x(k)) +\nabla g(x(k))T (\lambda (k+1)  - \lambda (k))
(g(x(k)) +\nabla g(x(k))(x(k+1)  - x(k)), \lambda (k+1))

\biggr) 
 - \{ 0\} \times gphND,

i.e.,

0 = f(x(k)) +\nabla \scrL \lambda (k)(x(k))(x(k+1)  - x(k)) +\nabla g(x(k))T\lambda (k+1),(5.22)

\lambda (k+1) \in ND(g(x(k)) +\nabla g(x(k))(x(k+1)  - x(k))).

In order to guarantee that (5.21) and (5.22), respectively, are solvable for all (x(k), \lambda (k))
close to (\=x, \=\lambda ) one has to impose an additional condition on \~F given by (5.3), e.g., the
metric regularity of \~F around

\bigl( 
(\=x, \=\lambda ), (0, 0)

\bigr) 
.

On the contrary the approximation step as described in Algorithm 4 requires only
the solution of a strictly convex quadratic programming problem and the Newton step
is performed by solving a linear system. Note that Assumptions 1 and 2 do not imply
that multifunctions x \rightrightarrows f(x) +\nabla g(x)TND(g(x)) or (x, d) \rightrightarrows F (x, d) are metrically
regular around (\=x, 0) and ((\=x, g(\=x)), (0, 0)), respectively.

Example 5.13. Consider the nonlinear complementarity problem

(5.23) 0 \in  - x - x2 +N\BbbR  - (x)

and its solution \=x = 0. Since g(x) = x, we have \nabla g(x) = 1 showing that (0, 0) is
nondegenerate with modulus 1. We obtain \=\lambda = 0 and Assumption 2 follows easily
from \nabla L\=\lambda (\=x) =  - 1. Thus Theorem 5.12 applies and we obtain local superlinear
convergence of Algorithm 5. Indeed, given x(k), the quadratic program QP (x(k))
amounts to

min
u\in \BbbR 

 - (x(k) + x(k)2)u+
1

2
u2 subject to x(k) + u \leq 0,

which has the solution u = min\{ x(k) + x(k)2, - x(k)\} , resulting in \^d(k) = x(k) +
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min\{ x(k)+x(k)2, - x(k)\} = min\{ 2x(k)+x(k)2, 0\} . If 2x(k)+x(k)2 < 0, then T\BbbR  - (
\^d(k)) =

\BbbR , \^\lambda (k) = 0, \^l(k) = 1, \^Z(k) = 1, and the Newton direction sx is given by

\^Z(k)T
\bigl( 
\nabla \scrL \^\lambda (k)(x

(k))sx + \scrL \^\lambda (k)(x
(k))

\bigr) 
=  - (1 + 2x(k))sx  - (x(k) + x(k)2) = 0 \Rightarrow sx

=  - x(k) + x(k)2

1 + 2x(k)
.

This yields x(k+1) = x(k)2/(1 + 2x(k)). On the other hand, if 2x(k) + x(k)2 \geq 0, then

T\BbbR  - (
\^d(k)) = \BbbR  - , \^\lambda 

(k) = 2x(k) + x(k)2, \^l(k) = 0, \^W (k) = 1, and the Newton direction
sx is given by

\^W (k)T (x(k) + sx) = 0 \Rightarrow sx =  - x(k),

resulting in x(k+1) = 0. Hence we obtain in fact locally quadratic convergence of the
sequence produced by Algorithm 5.

Now we want to demonstrate that the Newton--Josephy method does not work
for this simple example. At the kth iterate the problem (5.22) reads as

0 \in  - x(k)  - x(k)2 + ( - 1 - 2x(k))(x(k+1)  - x(k)) + \lambda (k+1)

=  - (1 + 2x(k))x(k+1) + x(k)2 + \lambda (k+1), 0 \leq \lambda (k+1) \bot x(k+1) \leq 0

and this auxiliary problem is not solvable for any x(k) with 0 < | x(k)| \leq 1
2 . The reason

is that the mapping \~F is not metrically regular at (\=x, \=\lambda ).

6. Conclusion. The crucial notion used in developing the new Newton-type
method is the semismooth\ast property, which pertains not only to single-valued map-
pings (like the standard semismoothness) but also to sets and multifunctions. The
second substantial ingredient in this development consists of a novel linearization of
the set-valued part of the considered GE, which is performed on the basis of the re-
spective limiting coderivative. Finally, also very important is the modification of the
semismoothness\ast in Definition 4.8, which enables us to proceed even if the considered
multifunction is not semismooth\ast in the original sense of Definition 3.1.

The new method contains, apart from the Newton step, also the so-called approxi-
mation step, having two principal goals. First, it ensures that in the next linearization
we dispose with a feasible point and, second, it enables us to avoid points (if they ex-
ist) where the imposed regularity assumption is violated. In this way one obtains the
local superlinear convergence without imposing a restrictive regularity assumption at
the solution point (like the strong BD-regularity in [32]).

The application in section 5 illuminates the fact that the implementation to a
concrete class of GEs may be quite demanding. On the other hand, the application
area of the new method seems to be very large. It includes, among other things,
various complicated GEs corresponding to variational inequalities of the second kind,
hemivariational inequalities, etc. Their solution via an appropriate variant of the new
method will be the subject of further research.

Acknowledgments. The authors are indebted to both reviewers for their valu-
able comments and suggestions. Further, they would like to express their gratitude
to D. Klatte, A.Y. Kruger, and B. Kummer for their great help in the revision of this
paper.
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