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Rayleigh model fitting to nonnegative discrete data
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Abstract—The paper deals with modeling ordinal discrete
random variables with a high number of nonnegative realizations.
The prediction of the Rayleigh distribution learned on clusters
of the explanatory variables is proposed. The proposed solution
consists of the clustering and estimation phases based on the
knowledge both of the target and explanatory variables, and the
prediction phase using only the information from the explanatory
variables. The main contributions of the approach are: (i) using
the discretized knowledge of clusters of the explanatory variables
and (ii) describing nonnegative discrete data by the multimodal
Rayleigh distribution. Experiments with a data set from a tram
network are provided.

Index Terms—Poisson distribution, multimodal data, Rayleigh
distribution, recursive estimation, passenger demand

I. INTRODUCTION

The paper deals with modeling ordinal discrete random vari-
ables with a high number of possible nonnegative realizations.
Models of discrete data can be met in various application
fields, for example, marketing [1], medicine [2], queuing
theory [3], passenger demand modeling [4], [5], accident
analysis [6], etc. The extensive list of application fields shows
that novel solutions for analysis of discrete data are highly
desired. Working with multidimensional discrete variables
causes their models being the tables of an enormous dimension
[7], which may be problematic from the computational point
of view. In the case of the specific type of data with a high
number of realizations discussed in the paper, the problem
of dimensionality is even more complicated. Therefore, using
a continuous distribution to fit such large-scale discrete data
opens a way to simplify the calculations [8]. This paper
focuses on using the Rayleigh distribution.

A series of papers solving similar issues have been found.
The study [9] discussed the problem of distribution fitting
for a railway delay data set with a high number of possible
discrete realizations. Discussed distributions included normal,
exponential, log-normal, etc. Methods of distribution fitting
based on the maximum likelihood approach and statistical
hypothesis testing were described with a brief summary of
their advantages and drawbacks.
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The paper [10] proposed distribution fitting to discrete data
using the algebraic algorithm of reconstructing the ellipsoids
with discrete points with the help of the convex hull and
covariance matrix methods. It was shown that the convex hull
method was more sensitive to outliers and deviations from
the normal distribution than the covariance matrix method.
Moreover, it was observed that the convex hull method may
produce inconsistent estimates for non-Gaussian data.

The study [11] is closer to the area discussed in the
presented paper; it proposed the new two-parameter discrete
version of the continuous generalized Rayleigh distribution.
The parameter estimation has been solved using the method
of proportions, method of moments, and maximum likelihood
estimation, which have been compared using Monte Carlo sim-
ulations. In the work [12], the Rayleigh distribution, claimed
as one of the most suitable distributions for histogram of
underwater images, was applied to stretching the histogram
to improve image quality.

In the presented paper, the Rayleigh distribution is consid-
ered for fitting the target discrete variable, which is modeled
by means of explanatory variables. Their relationship could
be described with the help of a regression. To describe non-
negative discrete variables with a high number of realizations,
the Poisson distribution is often assumed. Hence, in the case
of the Poisson distributed variables, the Poisson regression
can be used [13], [14]. Having a multimodal system, which
generates the Poisson data, a mixture of Poisson regressions
seems to be a suitable tool [15]. However, in the applications
where the estimation should be performed online, such as, e.g.,
passenger demand modeling, the mixture estimation with the
Poisson regressions often fails because of the hardly initialized
components. This is known to be a complicated task also
for other distributions aimed at nonnegative data, such as,
e.g., exponential [16], [17]. One of the possibilities is to use
the approximation of the Poisson probability density function
(pdf) by the Gaussian pdf with keeping the assumption of
equal mean and variance, see, e.g., [18]. However, this also
brings a series of limitations regarding the prediction accuracy.

The high number of possible values of the discrete random
variable allows us to attempt to describe it using a contin-
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uous distribution. This paper proposes to use the Rayleigh
distribution learned on clusters of explanatory variables for
estimating and predicting nonnegative data. This choice is
given primarily by the similar shape both of the Poisson
and Rayleigh pdfs designed for nonnegative data. Moreover,
the Rayleigh distributions are closer to the Gaussian pdfs,
mixtures of which are known to be a universal approximation
of nonlinear system behavior [19]. In addition, the assumption
of the equal mean and variance necessary in the case of the
Poisson distribution is difficult to be kept in practice [14].
The Rayleigh distribution is not restricted by this assumption,
although the values of mean and variance are supposed to be
close to each other. Along with the pdf shape, this gives a
chance to fit the Rayleigh model to the considered type of
data. The proposed solution enables to avoid the Poisson (or
logistic) regression with the help of clustering the explanatory
variables. The paper demonstrates the theoretical background
of the solution and provides illustrative experiments.

The layout of the paper is organized as follows. Section
II-A introduces the models and specifies the task to be solved.
Section II-B presents the algorithm of clustering the explana-
tory variables, estimating the predictive models, and predicting
the target variable. Experiments with real data along with a
discussion can be found in Section III. Section IV provides
conclusions.

II. RAYLEIGH MODEL FITTING TO DISCRETE DATA
A. Models

Let us have a target discrete variable y; € {1,2,...,n,}
and the explanatory continuous multidimensional variable z;,
which can be measured on a multimodal system, where the
subscript ¢ denotes discrete time instants. In general, the
relationship of the variables can be described by the following
joint pdf

[y =g, 2| P) = P)f (x| P), ¢))

where j € {1,2,...,n,} and P generally denotes a set of
unknown mutually independent parameters both of the pdfs in
the right hand side of (1). The multimodality of the observed
system supposes that the behavior of the variables also depends
on the discrete pointer variable ¢; € {1,2,...,n.} [20], which
expresses switching the system modes, i.e.,

f(yt = j|xt7

f(yt =7J, T4 c = Z|P)
= f(yr = Jlae, ¢ = 4, P) f(we]ee = 4, P) f(er = 1|P), (2)

where i € {1,2,...,n.} and the set of parameters P should be
completed by the parameters of the pointer model. In reality,
the pointer ¢; is often unmeasured and should be estimated,
which leads to the task of clustering the data.

As it was mentioned in Section I, modeling the discrete
variable y; depending on the continuous variable x; is signif-
icantly complicated in the case of the online estimation of the
multimodal data model leading to the use of the Poisson (or
logistic) regression. In order to avoid it, the clusters of the
variable x; instead of the data x; are assumed to be used in

the pdf f(y: = jlxe, e = i, P) via the estimated values of
c; only. This means that the variable y; depends only on the
cluster detected at time ¢. Under this assumption, the joint pdf
(1) finally takes the form

fe = jles = i,0) f(wi|es = 4,0) f(cr = ila),  (3)

where P = {0, ©, a}, which are mutually independent param-
eters of the involved pdfs.

In this paper, the models in the pdf (3) are specified as
follows. As the variable y, can have the high number of
realizations on the interval from 0 to n,, we propose to
describe it by the Rayleigh distribution

fyiler =i,0) = 2 exp{— } “)
where the parameter o = o, under condition that ¢; = i.

The explanatory variable x; is described by the multivariate
normal distribution existing for each i

f(xiler = 0,0)

= )l exp {3 - 0 o - 0}

where n, is the dimension of the vector x;, the parameter
© = 0, for ¢; =i and ©; = {6;,r;} are the corresponding
expectations and covariance matrices.

The pointer model from the joint pdf (3) is the transition
table

c=1|c¢ =2 Ct = Ne
(05] (6%} (07%%

fler =ila) = (6)

c

where o = {«;}7¢; and «; are nonnegative probabilities of
the value ¢ of the pointer c;.

The specific case considered in the paper assumes that the
values of x; are generated permanently in real time, while y,
can be measured only for a period of time ¢ < mn;. Thus, for
the introduced models, the task can be formulated as follows:
(i) classify the data x; using the estimation of the pointer c¢;
and (ii) predict the variable y; for the time ¢ > n;.

B. Clustering and Prediction Algorithm

1) Clustering and Estimation: For the task of clustering the
data x,, it is necessary to estimate the pointer c¢; along with the
parameters © and «. The knowledge of the detected cluster
labeled by the pointer value is then used in the model (4). The
posterior pdf for the pointer estimation is derived according to
the recursive Bayesian mixture estimation theory [20], [21] via
the marginalization of the joint pdf of all unknown variables

/ / f(©,a, ¢ =i|x(t))dad®, (7)

where ©* and o™ stand for the entire definite space of the
used variables and x(t) denotes the collection of all the data
x; measured up to time ¢ including prior knowledge. Using the

fler =ilz(t)
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Bayes and chain rules [22], the joint pdf inside the integrals
in (7) is decomposed into the models and prior pdfs

f(@iler =1,0) f(Ol(t — 1)) f (e = ile) flalx(t — 1)),

(5) GiW prior pdf (6)

Dir prior pdf

(®)
where GiW denotes the conjugate Gauss-inverse-Wishart prior
pdf for the normal distribution (5), see, e.g., [20], [22], while
Dir stands for the Dirichlet prior pdf conjugate to the pointer
model (6) according to [21]. The statistics of the GiW pdf
are updated recursively by each data item measured at time ¢
using the initial information matrices (Vp); and the counters
(k¢); for each i-th model along with the initialized number of
clusters in the following way

V)i =
(ke)i =

where w;.; is the weight of the i-th model (5) expressing the
probability that the current data item z; belongs to the i-th
cluster, see [20]-[22].

Similarly, the Dirichlet statistics update has the form [21]

1)

with the initial statistics (1p); defined for each 4. The updated
statistics are then used for re-computing the point estimates of
the parameters. More information is available in the mentioned
sources.

The weights are obtained in the following way. The weigh-
ting vector w; = (w1, . .., Wn,;] is computed [20], [21], [23]
as

(Vic1)i + wiy [ git } [zy 1], )

(Kt—1)i + Wiy, (10

()i = (Ve—1)i + wig

Wy = M. * Qyp_q

12)

and normalized. Here, .x means multiplying by entries, &1
is the previous (or initial) point estimate of the parameter «,
and m is the vector of proximities of the current data item x;
to the i-th model (5), which is calculated by substituting x;
and the previous (or initial) point estimates of the parameters
0; and r; into the pdf (5).

According to the assumptions (3), the Rayleigh model (4)
is estimated for each of the clusters detected at time ¢, i.e., for
c: = 1. The Rayleigh statistics update can be easily derived
using the likelihood function of the distribution. Finally, it
takes the following form using the initial statistics (Sp);

(St)i

which is then used for re-computing the point estimate of the
parameter o;, see, e.g., [24]
(St)i

i = 50

With the help of the above relations, the clustering algorithm
can be summarized in the following form.

(Se—1)i + wi;ty?; (13)

(14)

The initialization:
For the time t = 1

1) Set the number of clusters n..

2) Vi

a) Set the initial statistics (Vp):, (ko)i» (v0):; and
(So)i-

b) Using the initial statistics, compute the point esti-
mates éi;O and 7;,0 with the help of partitioning the
information matrix [22] and &g by the normaliza-
tion of the statistics g [21].

The clustering and estimation:
For the time t = 2,3,...,n;

1) Measure data x¢, Y.
2) Vi
a) Obtain the proximities m;.
b) Compute the weights w;,; according to (12).
¢) Update the statistics of the GiW and Dirichlet pdfs
according to (9), (10) and (11).
d) Re-compute the point estimates éi;t,ﬁ;;t and &y,
see [20]-[22].
3) Get the point estimate of the pointer c; according to the
index of the maximum entry of the weighting vector wy.
4) For the i-th cluster corresponding to the value of ¢,

a) Update the statistics of the Rayleigh pdf (4) ac-
cording to (13).

b) Re-compute the point estimate of the parameter o;
using (14).

2) Prediction: Using the above clustering algorithm, all of
the models are learned using the data measured at each time
instant ¢ for time ¢t < n;. Then for time ¢ > n;, the estimated
model (4) can be used for the prediction purpose using the
permanently available data x; for detecting the clusters. The
prediction algorithm is given below.

Prediction:
For the time t =n; + 1,n: + 2,. ..

1) Measure data x;.

2) Vi, obtain the proximities m; using the last point esti-
mates éi;m and 7,,, and the current data item ;.

3) Using the proximities and the last available point esti-
mate &y, , compute the weighting vector w; via (12).

4) Determine the point estimate of the pointer c¢; according
to the index of the maximum probability in the weigh-
ting vector, which labels the cluster ¢ generating the data
at time .

5) For ¢; =1

a) Predict the expectation of the variable y; using

(G, )i 5 (15)
b) Obtain the distribution by generating values of y;
from the i-th model (4) with the substituted point

estimate (G, ).

The proposed approach was tested in Scilab
(www.scilab.org), which is a free and open source software for
engineering computations. Figures were made in MATLAB®.
The experiments are demonstrated in the subsequent section.
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III. EXPERIMENTS

The target variable in the experiments, i.e., the variable y;,
was the number of boarding and/or disembarking passengers
at a tram station. As an explanatory variable, i.e., the variable
x;, the time difference between two tram arrivals was used.
A data set with 2,300 data items from a real tram network
was provided by the public transport organizer. The number
of boarding and disembarking passengers is a nonnegative
discrete random variable. The Poisson distribution may be
assumed as adequate for describing it [18]. Here, the described
experiments aim to observe whether the Rayleigh distribution
is suitable for modeling such data. Results are expected to be
helpful in the passenger demand prediction task, which con-
sists in predicting the number of boarding and disembarking
passengers [25].

Models of the number of boarding and disembarking pas-
sengers are contextually identical [18], therefore only the
number of disembarking passengers is modeled in this paper.
At first, this variable is modeled for one station only. Secondly,
a model of a short line consisting of two stations is presented.

A. Experiments for One Station

Fig. 1 compares the histograms of original and predicted
numbers of disembarking passengers for a selected tram
station. The original measurements are clearly multimodal and
the same can be seen for their predictions. Three distributions
with the mean near 1, 4, and 7 passengers can be guessed in the
original data (top). The predicted values are also multimodal
with the Rayleigh distributions with the mean value about 6,
9, and 14 passengers (bottom). The bottom plot in Fig. 1
shows the predictions around the value of 21 disembarking
passengers unlike the original data.

To compare the proposed method with alternative ones in
the same field, two other approaches were chosen. First, the
Poisson distributions learned on clusters [25] were used, and
secondly, the single Rayleigh distribution in its basic form was
estimated using the data set. Results of these two methods are
presented in Fig. 2 for the same station as shown in Fig. 1.

It can be clearly seen in Fig. 2 (top) that the use of the
Poisson distributions learned on clusters does not provide
adequate results. Almost no multimodality can be seen and
the peak of the distribution near 11 passengers does not
correspond to the original data set. In Fig. 2 (bottom), the
single Rayleigh distribution provides the prediction closer
to the real data than the Poisson distribution. However, the
multimodality of the data is not caught correctly, which can
be seen comparing Fig. 2 (bottom) and Fig. 1 (top).

The data prediction obtained with the help of the proposed
method and the two theoretical counterparts is presented in
Fig. 3. The results of all the approaches are visually close to
each other. However, Table I comparing the mean absolute per-
centage error (MAPE) for all of them shows that the proposed
prediction with the Rayleigh pdfs learned on clusters has the
lowest prediction error among the compared approaches.

Original data

50

Frequencies

1 5 9 13 17
The number of disembarking passengers

- Rayleigh mixture - one station

Freguencies

1 5 9 13 17 21
The number of disembarking passengers

Fig. 1. The comparison of histograms of real data (top) and their predictions
(bottom) at one station
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w
5 L
0
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The number of disembarking passengers
- Single Rayleigh pdf - one station
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The number of disembarking passengers

Fig. 2. The comparison of histograms for the Poisson distributions learned
on clusters (top) and the single Rayleigh distribution (bottom)
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TABLE I
THE MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) FOR ONE STATION
MAPE
The Rayleigh mixture — one station 0.081
The Poisson mixture — one station 0.086
The single Rayleigh distribution — one station 0.084

100 Rayleigh prediction - one station

real
Rayleigh mixturg

80r

Disembarking number

0 50 100 150 200
Time (periods)

100 Poisson prediction - one station

real
Poisson mixturg

80

60

a0t

Disembarking number

20+

0 50 100 150 200
Time (periods)
1%lngle Rayleigh prediction - one station

3 ol e coyiign ot
il AWM i wN\ il “&W

0 50 100 200
Time (periods)

Fig. 3. The prediction with the Rayleigh mixture (top), the Poisson mixture
(middle) and the single Rayleigh distribution (bottom) for a single station

B. Experiments for a Tram Line

At the second stage of experiments, a line consisting of two
stations was modeled, which is an important step in predicting
passenger numbers in larger networks [25]. In this case, the
explanatory variable is two-dimensional. Its first entry is the
time difference between the arrival time of two tram trips
similarly to the previous case. The second explanatory variable
is the predicted number of disembarking passengers at the
previous station.

Fig. 4 compares the histograms of the predicted data using
the mixtures of Rayleigh (top) and Poisson distributions (bot-
tom) for a tram station being a part of a line. Similarly to
Fig. 1, the prediction accuracy of the obtained histograms is
acceptable and the data multimodality can be clearly observed.
Three Rayleigh distributions can be observed near values 6,
9, and 16. Three Poisson distributions near values 5, 9, and
13 could be identified. It can be stated that both the methods
provide the similar accuracy.

Rayleigh mixture - tram line

W
(=]

N
wu
T

N
o
T

[
o
T

The number of boarding passengers
=
w w

L

1 5 9 13 17
Time (periods)
Poisson mixture - tram line

o

25

20

15}

Frequencies

10+

1 5 9 13 17
The number of disembarking passengers

Fig. 4. Histograms of the prediction with the Rayleigh mixture (top) and the
Poisson mixture (bottom) for a tram line

The data prediction with the compared methods is not
shown here to save space. The MAPE values provided in
Table II demonstrate the insignificant difference in the ob-
tained prediction in favor of the Poisson distributions learned
on clusters of the explanatory variables.

TABLE II
THE MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) FOR A TRAM LINE
MAPE
The Rayleigh mixture — tram line 0.091
The Poisson mixture — tram line 0.084

C. Discussion

The main purpose of this paper, i.e., fitting nonnegative dis-
crete data using the Rayleigh distributions learned on clusters
of the explanatory variables, was successfully achieved. The
results of the conducted experiments show that despite the
Rayleigh pdf is originally intended for modeling continuous
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data, it can be also used to describe specific discrete variables
with a higher number of possible nonnegative realizations.
Obviously the presented approach can be applied in the case
of a similar form of the original pdf describing the data (here
the Poisson one).

In this way, the main contributions of the presented ap-
proach are: (i) the use of the discretized knowledge of clusters
of the explanatory variables used for learning models and (ii)
the description of nonnegative discrete data by the Rayleigh
distributions estimated on the obtained clusters. It should be
also noted that due to the proposed algorithm, the prediction
can be computed online using the measurements of the ex-
planatory variables.

Although the results of the prediction with the Rayleigh
distributions were generally adequate, there is still a room for
an improvement. For example, low values of the number of
disembarking passengers near 1 passenger were not almost
captured in the prediction while they were significantly present
in the original data set. Moreover, in spite of achieving the
promising results for modeling a single tram station, the results
for modeling a tram line using the proposed method were
slightly worse than with the alternative counterparts.

The potential application of the proposed method is not
limited by the passenger demand prediction task. It can be
also used in other areas where nonnegative discrete data with
a high number of possible realizations are common, such as
medicine, economics, accident analysis, etc.
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As regards the limitations of the approach, they include ;5
the assumption of the data multimodality along with available
observations of the explanatory variables.

IV. CONCLUSION (161

The study proposed the use of the discretized information
from clusters of the explanatory variables, which can be
obtained using the Bayesian mixture estimation methodology, [17]
for the prediction of the target discrete variable. Based on
the predictive model learned on these clusters, a mixture 18]
of Rayleigh distributions was fitted over the discrete data.

The prediction of the target variable, here the number of
disembarking passengers, was provided online. The promising [19]
results have been demonstrated during the validation of the
approach. [20]

The future work include the development of the algorithms
for covering a tram line. They are expected to be based on the
mixture of the Rayleigh and Poisson pdfs.
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