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Abstract 

The analysis and design of methods to damp the swing of the variable length pendulum by adjusting 
its length are presented here. To analyze the theoretical limits of such Coriolis force based damping, a 
comprehensive open-loop numerical analysis is performed for a two-dimensional model having the string 
length as the controlled input. Further, for a four dimensional model, having the force applied to the 
string as the controlled input, a smooth static state feedback controller is designed using backstepping. 
Results are verified both in simulations and through extensive laboratory experiments, and compared 
with previously published results achievable using an identical experimental setting. 
© 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

1

 

l  

l
l

h
0

. Introduction 

This paper considers the damping of the swing of a pendulum by adjusting the suspension
ength. Even though the pendulum-like problem under consideration may seem purely theo-
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Fig. 1. Left: Problem motivation - damping the residual payload sway at the final stage of a robotic crane maneuver 
using the Coriolis force acting on the payload; Right: reformulating the problem as controlling the variable length 
pendulum. 
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etical, it has a high potential, particularly in crane like applications [1] . The common task
f crane control systems is to maneuver a suspended payload from one position to another,
hile taking into account trajectory constraints, as shown in Fig. 1 . An established technique

n crane motion control is input shaping [2,3] , see also [4] for optimal and [5] for robust
esign. The main idea of this method is to shape the trajectory of the cable suspension point
y a time delay filter so that the payload sway is partly or fully pre-compensated. Alterna-
ively, the trajectory of the suspension point can be optimized directly [6,7] . Let us also point
o the combined input shaping and feedback control method presented in [8,9] , and to the
irect feedback control methods proposed in [10] with real-time visual tracking, in [11] by
onlinear tracking control and in [12,13] by an MPC based algorithm. In [14] , an online
rajectory planning of the jib and the trolley of a double-pendulum tower crane was proposed
sing Lyapunov’s method, LaSalle’s invariance Theorem and Babarlat’s Lemma. 

The presented research is motivated by the need to damp the residual oscillations of a
uspended payload at the final stage of a maneuver where the suspension point reaches the
nd-point position and remains fixed. Such residual oscillations are very likely to appear even
hen one of the previously mentioned methods is applied, mainly due to control system

mperfections or external disturbances. Damping these residual oscillations by further maneu-
ering the suspension point may be inefficient or even impossible due to physical constraints,
s indicated in Fig. 1 . In this case, the Coriolis force acting at the payload can be utilized to
amp the oscillation by adapting the suspension length during the swing. As also indicated in
ig. 1 the crane problem at hand is equivalent with controlling the variable length pendulum.

Energy based open-loop control design of pendulum swing damping by varying the sus-
ension length can be traced back to [15] . More specifically, [15] and, later on, [16] proposed
 harmonic signal for the cable length that is synchronized with the swing motion using addi-
ional, non-trivial signal processing tools. Even though this open-loop approach was verified in
aboratory experiments, see [17] and [18] , it is hardly applicable in practice where the periodic

otion may be affected by disturbances. In contrast, the closed-loop control law presented
n [19] does not require any additional signal processing as synchronization is guaranteed
y feedback of the pendulum angle. Further, a robust optimization procedure and extended
inearizations are employed to attenuate oscillations in crane systems by adjusting the cable
1383 
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ength in [20] , while in [21] two energy-based methods are proposed to suppress the pendu-
um’s oscillation by simultaneously controlling the pivot point and the position of the weight
f the pendulum. A stabilizing control law that damps the swing of a pendulum by controlling
he rod length has been developed using a Lyapunov method in [22] and it has been verified in
aboratory experiments in [23] . Yet, the variation of the gravity center position was attenuated
here in some indirect way only. A Lyapunov based nonlinear control design was also used
n [24] , which considered a three-dimensional state space model and included a cable length
enalty term into the Lyapunov function candidate. For the same three-dimensional model, a
ontrol strategy was developed in [25] , relying on the concept of passivity, which allows to
enerate a broad set of Lyapunov function candidates providing various mutually complemen-
ary damping performances. In [26] , the efficiency of amplitude suppression of an oscillating
endulum by a controllable moving mass was studied by simulations for several suppression
ules. Besides, attention was paid to solving the nonsynchronous motion problem identified
n [16] . The main recommendation stems in minimization of the pendulum length transition
imes precisely synchronous with the pendulum position. The problem was further studied
nd its results were experimentally validated in [27] . In the aforementioned work, instead of
arying the cable length, the mass equipped with bearings and driven by a stepping motor
ia a synchronous belt slides on two rods. Thus, the acceleration of the downward motion
s not limited by the gravitational acceleration as it is in the case of controlling directly the
able length. 

Let us also point to an analogous problem, recently examined in [28] , where the pendulum
ength is kept fixed and its angular motion is damped by up and down motion of the pivot.
n this case, damping is achieved through the momentum effect of the difference between
he gravitational and inertia forces on the pendulum bob. In another recent study [29] , rapid
scillation suppression is achieved by using phase delay motion of the horizontally movable
ivot. The pivot’s continuous motion control with a lagging phase difference is realized by
aking the pendulum’s time delay angle as an input. In [30] , considering the varying rope
ength, the dynamic model of the double pendulum crane system with distributed mass beams
s established and controlled in sliding mode sense. 

The literature studying variable length pendulums is not limited to damping. As samples
f other investigated aspects, let us mention the analysis of the periodic solutions induced by
eriodically varying the cable length [31,32] and the analysis of the regimes of regular and
haotic motion of the pendulum with the periodically varying cable length [33] . Note also
hat a similar situation with practically useless friction appears in magnetic manipulation [34] .
hough being quite a different application, the respective mathematical model presents some
imilar features as used in the current paper later on, when analysing the two-dimensional
tate-space model in a switched systems setting. 

The current paper brings two novel contributions to the pendulum swing damping by
djusting its length. The first contribution lies in a thorough analysis of the classical set-up
onsidered in literature when the pendulum length, or its derivative, is considered as the control
nput. Inspired by the numerical solution of an optimal control problem, intended to explore
he theoretical limits of damping, a switched feedback control law for adjusting the cable
ength is proposed and analyzed. Subsequently, this control law is approximated by a smooth
eedback law. The asymptotic stability of the resulting close loop is then demonstrated using
yapunov’s method. The second contribution , motivated from engineering practise, consists of
xtending the problem’s complexity by considering the force acting on the cable as the control
ystem input. It should be stressed that solving this extended problem considerably simplifies
1384 
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he implementation of the control law, as in this case, no slave control loop is needed to
djust the cable length, i.e., to exert the force needed to adjust the length. Again, a Lyapunov
ethod is used to prove the asymptotic stability. Further contributions brought by this paper

re: i) a thorough study of the state space representations of the two considered settings, and
i) a comparison of the newly proposed methods with selected existing approaches using both
imulations and experiments. 

The remainder of the paper is organized as follows. Section 2 introduces the problem,
resents various possible state-space models and repeats in detail two existing approaches
hat will be compared to the novel approaches introduced in the paper. The main theoretical
nd numerical results are presented in Sections 3 and 4 . The former presents a thorough study
f the theoretical limits of swing damping by adjusting the pendulum length and provides
 practical smoothed feedback approximation of the optimal solution. The latter presents
he novel control law using the force as the input. This new, realistic feedback control law
s thoroughly compared with the previously known approaches using both simulations and
xperiments in Section 5 . The final section briefly concludes the paper and indicates some
ngoing and future research directions. 

. Preliminaries and problem formulation 

.1. The problem set-up and its mathematical models 

The right-hand side of Fig. 1 depicts schematically the considered set-up. The pendulum
ength is adjusted by a control force F (t ) generated by a servomechanism and acting on the
uspension cable. This does not constitute a significant theoretical difference compared to cable
ewinding using torque. To model this set-up, the cable’s mass and the friction corresponding
o the lateral pendulum’s swing are neglected. Indeed, the effect of the latter is negligible and
ould improve damping, not worsen it. On the contrary, the friction related to the contact
f the cable at the pivot may have a notable influence on the controller’s performance. Its
oefficient is assumed to be known and is denoted by κ . Since the cable is moving most of the
ime, the effect of dry friction at the pivot may be neglected. Clearly, when concentrating on
apturing the effect of rather weak quadratic Coriolis forces such a simplification is acceptable.
urther, let m stands for the mass of the load, g for the gravitational acceleration, φ(t ) for the
wing angle and l(t ) for the cable length. Using all these prerequisites, standard modelling
ives the following nonlinear second order ordinary differential equations (ODE) 

l(t ) ̈φ(t ) + 2m ̇

 l (t ) ̇  φ(t ) + mg sin φ(t ) = 0, (1)

 ̈l (t ) − ml(t ) ̇  φ2 (t ) − mg cos φ(t ) + κ ˙ l (t ) + F (t ) = 0, (2)

∈ (−π/ 2, π/ 2) and l > 0, (3)

here the ODE domain (3) is due to the obvious observation that | φ| > π/ 2 would cause, at
east initially, free fall of the mass rather than the pendulum like movement, while the string
ength is always positive. To apply control-theoretic methods, the second order ODEs should
e converted into a first-order state space model. Three different state-space representations
ill be considered here. 
1385 
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To start with, [24] and the references therein use the following representation 

˙  1 = x 2 , ˙ x 2 = −x −1 
3 ( 2x 2 u + g sin x 1 ) , ˙ x 3 = u, (4)

 1 := φ, x 2 := 

˙ φ, x 3 := l, u := 

˙ l . (5)

ote that the velocity of the string length variation d l/d t is considered to be controlled
nput. Denoting x = (x 1 , x 2 , x 3 ) � , the working equilibrium of (4) is x eq = (0, 0, l 0 ) � , where
 0 is some desired nominal length of the string. Straightforward computations show that the
pproximate linearization of (4) around x eq and u = 0 is 

˙ = 

⎡ ⎢ ⎣ 

0 1 0 

−g/l 0 0 0 

0 0 0 

⎤ ⎥ ⎦ 

ξ + 

⎡ ⎢ ⎣ 

0 

0 

1 

⎤ ⎥ ⎦ 

u, ξ := x − x eq , 

hich is neither controllable, nor stabilizable. Yet, (4) was asymptotically stabilized by a
mooth feedback in [24,25] . 

Next, consider the following two-dimensional state space model 

˙  1 = z 2 ̃  u 

−2 , ˙ z 2 = −g ̃  u sin z 1 , z 1 := φ, z 2 := I = l 2 ˙ φ, ˜ u := l. (6)

s a matter of fact, model (6) considers the pendulum length as controlled input ˜ u = l ,
hile the state z 2 = I is the angular momentum per unit mass with respect to the suspension
oint and the state z 1 = φ is the pendulum angle again. The second equation in (6) gives

(d / d t )(mz 2 ) = −mgl sin z 1 , i.e., the time derivative of the angular momentum with respect to
he suspension point equals the torque created by the gravitational force momentum, hence,
t is not changed by an instantaneous re-positioning of the mass. This will be useful in
ection 3.2 , where we consider a control strategy that varies the suspension length between

wo extreme positions in a bang-bang fashion. This would lead to an impulsive input signal and
iscontinuous state trajectories in the representation (4) - (5) while in (6) , the respective state
rajectories are continuous. To compare (6) and (4) - (5) , note that for all x 1 ∈ R , x 2 ∈ R , x 3 > 0
iffeomorphism 

 1 = x 1 , z 2 = x 2 x 
2 
3 , z 3 = x 3 , x 1 = z 1 , x 2 = z 2 z 

−2 
3 , x 3 = z 3 , (7)

ransforms (4) - (5) into the following form 

˙  1 = z 2 z 
−2 
3 , ˙ z 2 = −gz 3 sin z 1 , ˙ z 3 = u. (8)

n other words, (8) is obtained by “adding (an) integrator” to (6) , i.e., introducing the addi-
ional state variable z 3 and introducing the input ˜ u = z 3 . This procedure can be also control-
heoretically interpreted as mounting a simple dynamical feedback pre-compensator into the
nput channel. 

Finally, consider the following four-dimensional state-space representation 

˙  1 = x 2 , ˙ x 2 = −x −1 
3 (2x 2 x 4 + g sin x 1 ) , ˙ x 3 = x 4 , ˙ x 4 = u , (9)

 1 := φ(t ) , x 2 := 

˙ φ, x 3 := l, x 4 := 

˙ l , (10)

 = l̈ = l ˙ φ2 + g cos φ − (κ/m) ̇  l − F /m. (11)
1386 
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ere, (11) is due to previously ignored (2) and (9) can be interpreted as “adding (an) inte-
rator” to (4) . Using notation z 4 = x 4 and (7) , model (9) becomes 

˙  1 = z 2 z 
−2 
3 , ˙ z 2 = −gz 3 sin z 1 , ˙ z 3 = z 4 , ˙ z 4 = u , (12)

hereby nicely relating all three models (6) , (8) and (12) . Note, that (11) is an easily imple-
entable feedback transformation from the (in reality) controlled force F (t ) to the virtual

nput u to be used during the theoretical analysis. Indeed, knowing any state feedback con-
roller for u , one can easily implement the corresponding controller for F (t ) using (11) . Note,
hat the common feature of all above models is the lack of stabilizability of the linearization
round the origin. 

.2. Time-delay based control approach 

In this short subsection, the control law of [19] is repeated for the reader’s convenience.
n the first place, this method motivates the research presented in Section 3 . Secondly, it is
sed as comparison with newly proposed methods in Section 5 . In [19] the open loop control
ule 

(t ) = l 0 − �l sin 2�t, (13)

riginally proposed in [15] , is transformed, by applying trigonometric identities, to the feed-
ack control rule 

(t ) = l 0 − �l 
φ2 (t − τ2 ) − e −ξπφ2 (t − τ2 − τ1 ) 

φ2 (t − τ2 ) + e −ξπφ2 (t − τ2 − τ1 ) 
. (14)

ere, τ1 = 

π
2�

and τ2 = 

π
4�

, with � = 

√ 

g/l 0 being the nominal natural oscillation frequency.
he length adjustment amplitude �l from the nominal pendulum length l 0 is given by 

l = 

4 

3 

ξ l 0 . (15)

ith these parameters, the asymptotic behavior of an ideal second order damped oscillator is
mposed, namely 

¨(t ) + 2ξ� ˙ φ(t ) + �2 φ(t ) = 0. (16)

ith ξ being the predefined desired damping. 
Interestingly, as demonstrated by simulations and experiments in [19] , control rule (13) and

ts feedback-based implementation (14) force the highly nonlinear system to behave as the
inear oscillator in (16) even for relatively strong damping. Let us note that [15] also studied
 saw-tooth discontinuous sliding motion. A considerable drawback of feedback rule (14) is
hat it varies the suspension length with a constant amplitude �l even when φ → 0. As a
onsequence, for small φ, measurement and processes noise can induce closed loop instability.

.3. Lyapunov based control design 

For the reader’s convenience, we also summarize our preliminary results, reported in
24] for state-space model (4) . The experimental results of [24] will be compared later on
ith the results of the current paper. In order to asymptotically stabilize (4) , the well-known

ontrol Lyapunov function (CLF) framework was used along with LaSalle type conditions.
s an interesting feature, a repeated time differentiation of the respective equalities along the
1387 
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olutions of (4) was needed to study the invariance of a certain set (as usual when applying
aSalle principle). More specifically, consider the Lyapunov function candidate V : 

 (x 1 , x 2 , x 3 ) = gx 3 (1 − cos x 1 ) + 

x 2 3 x 
2 
2 

2 

+ c 1 
(x 3 − l 0 ) 2 

2 

, (17)

ith c 1 > 0. Note, that a Lyapunov-like function consisting of the first two terms in (17) was
sed in [22] and [23] . These references used, however, only the two dimensional model, and
elied on some ad hoc way to change the suspension length x 3 without considering it as a state
ariable. So, another novelty of (17) consists of introducing the “penalty” term c 1 (x 3 − l 0 ) 2 / 2
hat forces the control law to keep the suspension length close to the prescribed length l 0 and
hat makes sure that x 3 eventually converges to l 0 . By (17) : 

d[ V (x(t ))] 

dt 
= 

(
g(1 − cos x 1 ) − x 3 x 

2 
2 + c 1 (x 3 − l 0 ) 

)
u. (18)

quality (18) suggests the following stabilizing feedback u(x) : 

(x) = −K 

(
g(1 − cos x 1 ) − x 3 x 

2 
2 + c 1 (x 3 − l 0 ) 

)
, (19)

here K > 0 and c 1 > 0 are design parameters, giving the following proposition. 

roposition 2.1 [24] . Consider system (4) in the region D = (−π/ 2, π/ 2) × R × (0, ∞ ) .
hen ∀ K > 0, ∀ c 1 > 0 the control law given by (19) asymptotically stabilizes the equilibrium

(0, 0, l 0 ) of the system (4) with the region of attraction being the largest subset of D which
s invariant with respect to trajectories of (4) and (19) . 

emark 2.2. The region of attraction in Proposition 2.1 is not so easy to describe analytically,
ut it is practically reasonable. Obviously, it can be determined numerically and some limits on
he initial velocity x 2 (0) , depending on initial angle x 1 , would be required not to overshoot the
aximal allowed angle range ±π/ 2. Besides, the condition x 3 > 0 might be easily achieved

y choosing a sufficiently large c 1 . Nevertheless, in practical applications one has to look for
 much smaller region where trajectories evolve, i.e., one has to look for control parameters c 1
nd K that ensure much smaller limits for the angle x 1 than ±π/ 2 and, in addition, x 3 should
tay close to its desired length l 0 during the experiments. So, finding the largest invariant
ubset of D = (−π/ 2, π/ 2) × R × (0, ∞ ) is mainly of theoretical interest. 

.4. Control feedback implementation 

Assuming the overall system in the form (1) - (2) , the so far presented control rules, includ-
ng (14) and (19) , provide only a partial solution. Notice that the input of the overall system
1) - (2) is the force F . Therefore, a slave (PD) control loop needs to be included to adjust the
able length l as shown in Fig. 2 . Note that the master nonlinear controller N CL generates
he set-point l s for the cable length l which needs to be almost ideally tracked. This imposes
nhanced performance requirements on the slave control loop. As demonstrated in [19] and
24] , this task is difficult to achieve and requires further modification of the feedback loops,
.g. adjustment of the nominal delay in [19] or lag compensatoin in [24] . 

In order to avoid this additional tuning step, the second main goal of this paper is to design
 nonlinear controller N CF for the scheme in Fig. 3 , which directly generates the force F .
his problem is solved in Section 4 . 
1388 
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Fig. 2. Control scheme for implementing the control algorithm for (1) - (2) with l (its set-point l s , respectively) being 
the control input. 

Fig. 3. Control scheme for implementing the control algorithm for (1) - (2) with F being the control input. 
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. Theoretical limits and smoothed optimal solution 

To get an intuition for a good control strategy, we will first study a conveniently formulated
ptimal control problem where only hard limits for the suspension length are imposed. The
esulting control approach consists of varying the suspension length between its extremal
alues in a bang-bang fashion. Although this control approach is unrealistic in practice as it
equires the suspension length to be changed infinitely fast, it serves as a good basis to shed
ight on the limitations of achievable damping. A feedback law obtained by smoothing of
his discontinuous string length behaviour is proposed subsequently. This control law depends
n a certain “trade-off” parameter between the steepness of string length changes and the
amping intensity. A rigorous convergence proof of this last method concludes this section. 

.1. Numerical optimization based open loop control 

To proceed with the above plan, we first compute an approximate solution to the following
pen loop optimal control problem based on state-space model (4) : 

min u 
∫ T 

0 

(
x 2 1 (t ) + x 2 2 (t ) 

)
dt + ρ

(
x 2 1 (T ) + x 2 2 (T ) 

)
such that (4) holds and 

| x 3 (t ) − l 0 | ≤ 0. 15 l 0 ∀ t ∈ [0, + ∞ ) , x 1 (0) = π/ 2, x 2 (0) = 0, x 3 (0) = l 0 , 
(20)

ith the control horizon T = 20, unit weight, a chosen weighting parameter ρ = 40 and the
esired length l 0 = 1 . To compute an approximate solution for this optimization problem, a
iscretize-first approach is taken. States and controls are discretized with time-step h = 1 / 15
nd the cost function is discretized accordingly. A Runge-Kutta method of order four is
sed to approximate the system dynamics. This results in a nonlinear programming problem,
ith variables being the discretized states and controls, and constraints being the discretized
ynamics and constraints, which can be solved in Matlab. Fig. 4 plots the obtained solution
n the time interval [0, 10] . 

The resulting trajectory for the suspension length approximates a bang-bang signal, quickly
hanging between its extreme values. As a consequence, the input signal ( u = 

˙ l ) is close to
1389 
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Fig. 4. Simulations of the optimal control in the sense of (20) with state space model (4) . Left: the time evolution 
of the pendulum’s angle (blue), its angular velocity (red) and the suspension length (green). Right: the Carthesian 
trajectory of the mass. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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mpulsive, resulting in an almost discontinuous trajectory for x 2 = 

˙ φ. Note that the period
f the suspension length’s trajectory is equal to half the period of the angle’s trajectory.
oreover, the resulting trajectories are close to those presented in Fig. 8 of [15] , which

re based on estimating the damping ratio during the saw-tooth-like approximation of the
ang-bang length variation. Finally, the persistently varying nature of the length trajectory
ompensates the non-controllability of the linearization at the equilibrium to be reached. 

.2. Analysis of the limit case 

In this subsection, the above suggested limit case is analysed. Namely, let the suspension
ength be subject to a switched bang-bang control law: 

(t ) = 

{ 

l 0 − �l if ˙ φ(t ) sin φ(t ) < 0, 

l 0 + �l if ˙ φ(t ) sin φ(t ) ≥ 0, 
(21)

ith 0 < �l < l 0 . This control law will extend the pendulum instantaneously at zero angle
o its maximum length l + �l and shorten it instantaneously at zero angular velocity to its
inimal length l − �l . 
In the coordinates of (4) control law (21) behaves as an impulsive input since u = 

˙ l and
ntroduces state-jumps in x 2 = 

˙ φ and x 3 = l . A natural way to handle state-jumps induced by
mpulsive forces consists of using a hybrid system representation, with both continuous and
iscrete dynamics, see e.g. [35] and the references therein: 
 

˙ x (t ) = F (x(t )) , x ∈ C, 

x+ = G (x) , x ∈ D, 
(22)

here C is the so-called flow set and D the jump set . For control law (21) : 

 = 

3 ⋃ 

i=1 

D i , C = R 

3 \ D, 
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γ  
 1 = 

{
x ∈ R 

3 : x 1 = 0, x 3 = l 0 − �l 
}

 2 = 

{
x ∈ R 

3 : x 2 = 0, x 3 = l 0 + �l 
}

 3 = 

{
x ∈ R 

3 : x 3 �∈ { l 0 − �l, l 0 + �l} }. 
he continuous dynamics in (22) can be spelled out as follows: 

˙  1 (t ) = x 2 (t ) , ˙ x 2 (t ) = − g 

x 3 (t ) 
sin x 1 (t ) , ˙ x 3 (t ) = 0, (23)

hile the jump map in (22) is described by 

 (x) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

(x 1 , αx 2 , l 0 + �l ) , x ∈ D 1 , 

(x 1 , βx 2 , l 0 − �l ) , x ∈ D 2 , 

(x 1 , βx 2 , l 0 − �l ) , x ∈ D 3 , 

= 

(
l 0 − �l 

l 0 + �l 

)2 

, β = 

(
x 3 

l 0 − �l 

)2 

. (24)

he continuous dynamics describe the pendulum’s movement for a fixed length, i.e., an un-
amped pendulum. The constants (24) , determining the jump map, directly follow from the
reservation of angular momentum for the full extension and retraction 

m (l 0 + �l ) 2 
)
x 2 + = 

(
m (l 0 − �l ) 2 

)
x 2 , 

(
m (l 0 − �l ) 2 

)
x 2 + = 

(
m x 3 

2 
)
x 2 , (25)

espectively, as the gravity does not impose an impulsive torque. 

emark 3.1. A hybrid system description of the form (22) , with variables x 1 and x 2 only, is
ot possible. Encoding the logic x 1 = 0 ⇒ x 2 + = αx 2 in the definition of D and G would
ead to infinitely many consecutive jumps because x 2 ∈ D would imply x 2 + ∈ D. This is
esolved by introducing x 3 as a real valued variable. Its values different from l 0 ± �l , which
re non relevant for the control strategy, are handled by jump subset D 3 . For all t strictly
arger than the initial time, variable x 3 thus only takes two discrete values. 

emark 3.2. Hybrid system (22)–(24) does not have an asymptotically stable equilibrium, as
nly the “projected” state (x 1 , x 2 ) converges to zero. 

When considering the (x 1 , x 2 ) -subspace, the effect of the state-jumps is two-fold. Firstly,
hey lead to a switching of the continuous dynamics (23) (induced by changing the pendulum’s
ength x 3 ). Secondly, they cause a jump in the angular velocity x 2 . This leads us to the
ollowing interpretation: 

A. When ignoring the jump in the angular velocity , i.e. using α = 1 in (24) , the system
an be interpreted as a switched system on R 

2 : 

˙  1 (t ) = x 2 (t ) , ˙ x 2 (t ) = − g 

l(t ) 
sin x 1 (t ) , l(t ) = l 0 + �l sign 

[
x 2 (t ) sin (x 1 (t )) 

]
. (26)

he equilibrium x 1 = x 2 = 0 of the switched system is unstable . Indeed, for any initial
tate (0, x 2, out ) with arbitrarily small | x 2, out | ∈ R the pendulum will swing up till a max-
mum angle x 1 ,m 

given by (1 / 2) m((l 0 + �l ) x 2, out ) 
2 = mg(l 0 + �l )(1 − cos (x 1 ,m 

)) . Then it
ill return to x 1 = 0 with angular velocity x 2, in given by mg(l 0 − �l )(1 − cos (x 1 ,m 

)) =
((l 0 − �l ) x 2, in ) 

2 / 2. These relations imply that x 2, in = γ x 2, out , with 

= (l 0 + �l ) 
1 
2 (l 0 − �l ) −

1 
2 > 1 . (27)
1391 
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Fig. 5. Blue curve - trajectory of (26) for l 0 = 1 and �l = 0. 15 (length switching between 0.85 and 1.15). As a 
function of time, the state variables move in clockwise direction along the trajectory. Red curve - projection of 
trajectory of (22)–(24) on the (x 1 , x 2 ) -plane. 
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ence, system (26) is an example of the well known phenomenon, where instability is induced
y “unfortunate” switching between two (in this case marginally) stable systems. In Fig. 5
he blue curve shows a trajectory of (26) . 

B. When the jump in angular velocity at x 1 = 0 is taken into account, i.e., parameter α
s in (24) , the projected dynamics on the (x 1 , x 2 ) -plane become asymptotically stable. This
s because the increase in angular velocity with factor (27) per half period of the continuous
hase is over-compensated by the velocity reduction at the jumps with a factor α = −γ −4 .
ence, the effect of the velocity jump can be interpreted as the effect of moving two periods
ack in time along the solution of (26) . This property is visualized in Fig. 5 (red curve). 

In terms of the coordinates in (6) , control law (21) does not give rise to discontinuous
tate trajectories, as the instantaneous re-positioning of the mass does not change the angular
omentum. The resulting closed-loop system is a switched system in R 

2 : 

˙  1 (t ) = l(t ) −2 z 2 (t ) , ˙ z 2 (t ) = −l(t ) g sin z 1 (t ) , 

l(t ) = l 0 + �l sign 

[
z 2 (t ) sin (z 1 (t )) 

]
. (28)

ig. 6 shows the trajectory of (28) corresponding to the red curve displayed in Fig. 5 . Clearly
he exponential stability is induced here by the proper switching between two otherwise
ndamped oscillators. It is interesting to note here that this situation very much resembles the
nalysis of a switched control law inducing stability in [34] , where a bilinear second-order
ystem is stabilized by switching between the vector fields of a marginally stable system and
n unstable system. For stability and stabilization of switched systems the reader is referred
o [36] . 

.3. A smooth feedback law 

This section studies the smooth feedback law ˜ u (z) approximating the discontinuous feed-
ack ˜ u 

dsc (z) := l (t ) , with l (t ) given in (21) . For every value of the “smoothing” parameter
> 0: define 

  (z) := l 0 + ��l,ε ( z 2 sin z 1 ) , (29)
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Fig. 6. Solution of (28) . Stability is induced by switching between ellipsoidal curves, stretching in horizontal, re- 
spectively vertical direction. 
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n which ��l,ε (x) : R 
→ [�l , −�l ] is defined ∀ x ∈ R as 

�l,ε (x) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−�l if x ≤ −ε, 

−�l e 
1 
x 

(
e 

1 
ε − e 

1 
−x−ε 

)
if x ∈ (−ε, 0) , 

0 if x = 0, 

�l e −
1 
x 

(
e 

1 
ε − e 

1 
x−ε 

)
if x ∈ (0, ε) , 

�l if x ≥ ε. 

(30)

unction (30) serves as a smooth ε-approximations of the sign function in (28) . Indeed, one
an compute derivatives of any order of the function ��l,ε (x) and then show their continuity
t critical points ±ε, 0 by virtue of the well-known limit 

lim 

→ 0−
x −k e 

1 
x = 0, ∀ k ≥ 0. 

ig. 7 shows ��l,ε (x) for several values of ε. It is clear that ��l,ε (x) approximates a step
unction as ε goes to zero. 

heorem 3.3. Let any pair (l 0 , �l ) satisfying 0 < �l < l 0 be given. Then, for all ε > 0, the
mooth control law (29) asymptotically stabilizes (6) at the origin. The inner estimate of the
espective basin of attraction is 

 = { z ∈ R 

2 | z 2 2 < 2gl 3 0 cos z 1 ∧ z 1 ∈ (−π/ 2, −π/ 2) } . 
roof. Consider the Lyapunov function 

˜ V (z) = gl 3 0 (1 − cos z 1 ) + z 2 2 / 2. The set A consists of
oints z for which 

˜ V (z(t )) < ̃

 V ((π/ 2, 0) � ) and z 1 ∈ (−π/ 2, −π/ 2) . Straightforward com-
utations of the derivative of ˜ V along the solutions of the closed-loop system yield 

˙ 
 

 = gz 2 sin z 1 (l 
3 
0 ̃  u 

−2 (z) − ˜ u (z)) = ̃  u 

−2 (z) gz 2 sin z 1 (l 
3 
0 − ˜ u 

3 (z)) , 
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M. Anderle, P. Appeltans, S. Čelikovský et al. Journal of the Franklin Institute 359 (2022) 1382–1406 

Fig. 7. ��l,ε (x) on the interval [ −1 , 1] for �l = 0. 1 and ε equal to 1 (blue), 0.1 (red) and 0.0001 (yellow). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Simulations: the time evolution of the pendulum’s angle (blue), the angular velocity (red) and the pendulum 

length (green) - the smoothed feedback (29) with parameter ε = 1 . (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

w

ũ

ith control law ˜ u (z) defined by (29) . Moreover, it holds that 

  (z) 

⎧ ⎪ ⎨ ⎪ ⎩ 

< l 0 for z 2 sin z 1 < 0, 

= l 0 for z 2 sin z 1 = 0, 

> l 0 for z 2 sin z 1 > 0. 
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Fig. 9. Simulations: the time evolution of the pendulum’s angle (blue), the angular velocity (red) and the pendulum 

length (green) - the smoothed feedback (29) with parameter ε = 0. 1 . (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

F

l

A
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rom sign (l 3 0 − ˜ u 

3 ) = sign (l 0 − ˜ u ) , it follows that 

 

3 
0 − ˜ u 

3 (z) 

⎧ ⎪ ⎨ ⎪ ⎩ 

> 0 for z 2 sin z 1 < 0, 

= 0 for z 2 sin z 1 = 0, 

< 0 for z 2 sin z 1 > 0. 

s a consequence, it obviously holds for all z ∈ A that 

˙ 
 

 < 0 ∀ z 1 � = 0 ∧ z 2 � = 0, (31)

nd 

˙ ˜ V = 0 elsewhere. Now, asymptotic stability can be concluded using standard LaSalle
heorem arguments, since the largest invariant subset of the set where z 1 = 0 or z 2 = 0 is
he origin and therefore z(t ) → 0 as t → ∞ . The mentioned invariant property can be easily
educed from (6) since ˙ z 1 = 0 implies z 2 = 0 and ˙ z 2 = 0 implies z 1 = 0. �

The performance of this smooth feedback law is demonstrated in simulations in Figs. 8 , 9
nd 10 for various ε. Note that the simulations are performed in z-coordinates, but then the real
ngular velocity is computed from z 2 (t ) knowing the current value of l(t ) . These simulations
icely and convincingly show that by reducing ε the improvement of the convergence rate
nd the aggressiveness of the controller go hand-in-hand. They also show that one may use
arger ε at the beginning and only later switch to smaller value, thereby achieving good
onvergence with a less aggressive control action. Note that the simulations charts were cut
t time equal to 10 sec . since later on the damping proceeds very slowly (almost no control
ction). Moreover, one can see that the initial damping phase is almost the same for all ε.
ote also that for small amplitudes, even ε = 0. 001 , an aggressive controller action is not

equired. The reason is that then the pendulum behaves like a linear one, i.e. each cycle takes
he same time regardless how small the amplitude is. In such a way, the passage through
he sharp region of the smoothing function � is slower and slower, and the controller is
cceptable from a practical point of view. 
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Fig. 10. Simulations: the time evolution of the pendulum’s angle (blue), the angular velocity (red) and the pendulum 

length (green) - the smoothed feedback (29) with parameter ε = 0. 001 . (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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. Using the force as the control input 

As mentioned in Subsection 2.4 , in all the previous approaches, the dynamics of the
uspension length, as given in (2) , have been ignored, basically considering l or ˙ l to be
he input in (1) . Thus, a slave control loop was needed to implement such control laws,
s shown in Fig. 2 . In this section a more practical setting where the suspension length is
ictated by (2) , will be considered. As a starting point, the feedback controller (19) stated
n Proposition 2.1 for the three dimensional state space model (4) is taken. Subsequently, a
ackstepping procedure [37] is used to introduce a feedback law for (9) - (11) . Further, more
ophisticated results on backstepping and stabilization when smooth feedback is not available
an be found in [38–41] . The backstepping procedure can be viewed as a rigorously justified
odel based version of the PD block shown in Fig. 2 . Indeed, all information contained in

he block NCL (the asymptotically stabilizing feedback (19) for system (4) and the respective
yapunov function (17) ) will be used to generate the overall block NCF in Fig. 3 . 

The proof of the asymptotic stability of the resulting closed loop system will require
dditional and rather non-trivial LaSalle invariance principle based analysis as well. 

To proceed with the above idea, the backstepping procedure introduces the Lyapunov
unction candidate V for (9) as 

 = V + 

(x 4 − u(x)) 2 

2 

, (32)

here u(x) is given by (19) and it is by Proposition 2.1 the asymptotically stabilizing feedback
or the system (4) . Moreover, V given by (17) is the Lyapunov function justifying that stability.
lugging the expressions for u and V into (32) , we obtain (recall that K > 0, c 1 > 0): 

 = gx 3 (1 − cos x 1 ) + 

x 2 3 x 
2 
2 

2 

+ c 1 
(x 3 − l 0 ) 2 

2 

+ 

(
x 4 + K 

(
g(1 − cos x 1 ) − x 3 x 2 2 + c 1 (x 3 − l 0 ) 

))2 

2 

. 

(3
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urther computations give rise to the full time derivative of V along a trajectory x(t ) of (9) : 

˙ 
 : = 

d[ V (x(t ))] 

dt 
= gx 3 ( sin x 1 ) x 2 − x 2 3 x 2 

x 3 
g sin x 1 

+ 

(
g(1 − cos x 1 ) + x 3 x 

2 
2 − 2x 2 3 x 2 

1 

x 3 
x 2 + c 1 (x 3 − l 0 ) 

)
x 4 

+ 

(
x 4 + K 

(
g(1 − cos x 1 ) − x 3 x 

2 
2 + c 1 (x 3 − l 0 ) 

))
×

(
u + K 

d 

dt 

(
g(1 − cos x 1 ) − x 3 x 

2 
2 + c 1 (x 3 − l 0 ) 

))
, 

˙ 
 = 

(
g(1 − cos x 1 ) − x 3 x 

2 
2 + c 1 (x 3 − l 0 ) 

)
x 4 + 

(
x 4 + K 

(
g(1 − cos x 1 ) − x 3 x 

2 
2 + c 1 (x 3 − l 0 ) 

))
× (

u + K 

(
gx 2 sin x 1 − x 4 x 

2 
2 + 2x 2 (2x 2 x 4 + g sin x 1 ) + c 1 x 4 

))
. (34)

eferring to (19) one can state more compactly that 

˙ 
 = 

−u(x) x 4 
K 

+ ( x 4 − u(x) ) 

(
u − du(x) 

dx 

dx 

dt 

)
. (35)

ext, observe that (35) can be adapted as follows 

˙ 
 = 

−u(x) 2 

K 

− u(x)(x 4 − u(x)) 

K 

+ ( x 4 − u(x) ) 

(
u − du(x) 

dx 

dx 

dt 

)
. 

ext, define the following feedback u 

 (x) = 

u(x) 

K 

+ 

du(x) 

dx 

dx 

dt 
− K 2 ( x 4 − u(x) ) , K, K 2 > 0. (36)

ubstituting to (36) from (19) one gets the following explicit formula for u (x) 

 (x) = −K 

(
gx 2 sin x 1 − x 4 x 

2 
2 + 2x 2 (2x 2 x 4 + g sin x 1 ) + c 1 x 4 

)
− (K 2 K + 1) 

(
g(1 − cos x 1 ) − x 3 x 

2 
2 + c 1 (x 3 − l 0 ) 

)
− K 2 x 4 , c 1 > 0, K > 0, K 2 > 0. (37)

sing (36) gives 

˙ 
 = −K 

−1 u(x) 2 − K 2 (x 4 − u(x)) 2 ≤ 0, K > 0, K 2 > 0. (38)

ote, that ˙ V = 0 if and only if u(x) = 0 ∧ x 4 = 0. In the sequel of this subsection, we
enote this set as V d, 0 . Next, we aim to show that the largest subset of V d, 0 which is
nvariant with respect to trajectories of (9) , (37) consists of the single point (0, 0, l 0 , 0) � .
ince u(x) is given by (19) , it holds that g(1 − cos x 1 ) − x 3 x 2 2 + c 1 (x 3 − l 0 ) = u(x) = 0, x 4 =
, ∀ x ∈ V d, 0 . Realize that the mentioned invariance means that the above equalities must
old along trajectories of (9) , (37) and therefore time differentiation gives gx 2 sin x 1 − x 4 x 2 2 +
x 2 x 3 x 

−1 
3 (2x 2 x 4 + g sin x 1 ) + c 1 x 4 = 0. As already noted, x 4 = 0 for all x ∈ V d, 0 and therefore

his last equality gives x 2 sin x 1 = 0 for all x ∈ V d, 0 . Differentiating x 2 (t ) sin x 1 (t ) = 0 with
espect to time along trajectories of (9) , (37) and recalling again that x 4 = 0 for all x ∈
 d, 0 one gets −x −1 

3 g sin 

2 x 1 + x 2 2 cos x 1 = 0. Summarizing, we have shown that for every x
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elonging to any subset of V d, 0 , invariant with respect to (9) , (37) , it holds that 

 4 = 0, g(1 − cos x 1 ) − x 3 x 
2 
2 + c 1 (x 3 − l 0 ) = 0, (39)

 2 sin x 1 = 0, x −1 
3 g sin 

2 x 1 − x 2 2 cos x 1 = 0. (40)

ince x 1 ∈ (−π/ 2, π/ 2) and x 3 > 0 by the basic settings (3) , (40) implies that x 1 = x 2 =
. Indeed, by the first equality in (40) either x 2 = 0 or sin x 1 = 0, i.e. x 1 = 0 by x 1 ∈
 −π/ 2, π/ 2] . Now, substituting x 1 = 0 into the second equality in (40) gives x 2 = 0 while sub-
tituting x 2 = 0 into the second equality in (40) gives x 1 = 0. Next, substituting x 1 = x 2 = 0
o the second equality in (39) gives for c 1 > 0 that x 3 = l 0 . In such a way, together with
lready mentioned equality x 4 = 0, we have just demonstrated that the set { x = (0, 0, l 0 , 0) � }
s the only subset of the set V d, 0 that is invariant with respect to trajectories of (9) with u
rom (36) - (37) . 

Summarizing, for V (x) given by (32) with V ((0, 0, l 0 , 0) � ) = 0, V (x) > 0, ∀ x � =
(0, 0, l 0 , 0) � it holds by (38) that ˙ V ≤ 0, ∀ x � = (0, 0, l 0 , 0) � ) and that { (0, 0, l 0 , 0) � } is the

argest subset of { x ∈ R 

4 | ̇  V = 0} , invariant for (9) , (36) , (37) . So, by virtue of the well-know
aSalle principle [37] we have just proven the following result. 

heorem 4.1. Let K > 0, K 2 > 0, c 1 > 0 are given and denote D × R , with D =
(−π/ 2, π/ 2) × R × (0, ∞ ) . Then feedback law (37) asymptotically stabilizes system (9) at
he equilibrium (0, 0, l 0 , 0) � with the region of attraction being the largest subset of D × R

hich is invariant with respect to trajectories of (9) , (37) . 

heorem 4.2. Similar comments as in Remark 2.2 obviously apply regarding the region of
ttraction mentioned in Theorem 4.1 . 

emark 4.3. In the real-life setup, however, the cable can only pull. This means that the
ontrol force F must always be non-negative. In the simulations and experiments that are
resented in the next section, this was achieved by feeding the output of the control law
o a saturation function which puts the cart force to zero when it becomes negative. More
pecifically, rewriting the definition (11) of u in terms of x 1 := φ, x 2 := 

˙ φ, x 3 := l, x 4 := 

˙ l ,
ives 

 = x 3 x 
2 
2 + g cos x 1 − (κ/m) x 4 − F /m, (41)

 ≤ x 3 x 
2 
2 + g cos x 1 − (κ/m) x 4 , (42)

here the saturation (42) holds by F ≥ 0. Note, that the virtual input u has a clear physical
eaning being the second time derivative of the string length. 

. Simulations and experiments 

.1. Simulations 

In this subsection, the newly developed, nonlinear feedback law in (37) , designed by
ackstepping, is compared with the time delay feedback (14) of [19] and Lyapunov based
eedback (19) of [24] using simulations. One of the important purposes of simulations of the
ewly developed controller (37) is to tune its positive parameters K, K 1 , c 1 . Note, that while
, K 1 are typical gain-like parameters to be tuned to achieve nice performance, the parameter
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Fig. 11. Simulations: the time evolution of the pendulum angle and the pendulum length during the controlled swing. 
The blue line corresponds to the newly derived feedback (37) , the red line to time delay feedback (14) of [19] . (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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 1 determines the trade-off between controller aggressiveness and string length variation due
o the CLF (33) term c 1 (x 3 − l 0 ) 2 / 2 (recall x 3 := l). 

Note that the feedback (37) is simulated on the full model (1) - (2) , while (14) and (19) are
imulated on the sub-model (1) . The parameters of the model are given as l 0 = 1 [m] and
 = 1 [kg] . The friction is neglected here, i.e. κ = 0 [kg s −1 ] . 
The comparison is shown in Figs. 11 and 12 , respectively. In the upper part of the figures,

he trajectories of the pendulum angle are shown, whereas the evolution of the pendulum’s
ength is shown in the bottom. In both the cases the suppression of the pendulum swing with
nitial deviation φ(0) = 

π
2 [rad] and the zero angular velocity 

˙ φ(0) = 0 κ = 0 [rad s −1 ] was
imulated over a 25 seconds horizon. The following controller parameters were considered:
 = 4, K 2 = 12. 5 , c 1 = 10 for (37) ; K = 0. 25 , c 1 = 10 for (19) ; ξ = 0. 05 resulting to �l =
. 067 [m] in (14) . 

The behavior of the trajectories reflects the theory presented in the previous sections. The
endulum swinging seems not to vanish completely using the Lyapunov-based controllers as
he slow asymptotic decay is related to the lack of local exponential stability. The suppres-
ion efficiency of the approach based on the time-delay control law (14) in Fig. 11 can be
ttributed to the constant amplitude of the control signal, despite the decaying amplitude of
he oscillation to be suppressed. Notice that even though the novel feedback (37) was tested
1399 
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Fig. 12. Simulations: the time evolution of the pendulum angle and the pendulum length during the controlled swing. 
The blue line corresponds to the newly derived feedback (37) , the red line to feedback (19) of [24] . (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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n a more complex model, analogous result has been achieved as for the simpler case with
19) . 

.2. Experiments 

In a second step, feedback law (37) , proposed by backstepping, is compared experimentally
ith both the time delay feedback (14) and Lyapunov based feedback (19) on the setup shown

n Fig. 13 . Note that this setup was used already in [19] and [24] . It consists of an externally
ontrolled movable cart connected with the suspended load via a cable of fixed length. As
t can be seen in the detail of Fig. 13 , the cable passes through a pulley at the fixed base
nd an arm of the rotational sensor which measures the pendulum angle. The cable length
s controlled via the position of the movable cart which itself is driven by an actuator via a
otating belt. The actuator is controlled by an industrial control unit which operates in a torque
egime, i.e., the input of the industrial control unit is the reference torque to be generated by
he actuator. The rotating belt transforms the torque generated by the actuator to the force
pplied to the movable cart. The cart position is measured using an incremental sensor. 

For the purpose of the current research, the experimental setup presented in [19] and
24] was further enhanced. In particular, the industrial controller CompactRIO and Labview
1400 
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Fig. 13. The experimental setup for validation of the proposed methods. 
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ubstituted PC with measurement board and Matlab-Simulink used earlier. This brought a sub-
tantial improvement in reliability and computational efficiency, including the measurements
y virtue of the FPGA and fast TTL input/output blocks. 

For time-delay feedback (14) the input of the controller is the pendulum angular position
and the output is the instantaneous required cable length l . To implement this output, a

osition PD controller was used to achieve the desired pendulum length by movement of the
art. For control law (19) , the controller output u(t ) is the desired velocity of the pendulum
able ˙ l . For this purpose, a linear velocity observer was developed and a velocity PD controller
as designed and tuned to adjust the instantaneous desired velocity of the cable length via

he velocity control of the movable cart. Thus, for these two control implementations, the
cheme according to Fig. 2 was applied, supplemented by the velocity observer for the latter.

The implementation of the feedback (37) designed by backstepping was considerably easier,
amely as u (t ) represents the desired acceleration of the pendulum string l̈ (t ) , the desired
orce F (t ) can be determined from (11) as 

 (t ) = ml(t ) ̇  φ2 (t ) + mg cos φ(t ) − κ ˙ l (t ) − m ̄u (t ) . (43)

or which (d φ/d t ) and (d l/d t )] are estimated by local observers. The advantage of generating
he control force by (43) is also in compensation of viscous friction and the effects of the
ravitational and centrifugal forces. Moreover, the control scheme (37) , (2) is naturally robust
ith respect to an unknown viscous friction coefficient κ as (37) contains the term K 2 x 4 , x 4 =

(d l/d t ) where K 4 > 0 is a tunable control gain. Finally, the control feedback implementation
s according to the straightforward scheme in Fig. 3 supplemented by the local observers for
he unmeasured angular velocity and the string length variation velocity. 

The identified parameters of the set-up model according to (1) - (2) are m = 0. 8 [kg] and κ =
5 [kg s −1 ] . The nominal cable length l 0 = 0. 6 [m] was considered. The following controller
arameters were applied: K = 4, K 2 = 12. 5 , c 1 = 10 for (37) ; K = 0. 5 , c 1 = 10 for (19) ;
1401 
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Fig. 14. Experiments: the time evolution of the pendulum angle and the pendulum length during the controlled 
swing. The blue line corresponds to the newly designed force controller (37) , (43) , the red line to the time delay 
feedback (14) and the yellow line to the uncontrolled swing. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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l  
= 0. 05 providing �l = 0. 04 [m] for (14) . The results of the performed experiments are
hown in Figs. 14 and 15 , respectively, where also the almost undamped pendulum swing
ith l 0 = 0. 6 [m] is shown for comparison. Analogously to simulations, the trajectories of the
endulum angle are shown in the upper part of the figures, whereas the pendulum length
volution during the swing damping is shown in the bottom. In all the experiments an initial
ngle of around 0. 85 [rad] was used. 

First, the proposed control by force feedback law (defined by (37) and (43) ) is compared
ith the time delay feedback (14) of [19] in Fig. 14 . As can be seen, both methods have

quivalent damping performance in the first stage of the responses. However, analogously to
he simulations in Fig. 11 , the time-delay approach provides better damping in the second
tage, approximately from t > 5[s] . As already discussed, it is caused by a constant amplitude
l in (14) . However as soon as the amplitude �φ(t ) gets below the process and measurement

oise, this will lead to unpredictable jerky behaviour. Thus as soon as �φ(t ) gets below a
redefined threshold, here we used �φt = 0. 1 [rad] , the controller (14) must be switched off.
his is not the case for the control by force feedback law which is entirely safe in this aspect.

The comparison of the proposed control by force feedback law (37) , (43) with feedback
aw (19) of [24] is given in Fig. 15 . One can observe that the control approaches provide
1402 
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Fig. 15. Experiments: the time evolution of the pendulum angle and the pendulum length during the controlled 
swing. The blue line corresponds to newly designed force controller (37) , (43) , the red line to (19) of [24] and the 
yellow line to the uncontrolled swing. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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lmost equivalent damping of the pendulum. The main difference between the approaches
an be observed in the evolution of the cable length. For the feedback (37) , (43) , the pen-
ulum length oscillates around the nominal length and the amplitude of these oscillations
ecreases as the pendulum swing decreases. For the feedback (19) the length is significantly
xtended in the first phase. After the swing angle is reduced, it is shortened back to the
nitial length l 0 and continues to oscillate around this value. It should be noted that in a
eal-life crane set-up, this significant extension could be considered as a serious drawback.

ainly due to this aspect, and also due to straightforward implementation, the control by
orce feedback law designed using back-stepping should be preferred in practical applica-
ions. As a matter of fact, feedback law (37) , (43) can be applied directly to a wide variety
f crane set-ups as it contains only basic parameters such as the mass of the load and
he required nominal length. On the contrary, feedback law (19) requires an additional PD
lock that needs to be tuned by a skilled control engineer at each occasion. It also ap-
lies in the comparison with the time delay feedback which cannot work within small angle
ariation. 
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. Conclusions and outlook 

This paper presented a progress towards model based feedback design for damping the
wing of a pendulum by varying the suspension length. Future and ongoing research include,
n particular, developing adaptive schemes accounting for cart and pivot friction which are
urrently estimated experimentally. To enhance the convergence speed, a hybrid control law
ay be considered, namely, switching to stronger gains when approaching the equilibrium.
s an alternative, one can apply the backstepping technique twice to the smoothed feedback

ontrol law of Section 3.3 . Last, but not least, an open theoretical question concerns how
o take into account that the input force can only pull the cable, while the downward force
s limited by the current value of the gravitational and centrifugal forces. In the laboratory
xperiments it was handled by adding saturation. Hence, the inclusion of saturation was
uccessful in practice, yet a proper theoretical foundation is missing. 
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