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a b s t r a c t 

Near-infrared reflectography (NIR) is a well-established non-invasive and non-contact imaging technique. 

The NIR methods are able to reveal concealed layers of artwork, such as a painter’s sketch or repainted 

canvas. The information obtained may be helpful to historians for studying artist technique, attributing 

an artwork reconstructing faded details. Our research presents the improved method previously devel- 

oped that reveals the hidden features by removing the information content of the visible spectrum from 

NIR. Based on convolutional neural networks (CNN), our model estimates the transfer function from vis- 

ible spectra to NIR, which is nonlinear and specific for painting materials. Its parameters are learnt for 

particular paintings on the subsamples randomly selected across the canvas, and the model is further 

utilised to enhance the whole artwork. In addition to the previously developed model, our algorithm 

exploits each pixel’s surroundings to estimate its NIR response. This leads to more precise results and 

increased robustness to various noises. We demonstrate higher accuracy than the previous method on 

the historical paintings mock-ups and higher performance on well-known artworks such as Madonna dei 

Fusi attributed to Leonardo da Vinci. 

© 2022 Consiglio Nazionale delle Ricerche (CNR). Published by Elsevier Masson SAS. All rights reserved. 
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. Introduction 

The investigation of hidden features in artworks by non- 

nvasive analytical methods is a hot topic in Heritage Science do- 

ain. Traditional and innovative tools are being exploited and de- 

eloped to provide insights into the composition, structure, and 

ther properties of concealed layers. Broadband Infrared Reflectog- 

aphy represents a traditional way of investigating underdrawings 

nd retouches of paintings. With the technological advances, state- 

f-art devices were developed to acquire the reflected radiation 

rom the painting within narrow spectral bands either in single- 

oint or line-scan imaging modality providing us with 2D multi- 

pectral/hyperspectral information [1] . The potential of many other 

maging techniques - i.e. TeraHertz [2–4] , Optical Coherence To- 

ography [5,6] , photoacoustic [7–9] and non-linear [10] - is be- 

ng currently explored for the inspection of artwork subsurface fea- 

ures. 

Our research capitalizes on the results achieved with deep 

earning in multimodal data processing in other research fields, 
∗ Corresponding author. 

E-mail address: karella@utia.cas.cz (T. Karella) . 
1 These authors contributed equally to this work. 
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ainly in medical applications [11] or in consolidating video, au- 

io or text [12] . Artificial intelligence, in general, can provide more 

omprehensible and enhanced information. [13] The use of black- 

ox models in Heritage Science could bring positive results, but 

his area requires further research. Several studies [14–18] point 

o the applicability of the deep learning and especially the Convo- 

utional neural networks (CNN), which have recently been applied 

or underdrawing recovery, ghost-painting reconstruction [19] , x- 

ay separation [20] , or for registration of numerous modalities 

uch as infrared reflectography, visual light photography or x- 

adiography [21] . 

This study builds on and improves our previously developed al- 

orithm [22] , which exploits neural networks to separate the visi- 

le cover contribution from the hidden layers in the near infrared 

NIR) reflectograms. In the original method, previously, the authors 

efined the relationship estimating NIR response based on the vis- 

ble spectra (VIS) using a shallow neural network as an approx- 

mation due to its non-linearity. They kept their model size as 

iny as possible to prevent overfitting. This is even more signifi- 

ant concern in our case as we are using higher-dimensional input 

nd larger architectures. The limitation of the previous model is 

hat it works independently with individual pixels. The new model 

akes into consideration the fact that the pixel’s neighbourhood 
SAS. All rights reserved. 

https://doi.org/10.1016/j.culher.2022.09.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/culher
http://crossmark.crossref.org/dialog/?doi=10.1016/j.culher.2022.09.022&domain=pdf
mailto:karella@utia.cas.cz
https://doi.org/10.1016/j.culher.2022.09.022


T. Karella, J. Blažek and J. Striová Journal of Cultural Heritage 58 (2022) 186–198 

a

s

a

d

n

a

o

c

t

d

o

a

w

i

u

a

i

d

v

n

h

2

n

i

c

w

N

n

T

m

n

w

m

l

3

3

(

v

t

d

w

o

n

s

i

c

t

d

o

m

u  

v

t

Fig. 1. Mock-up from M3art database [30] used for virtual phantoms. First two 

samples in the first and fourth row are underdrawings only without any pigments 

(graphite and red clay). Pigments follow (lead white, cinnabar, red lead, madder, 

indigo, lead-tin yellow, green earth, verdigris, azurite, ultramarine, bone black and 

umber raw). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 2. On the left, there is a 3D cube expressing VIS channels of the image. The 

right part represents the desired output, which is the expected response of the in- 
reas are strongly dependent on each other. It follows that inclu- 

ion of neighbourhood pixels into the input should lead to a more 

ccurate estimate of the NIR-VIS relation. To utilize enlarged input 

imension, our models are based on the well-known convolutional 

eural networks [23] that are specialized for grid data processing 

nd proved to be usefull in various image processing tasks such as 

bject detection [24] or image segmentation [25] . 

This work’s scope is to explore how the inclusion of the pixel’s 

losest surroundings affects the prediction of NIR response. For 

he first time, we present a novel way of creating the mock-up 

ataset reflecting pixel neighbours. As in the previous model [22] , 

ur research addresses two crucial tasks: the performance measure 

nd the demonstration of the developed method on historical art- 

orks. Phantoms - examples, realized according to historical paint- 

ng recipes with known pigments and underdrawing coverage, are 

sed first to estimate model accuracy and architecture search. As 

 further step of our research, we choose only the best perform- 

ng models on phantoms to reveal hidden layers in artworks to 

emonstrate the practical value of our model. Our experiments re- 

eal the limitations of our models’ hyperparameters, the potential 

etwork architectures and the enhanced outputs when applied to 

istorical artworks. 

. Research aim 

NIR spectrography is among the most widely used technique for 

oninvasive examining historical paintings and proved to be usefull 

n various tasks such as conservation [26] authentication [27] or 

omposition analysis of an art piece [28,29] . 

However, NIR scanning delivers a mixture of beneath layers 

ith the visible painted layers. A challenging area in the field of 

IR spectrography is to separate these two layers and show be- 

eath layers as they look like without those visible contribution. 

he transition from visible to NIR could still be poorly described, 

ainly because no exactly defined relation represents that [30] . 

This paper outlines a new approach for unmixing these two sig- 

als utilising the latest methods of Artificial Intelligence dealing 

ith the nonlinearity nature of the problem. We have designed a 

odel based on Convolutional Networks for enriching the hidden 

ayer clarity. 

. Materials and methods 

.1. Mock-ups 

M3art database [30] provided us with a set of mock-up samples 

physical samples) as shown in Fig. 1 . Authors prepared many can- 

ases with color samples from 2012 to 2014. Their database con- 

ains 25 materials combined in up to 3 layers (ground layer, un- 

erdrawing/underpainting, and top covering layer). The materials 

ere used for creating 634 samples of four kinds - ground layer 

nly, ground layer with drawing, ground layer with color, and fi- 

ally, groundlayer with drawing covered by color layer. 2 

We use the canvas shown in Fig. 1 for our experiments. Each 

quare 4 × 4 cm corresponds to twelve different pigments, and 

ts right half contains underdrawing (one set with natural willow 

harcoal and the second set with red clay (sinopia)). The composi- 

ion of the pigmented layer was following: 2 g of pigment for 10 

rops of 5% solution of animal glue, 5 drops of turpentine, 3 drops 

f egg yolk and 1 drop of ethanol. The canvas was prepared by 

ixing 3 volume parts of Bologna chalk (calcium sulfate), 2 vol- 

me parts of 7 % aqueous solution of gelatin, 1 egg yolk and 1/4

olume parts of polymerized linseed oil. These samples were used 

o create our virtual phantoms. 
2 https://m3art.utia.cas.cz/db/overview 
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.2. Visible and near-infrared imaging 

The visible and near-infrared (VIS-NIR) scanning of these sam- 

les was performed with a multispectral VIS-NIR scanner con- 

tructed by CNR-INO [31] . The scanner has been described in de- 

ail here [32] . In brief, it acquires in a single point modality, si- 

ultaneously a set of 32 self-registered and aberration-free re- 

ectance images (16 in visible and 16 in near-infrared range). It fol- 

ows that the available scan contains 32 dimensions representing a 

avelength window separating spectral space between 380 nm to 

500 nm, with the resolution of 20–30 nm in VIS and 60–120 nm 

n NIR. 

.3. Artworks 

The two artworks were selected so that the result could be 

ompared our research with our previous work [22] . The first 
ut in NIR wavelength. The prediction of one pixel (its coordinates represented by 

 black square) is not only based on the reflectivity of this pixel in the VIS, but also 

akes into account the reflectivity of neighboring pixels. 
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Fig. 3. Phantom example of spatial dimensions (144 × 108) consisting of 12 distinct painting materials with 15% underdrawing coverage. Materials form a grid of (4 × 3) , 

each cell contains single distinct material and underdrawing area is on the right. Shown colors are in RGB derived from 16 VIS bands. The example parameters slightly differs 

from the experiment dataset for better clarity. 

i

F

i

e

i

n

Y

o

a

p

3

s

p

3

d

t

e

f

e

p

t

h

r

a

s

b

b

o

s

i

m

i

n

t

D

S  

w

a

d

t

e

o

f

r

N

o

C

a

D  

fl

i

D  

fl

b

f

r

t

c

3 Note that most CNNs use the flipped kernel (K � I)(i, j) = 

∑ M 
m 

∑ N 
n I(i + m, j + 

n ) K(m, n ) , therefore from the mathematical point of view the � operator should 

be termed as the cross-correlation. 
s a ‘Still life’ oil on canvas by an anonymous painter from the 

ine Arts Museum of Asturias. It shows a series of pottery us- 

ng oil on canvas painting (23.4 x 28.4 cm) and originated in the 

arly 20th century. Infrared reflectography discovered underdraw- 

ng and underpaintings scenes with buildings not visible by the 

aked eye. 

The second example is ‘Madonna dei Fusi’ (Madonna of the 

arnwinder) attributed to Leonardo da Vinci. The painting is 

wned by a private collector. The canvas is also oil painted 

nd dates back to 1501–1507; the analysis revealed various 

entimenti . 

VIS-NIR multispectral scanner detailed in [32] and [33] yields 

2 channel scans (380, 2800 nm) of these artworks. The scanners 

patially registered the images, and we then used the resulting hy- 

ercube. 

.4. Model 

Our goal is to predict NIR response (in. specific spectral win- 

ow) given the vector of VIS reflectancies, and this is motivated by 

he fact that some NIR content is not involved in VIS spectra. The 

stimation is further intended to distinguish between concealed 

eatures noticeable only in the infrared domain by removing the 

xpected VIS contribution in NIR. Therefore, the result should dis- 

lay just invisible parts of NIR, remove residuals of VIS contribu- 

ion, and thus present a more accurate estimation of the painting 

idden features. 

We estimate the transition function from VIS to NIR by neu- 

al nets to address its non-linearity. Particular painting has its own 

nd different estimated function because the material property is 

trongly dependent on many factors. The input consists of 16 VIS 

ands, and the output is a single NIR band; including more NIR 

ands as output does not lead to better results, that is inspired by 

ur predecessor [22] . 

To extend the capabilities of preceding architecture, we con- 

ider the pixel spatial surroundings for this estimation illustrated 

n Fig. 2 . To make use of the newly included information, our 

odel incorporates CNN, which are traditionally selected for deal- 

ng with spatial space [34] . 

Instead of matrix multiplication employed by classical neural 

ets, CNN processes the input using a convolutional operation with 

he trainable kernel. Let us define the convolution operation � as: 
188
efinition 1 (Discrete Convolution) . 

(i, j) = (K � I)(i, j) = 

M ∑ 

m 

N ∑ 

n 

I(i − m, j − n ) K(m, n ) , (1)

here I stands for pixels intensities (dimension of I is M - width 

nd N - height). Convolution filter K (kernel) is also 2D matrix with 

imensions typically lower than I. Convolution is moving the fil- 

er K to every possible spatial coordinate (i, j) of image I, and for 

ach (i, j) multiplying image intensities by corresponding weights 

f kernel K and summing weighted intensities. 3 

The convolutional layers also include adding bias and activation 

unction after convolution operation like typical neurons. 

The Information Gain (IG) metric given in [22] seems to be a 

eliable model performance metric in terms of separation in the 

IR spectra. 

Input data are represented as functions VIS and NIR λ non-zero 

nly on spatial grid of dimension (m × n ) . The function 

ˆ f (our 

NN) predicts the NIR response given only VIS bands illustrated 

s “Predicted NIR” in Fig. 4 . 

efinition 2 (VIS) . Function VIS (i, j) : N 

2 → R 

l ×l ×b ; gives re-

ectancy in b consequent bands of visible spectra for pixel at (i, j) 

ncluding (l × l) neighbourhood. 

For our datasets b = 16 , l ∈ { 3 , 5 , 7 , 9 } . 
efinition 3 (NIR) . Function NIR λ(i, j) : N 

2 → R ; returns pixel re-

ectence in single NIR band at spatial coordinates (i, j) . The NIR 

and is centered at wavelength λ. 

In our case λ is different with respect to the painting: 1730 nm 

or Still life and 950 nm for Madonna dei Fusi . 

Performance of ˆ f is measured as a difference between real NIR 

esponse and predicted. “The Information Gain for a certain spec- 

ral window and a given pixel is the change of captured radiation 

aused by painting layers not included in VIS.” [22] 
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Table 1 

CNN architecture parameters. 

Parameter name Values 

Filters per CNN layer 10, 15, 25, 50 

Kernel size 3, 5, 9 

Number of CNN layers (Depth) 1, 2, 3, 4 

Activation functions sigmoid, relu 
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efinition 4 (IG) . The IG metric is defined as: 

= 

M ∑ 

i 

N ∑ 

j 

ˆ f ( VIS ( i, j ) ) − NI R λ( i, j ) , (2) 

here VIS function and NIR λ are defined beforehand, ˆ f is model 

 

l ×l ×b → R . Formula sums over spatial dimension of input data 

M × N) . 

However, IG is not suitable for training neural networks because 

t requires a smooth and differentiable loss function; we used the 

unction from our previous article, where the network weights 

ere adjusted based on a loss function defined as the Mean Square 

rror (MSE), which reflects IG and is easily differentiable. Thus, IG 

s used to measure validation error and MSE for the training. 

efinition 5 (MSE) . The MSE metric is defined as: 

SE ( ̂  f ) = 

1 

M × N 

M ∑ 

i 

N ∑ 

j 

( ̂  f (V IS(i, j)) − NIR λ(i, j)) 2 , (3) 

here VIS function and NIR λ are defined beforehand, ˆ f is model 

 

l ×l ×b → R . Formula sums over spatial dimension of input data 

M × N) . 

The output of all models was the same single neuron corre- 

ponding to the pixel intensity distribution of greyscaled image. 

he input size limits the kernel size and the depth because only 
ig. 4. The figure displays the MSE performance according to the network parameters 

olumns the architecture parameter. Boxplots reflect the influence on the MSE expressed i

y 10 5 to improve readability.) 

189 
 “valid” padding of the CNN layer was allowed, which means that 

ot all the parameter options are available for each input size. 

We choose the number of learnable paremeters close to the 

oregoing model capacity to overcome the overfitting phenomenon. 

yperparameter behaviour is described in detail in Appendix C . 

ven for our smaller convolutional layers made of consecutive 

 × 3 kernels with 30 filters, the model tends to memorize the 

atterns, and the validation error drops after approximately 20 

pochs. We employ the early stopping regularization technique to 

void this undesired behaviour and we work with higher capac- 

ty models. Still, we do not enlarge the filters above 50 because 

uch models’ training was notably non-stable and requires sensi- 

ive hyperparameter selection. The following Table 1 summarizes 

he tested parameters related to these restrictions. 

.5. Virtual phantoms generators 

In order to evaluate the model performance, the hidden fea- 

ures of the NIR have to be known; therefore, we employ the 
and the phantom input size. Rows represent a different size of the phantom and 

n the y-axis of the particular parameter value on the x-axis. (the MSE is multiplied 
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Table 2 

The table enlists the results of our experiments compared to the baseline model 

(the predecessor model [22] ). The MSE metric refers to an average performance 

on the 20 distinct virtual phantoms. The input column stands for training sample 

dimensions, the depth for a number of hidden layers, the filters for a number of 

convolutional filters or neurons in the baseline case, the kernel for the size of con- 

volutional filters, the activation for a chosen activation function. 

Input [px] Depth Filters Kernel [px] Activation Validation MSE 

baseline 2 25 - sigmoid 0.000636 ± 0.000139 

3x3 1 50 3 relu 0.000530 ± 0.000104 

3x3 1 25 3 sigmoid 0.000567 ± 0.000106 

3x3 1 10 3 sigmoid 0.000575 ± 0.000127 

3x3 1 15 3 sigmoid 0.000575 ± 0.000085 

5x5 2 50 3 sigmoid 0.000433 ± 0.000070 

5x5 2 25 3 sigmoid 0.000447 ± 0.000064 

5x5 2 15 3 sigmoid 0.000461 ± 0.000073 

5x5 2 25 3 relu 0.000464 ± 0.000056 

7x7 3 25 3 sigmoid 0.000221 ± 0.000053 

7x7 3 50 3 sigmoid 0.000222 ± 0.000064 

7x7 3 15 3 sigmoid 0.000251 ± 0.000080 

7x7 3 10 3 relu 0.000252 ± 0.000055 

9x9 4 50 3 sigmoid 0.000189 ± 0.000045 

9x9 4 25 3 sigmoid 0.000196 ± 0.000046 

9x9 2 25 5 sigmoid 0.000206 ± 0.000043 

9x9 4 15 3 sigmoid 0.000211 ± 0.000063 
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Fig. 5. The plot shows the performance of our best models using pixel surround- 

ings for predicting the NIR response. The x-axis represents the size of the employed 

neighbourhood and the y-axis the MSE measured on the validation set. The prede- 

cessor (baseline) model [22] not using any neighbourhood pixels is plotted on the 

very right. It was trained and validated on the same virtual phantoms only with 

omitted surroundings of the pixel. (The MSE is multiplied by 10 5 to improve the 

readability.) 
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hysical samples (mock-ups) with the precise position of under- 

rawings. Based on these, we can generate artificially datasets of a 

hangeable size, a material count or an underdrawing ratio, which 

e call virtual phantoms. 

Mock-ups as a source of truth consist of pigments without 

verdrawing, pigments over graphite underdrawings, and pigments 

ver clay underdrawings. This gives us 12 × 3 groups with different 

eflectance characteristics. From each group we take patches (400) 

hich have required dimensions and contains all 16 VIS reflectiv- 

ty values per pixel and single NIR band that is same for all patches

ach group. The dimensions of a sample are then l × l × 17 , where

vary according to the CNN architecture. Let us denote sample x i . 

At this point we needed to be able to generate artificial sam- 

les to increase their number so we derive a sample generator 

or each group represented by group mean vector and variance 

or each dimension. According to our predecessor [22] we assume 

hat material reflectance matches the normal distribution. Hence, 
ig. 6. a) Inference; the trained network is used for estimation of the NIR response of V

 × 9 of the original painting. (The filter notation is as follows depth@width x height.) 

190 
enerator is represented by a multivariate Gaussian distribution of 

he k-dimensional random vector. 

Let us assume D m,l as the m material distribution with spatial 

ize l × l. We approximate D m,l by a multivariate Gaussian distribu- 

ion I m,l (μ, �) . The I m,l parameters are estimated by using all the 

 i samples of material m and l size. We calculate μ as the sample 

ean vector and � as the sample covariance matrix Q given by 

he following formulas: 

(m ) ∼ 1 

S 

S ∑ 

i =1 

x i = 

⎡ 

⎣ 

x̄ 1 
. . . 

x̄ K 

⎤ 

⎦ with x̄ J = 

1 

S 

S ∑ 

i =1 

x i j (4) 
IS. b) Training of network; parameters are trained on a subset of samples of size 
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Fig. 7. The detail (10 x 10 cm) of the Still life painting: a) the RGB image, b) the visible cover (output of the neural network), c) the NIR reflectogram centered at 1730 nm, 

d) the enhanced reflectogram (the subtraction image c-b). 
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(m ) ∼ Q = [ q jk ] with q jk = 

1 

S − 1 

S ∑ 

i =1 

(x i j − x̄ j )(x ik − x̄ k ) , (5)

here x i is a sample of D m,l with dimension K = (l × l × s ) and S

tands for the total samples count. 

For drawing vector v from I m,l , we need decompose covariance 

atrix (for example by Cholesky decomposition), 

(m ) = L L T , (6) 

here � is covariance matrix and L is a real lower triangular ma- 

rix with positive diagonal entries. Vector u = (u 1 , . . . , u n ) , where

 i is independent sample from a standard normal distribution 

(0 , 1) . Then the vector v is calculated by following equation: 

 = μ(m ) + L · u (7) 

. Results 

The result section includes two sections. Firstly, we showcase 

he experiments with virtual phantoms primarily to examine var- 
191 
ous CNN architectures and to demonstrate that our improved 

odel can achieve better accuracy than the antecedent model [22] . 

he experiments are evaluated by the MSE metric to give an objec- 

ive and straightforward score. Secondly, we apply the best models 

rom the first phase on real artworks to illustrate its contribution 

o better visualization of hidden features in NIR reflectograms. We 

resent figures confirming the reduction of VIS residuals and im- 

roved visibility of thin drawings. 

.1. CNN architecture design 

To study the model design, we prepared four sets of virtual 

hantoms with a variable size of neighbourhood surroundings 

from 1 to 4) generated from distributions I m,l . Each set contains 

0 different phantoms; each phantom contains samples of spatial 

ize 400 × 400 equally distributed among 12 distinct materials m 

sampled from I m,l ); each of them includes 2% samples with un- 

erdrawing and 17 different bands (16 VIS bands and single NIR 

and). Phantom example with 12 materials and 15% underdrawing 

overage is shown in Fig. 3 . These settings reflect the predeces- 
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Fig. 8. The detail (10 x 10 cm) of Madonna dei Fusi painting attributed to Leonardo Da Vinci: a) the RGB image, b) the visible cover (the output of the neural network), 

c) the NIR reflectogram centered at 950 nm, d) the enhanced reflectogram (the subtraction image c-b). Histograms of images b, c, d were equalized by CLAHE algorithm 

[35] (the original NIR is included in Appendix B.1 ). 
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or performance measuring environment [22] . These virtual phan- 

oms were split into validation and training sets and served as a 

ataset to train various CNN architectures and to measure their 

erformance. 

We have tested several hyperparameters such as the number 

f filters per CNN layer, the kernel size, and the number of con- 

olutional layers. We report the MSE performance as a function of 

hese hyperparameters for a given phantom input size in the Fig. 4 . 

t can be seen that 25 filters are sufficient (a higher number has lit- 

le impact on MSE), the kernel size 3 × 3 is adequate, and deeper 

etworks achieve lower standard deviation and lower error rates, 

specially for the 7 × 7 and 9 × 9 input size. 

The results, as shown in Table 2 with the detailed description 

f the most successful models, confirms that our CNN architectures 

utperform the baseline model [22] in terms of the MSE metric. 

n addition to the findings about hyperparameters from Fig. 4, Ta- 

le 2 points to the sigmoid activation function as more appropri- 

te. The best networks of these settings are further applied to art- 

orks to demonstrate their practical usability. 
192 
As Fig. 5 shows, there is a clear trend of the positive contri- 

ution of a pixel surroundings. All of our best models achieved 

ower MSE than the baseline model, and their error decreased with 

he larger surroundings along with the standard deviation until the 

 × 9 dimension of the input. 

.2. CNN to enhance information about NIR reflectograms in 

istorical paintings 

As a further step of our research, we have tested the developed 

ethod on artworks. We selected regions of interest on the paint- 

ngs and for each of them, we trained a model on 2500 randomly 

hosen pixels with 9 × 9 surroundings. We have selected architec- 

ure with four CNN layers, each containing 25 filters, with 3 × 3 

ernel size and sigmoid activation summarized in Fig. 6 . 

The trained model estimates the VIS contribution (the visible 

over) in NIR reflectograms. For the improved reflectogram, the vis- 

ble cover is subtracted from the acquired NIR reflectogram. We 

escribe here two representative examples of enhanced visibility 
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f hidden features in the NIR reflectograms of an anonymous oil 

ainting from 20th century shown in Fig. 7 and a panel painting 

ttributed to Leonardo da Vinci in Fig. 8 . 

. Conclusion 

The performed tests validate our assumption that including 

ixel spatial surroundings leads to more accurate results in the 

IR estimation for the virtual phantoms and the real paintings. As 

hown in Fig. 5 , our models overcame the MSE metric of the previ-

us model, and the actual experiments with artworks confirm the 

chievement of the practical result as shown in Figs. 7 and 8 . 

The architecture search confirms the common knowledge that 

he kernels 3 × 3 are sufficient and enlarging the kernel decreases 

he model stability and the performance as seen in the middle col- 

mn in Fig. 4 . The last column of Fig. 4 points out to the fact that

he bigger network depth (more CNN layers) the better performing 

odel. Increasing the number of filters per CNN layer improves the 

odel accuracy, the plateau is reached with 50 filters. However, 

he model capacity should not be larger, the stack of too many 

NN layers suffers from a vanishing gradient, and models with too 

any filters tend to overfit. 

When it comes to historical artworks, our models cope better 

ith colour transitions such as a wide brush stroke in the mid- 

le of the artwork shown in Fig. 7 and reducing the impact of 

igh-brightness points from VIS. Although the output corrected 

everal misregistration errors, there are still some imperfections, 

uch as the brush stroke in the lower corner in Fig. 7 . As shown in

ig. 8 our networks reduced noises and enhanced numerous cracks 

f the paintings, allowing us to better distinguish each angel’s hair 

etter and change the background to a firmer one. 

This study is a first step towards a better understanding of how 

he spatial environment of pixels affects the neural network mod- 

lling of the VIS to NIR transition. In the following research, we 

ill focus on a more complex modelling of virtual phantoms, em- 

loying the multilayered paint stratigraphy (overpaints). Our fu- 

ure work will also investigate the benefits of more advanced CNN 

odels such as the residual connection introduced in [36] along 

ith the extensive regularization techniques to handle the vanish- 

ng gradient problem and prevent overfitting. 
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ppendix A. Abbreviations 

NIR near infrared 

VIS visible spectra 

IG Information Gain 

CNN Convolutional neural networks 

MSE Mean Squared Error 

ppendix B. Artworks 

The original non improved version of the Fig. 8 is displayed in 

ig. B.1 , we used the histogram equalization algorithms to improve 

eadability for the reader, but no other changes have been made. 

To manifest the distinctions between our and the baseline 

22] model, we additionally incorporate Figs. B.3 , B.2 with the 

ighlighted difference between model outputs. 
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Fig. B.1. The detail (10 x 10 cm) of Madonna dei Fusi painting attributed to Leonardo Da Vinci: a) the RGB image, b) the visible cover (the output of the neural network), c) 

the original NIR reflectogram centered at 950 nm, d) the enhanced reflectogram (the subtraction image c-b). 
194 
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Fig. B.2. the detail (10 x 10 cm) of Still life painting: a) the NIR reflectogram centered at 1730 nm, b) the enhanced reflectogram by our baseline model (the substraction 

image a - output of the neural network), c) the enhanced reflectogram by our model using 9 × 9 surroundings (the substraction image a - the output of the neural network), 

d) the diference between b and c, the red color highlights diferences. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
195 
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Fig. B.3. The detail (10 x 10 cm) of Madonna dei Fusi painting attributed to Leonardo Da Vinci: a) the NIR reflectogram centered at 950 nm, b) the enhanced reflectogram 

by our baseline model (the substraction image a - output of the neural network), c) the enhanced reflectogram by our model using 9 × 9 the surroundings (the substraction 

image a - the output of the neural network), d) the difference between b and c, the red and blue color highlights differences. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
196 
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Fig. C.1. The progress of CNN output over the epochs: each cell contains grayscaled VIS reflectogram, NIR reflectogram and the visible cover (the output of the neural 

network). 
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ppendix C. CNN filters and epochs 

In this section, we sum up some of CNN hyperparameter’s be- 

avior we were adjusting during our experiments. 

CNN contains blocks of convolutional layers, that is, convolution 

peration with n learnable kernels of given size (l × l) ; we usually 

efer n as a number of filters and l as a kernel size. Using a con-

olutional layer with n filters on an image gives n output feature 

aps (all kernels applied on the image). The more filters, the more 

omplex function is approximated by CNN (similar to modeling by 

igher order polynomial), but it could lead to overfitting phenom- 

na. 4 The goal is to choose a suitable number of filters and CNN 

ayers based on the validation error. For further details, see chap- 

er “Convolutional Networks” in book [34] . 

Learning of neural networks refers to using stochastic gradient 

escent optimization. We usually use our training data in small 

atches (called batches), calculate the gradient for each batch, and 

djust the learnable parameters of the neural network. As long as 

he gradient descent is an iterative method, we have to repeat that 

everal times; in single epoch means that we adjusted for every 

atch. We illustrate the change of our CNN during the first ten 

pochs in Fig. C.1 . For further details, see chapter “Optimization for 

raining Deep Models” in book [34] . 

eferences 

[1] J. Striova, A. Dal Fovo, R. Fontana, Reflectance imaging spectroscopy in heritage 

science, La Rivista del Nuovo Cimento 43 (10) (2020) 515–566, doi: 10.1007/ 
S40766- 020- 0 0 011-6 . 

[2] C. Ludovica, K. Dandolo, P.U. Jepsen, Wall painting investigation by means of 

non-invasive terahertz time-domain imaging (THz-TDI): inspection of subsur- 
face structures buried in historical plasters, J. Infrared Millimeter Terahertz 

Waves 37 (2) (2016) 198–208, doi: 10.1007/s10762-015-0218-9 . 
[3] G. Filippidis, M. Massaouti, A. Selimis, E.J. Gualda, J.-M. Manceau, S. Tzortzakis, 

Nonlinear imaging and THz diagnostic tools in the service of cultural heritage, 
Appl. Phys. A 106 (2) (2011) 257–263, doi: 10.10 07/S0 0339- 011- 6691- 7 . 

[4] A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, 
R. Raskar, Terahertz time-gated spectral imaging for content extraction 
4 https://en.wikipedia.org/wiki/Overfitting 

197 
through layered structures, Nat. Commun. 7 (1) (2016) 1–7, doi: 10.1038/ 

ncomms12665 . 
[5] P. Targowski, M. Iwanicka, Optical coherence tomography: its role in the non- 

invasive structural examination and conservation of cultural heritage objects a 
review, Appl. Phys. 106 (2) (2011) 265–277, doi: 10.10 07/S0 0339- 011- 6687- 3 . 

[6] K. Kim, P. Kim, J. Lee, S. Kim, S. Park, S.H. Choi, J. Hwang, J.H. Lee, H. Lee,

R.E. Wijesinghe, M. Jeon, J. Kim, Non-destructive identification of weld- 
boundary and porosity formation during laser transmission welding by using 

optical coherence tomography, IEEE Access 6 (2018) 76768–76775, doi: 10.1109/ 
ACCESS.2018.2882527 . 

[7] G.J. Tserevelakis, A. Chaban, E. Klironomou, K. Melessanaki, J. Striova, 
G. Zacharakis, Revealing hidden features in multilayered artworks by means 

of an epi-illumination photoacoustic imaging system, J. Imaging 7 (9) (2021) 
183, doi: 10.3390/JIMAGING7090183 . 

[8] G.J. Tserevelakis, P. Siozos, A. Papanikolaou, K. Melessanaki, G. Zacharakis, Non- 

invasive photoacoustic detection of hidden underdrawings in paintings us- 
ing air-coupled transducers, Ultrasonics 98 (2019) 94–98, doi: 10.1016/J.ULTRAS. 

2019.06.008 . 
[9] A .D. Fovo, A . Papanikolaou, G.J. Tserevelakis, G. Zacharakis, R. Fontana, Com- 

bined photoacoustic imaging to delineate the internal structure of paintings, 
Opt. Lett. 44 (4) (2019) 919–922, doi: 10.1364/OL.44.0 0 0919 . 

[10] A. Dal Fovo, M. Castillejo, R. Fontana, Nonlinear optical microscopy for art- 

works physics, La Rivista del Nuovo Cimento 2021 4 4:9 4 4 (9) (2021) 453–498,
doi: 10.1007/S40766-021-0 0 023-W . 

[11] G. Litjens, T. Kooi, B.E. Bejnordi, A .A .A . Setio, F. Ciompi, M. Ghafoorian,
J.A.W.M. van der Laak, B. van Ginneken, C.I. Sánchez, A survey on deep learn- 

ing in medical image analysis, Med. Image Anal. 42 (2017) 60–88, doi: 10.1016/ 
j.media.2017.07.005 . 

12] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning,

in: ICML, 2011, pp. 689–696. https://icml.cc/2011/papers/399 _ icmlpaper.pdf . 
Bellevue 

[13] M. Fiorucci, M. Khoroshiltseva, M. Pontil, A. Traviglia, A. Del Bue, S. James, Ma- 
chine learning for cultural heritage: a survey, Pattern Recognit. Lett. 133 (2020) 

102–108, doi: 10.1016/J.PATREC.2020.02.017 . 
[14] M. Sabatelli, M. Kestemont, W. Daelemans, P. Geurts, Deep transfer learning 

for art classification problems, in: Proceedings of the European Conference on 

Computer Vision (ECCV) Workshops, 2018 . 
[15] B. Saleh, A. Elgammal, Large-scale classification of fine-art paintings: learning 

the right metric on the right feature, 2015, arXiv preprint arXiv:1505.00855 . 
[16] A. Elgammal, Y. Kang, M.D. Leeuw, Picasso, matisse, or a fake? Automated anal- 

ysis of drawings at the stroke level for attribution and authentication, 2018, 
42–5032nd AAAI Conference on Artificial Intelligence, AAAI 2018 

[17] W.R. Tan, C.S. Chan, H.E. Aguirre, K. Tanaka, Ceci n’est pas une pipe: a deep

convolutional network for fine-art paintings classification, Proceedings - Inter- 
national Conference on Image Processing, ICIP vol. 2016-August (2016) 3703–

3707, doi: 10.1109/ICIP.2016.7533051 . 
[18] M. Ghosh, S.M. Obaidullah, F. Gherardini, M. Zdimalova, Classification of ge- 

ometric forms in mosaics using deep neural network, 2021, J. Imaging, 7(8), 
10.3390/jimaging7080149 

https://doi.org/10.1007/S40766-020-00011-6
https://doi.org/10.1007/s10762-015-0218-9
https://doi.org/10.1007/S00339-011-6691-7
https://en.wikipedia.org/wiki/Overfitting
https://doi.org/10.1038/ncomms12665
https://doi.org/10.1007/S00339-011-6687-3
https://doi.org/10.1109/ACCESS.2018.2882527
https://doi.org/10.3390/JIMAGING7090183
https://doi.org/10.1016/J.ULTRAS.2019.06.008
https://doi.org/10.1364/OL.44.000919
https://doi.org/10.1007/S40766-021-00023-W
https://doi.org/10.1016/j.media.2017.07.005
https://icml.cc/2011/papers/399_icmlpaper.pdf
https://doi.org/10.1016/J.PATREC.2020.02.017
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0014
http://arxiv.org/abs/1505.00855
https://doi.org/10.1109/ICIP.2016.7533051


T. Karella, J. Blažek and J. Striová Journal of Cultural Heritage 58 (2022) 186–198 

[

[

[

[

[  

[

[

[

[

[

[  

[

[  

[

[

[

[  
[19] A. Bourached, G. Cann, R.-R. Griffiths, D.G. Stork, Recovery of underdrawings 
and ghost-paintings via style transfer by deep convolutional neural networks: 

a digital tool for art scholars, IS&T Int. Symp. Electron.Imaging Sci. Technol. 
2021 (14) (2021) . 

20] Z. Sabetsarvestani, B. Sober, C. Higgitt, I. Daubechies, M.R.D. Rodrigues, Arti- 
ficial intelligence for art investigation: meeting the challenge of separating 

x-ray images of the ghent altarpiece, Sci. Adv. 5 (8) (2019) . 10.1126/SCI- 
ADV.AAW7416/ASSET/3CA4CA13-8855-45ED-BD07-C656DDF1857A/ASSETS/ 

GRAPHIC/AAW7416-F6.JPEG 

21] A . Sindel, A . Maier, V. Christlein, Craquelurenet: Matching the crack structure 
in historical paintings for multi-modal image registration, in: 2021 IEEE In- 

ternational Conference on Image Processing (ICIP), 2021, pp. 994–998, doi: 10. 
1109/ICIP42928.2021.9506071 . 

22] J. Blažek, J. Striová, R. Fontana, B. Zitová, Improvement of the visibility of con- 
cealed features in artwork NIR reflectograms by information separation, Digit. 

Signal Process. Rev. J. 60 (2017) 140–151, doi: 10.1016/j.dsp.2016.09.007 . 

23] Y. LeCun, Generalization and network design strategies, Connectionism Per- 
spect. 19 (1989) 143–155 . 

24] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen, Deep
learning for generic object detection: asurvey, Int. J. Comput. Vis. 128 (2) 

(2020) 261–318, doi: 10.1007/s11263- 019- 01247- 4 . 
25] S. Minaee, Y.Y. Boykov, F. Porikli, A.J. Plaza, N. Kehtarnavaz, D. Terzopoulos, 

Image segmentation using deep learning: a survey, IEEE Trans. Pattern Anal. 

Mach. Intell. (2021), doi: 10.1109/TPAMI.2021.3059968 . 
26] M. Attas, E. Cloutis, C. Collins, D. Goltz, C. Majzels, J.R. Mansfield, H.H. Mantsch, 

Near-infrared spectroscopic imaging in art conservation: investigation of 
drawing constituents, J. Cult. Herit. 4 (2) (2003) 127–136, doi: 10.1016/ 

S1296-2074(03)0 0 024-4 . 
27] M.R. Derrick, D. Stulik, J.M. Landry, Infrared Spectroscopy in Conservation Sci- 

ence, The Getty Conservation Institute, Los Angeles, 20 0 0 . 
198 
28] A. Casini, F. Lotti, M. Picollo, L. Stefani, E. Buzzegoli, Image spec- 
troscopy mapping technique for noninvasive analysis of paintings, 1999, 

10.1179/sic.1999.44.1.39, 44(1), 39–48, 
29] A. Orlando, M. Picollo, B. Radicati, S. Baronti, A. Casini, Principal component 

analysis of near-infrared and visible spectra: an application to a XIIth century 
Italian work of art, Appl. Spectrosc. 49 (4) (1995) 459–465 . 

30] J. Blažek, J. Soukup, B. Zitová, J. Flusser, J. Hradilová, D. Hradil, T. Tichý, M3art:
a database of models of canvas paintings, in: Euro-Mediterranean Conference, 

Springer, Limassol, Cyprus, 2014, pp. 176–185 . 

31] C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, 
E. Pampaloni, L. Pezzati, D. Bencini, A scanning device for VIS-NIR multispec- 

tral imaging of paintings, J. Opt. A Pure Appl. Opt. 10 (6) (2008) 064011 . 
32] J. Striova, C. Ruberto, M. Barucci, J. Blažek, D. Kunzelman, A. Dal Fovo, E. Pam-

paloni, R. Fontana, Spectral imaging and archival data in analysing madonna of 
the rabbit paintings by Manet and Titian, Angew. Chem. Int. Ed. 57 (25) (2018), 

doi: 10.10 02/anie.20180 0624 . 

33] R. Fontana, M. Barucci, E. Pampaloni, J. Striova, L. Pezzati, From leonardo to 
raffaello: insights by vis-IR reflectography, acta artis academica, Interpretation 

of Fine Art’s Analysis in Diverse Contexts, 2014 . 
34] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, 

Massachusetts, 2016 . http://www.deeplearningbook.org 
35] S.M. Pizer, E.P. Amburn, J.D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter 

Haar Romeny, J.B. Zimmerman, K. Zuiderveld, Adaptive histogram equalization 

and its variations, Comput. Vis. Graph. Image Process. 39 (3) (1987) 355–368 . 
36] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni- 
tion, 2016, pp. 770–778 . 

http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0019
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0020
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0020
https://doi.org/10.1109/ICIP42928.2021.9506071
https://doi.org/10.1016/j.dsp.2016.09.007
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0023
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1016/S1296-2074(03)00024-4
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0027
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0029
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0030
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0031
https://doi.org/10.1002/anie.201800624
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0033
http://www.deeplearningbook.org
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0035
http://refhub.elsevier.com/S1296-2074(22)00163-7/sbref0036

	Convolutional neural network exploiting pixel surroundings to reveal hidden features in artwork NIR reflectograms
	1 Introduction
	2 Research aim
	3 Materials and methods
	3.1 Mock-ups
	3.2 Visible and near-infrared imaging
	3.3 Artworks
	3.4 Model
	3.5 Virtual phantoms generators

	4 Results
	4.1 CNN architecture design
	4.2 CNN to enhance information about NIR reflectograms in historical paintings

	5 Conclusion
	Statements and Declarations
	Acknowledgments
	Appendix A Abbreviations
	Appendix B Artworks
	Appendix C CNN filters and epochs
	References


