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Abstract
The class of totally balanced games is a class of transferable-utility coalitional games
providing important models of cooperative behavior used in mathematical economics.
They coincide with market games of Shapley and Shubik and every totally balanced
game is also representable as the minimum of a finite set of additive games. In this
paper we characterize the polyhedral cone of totally balanced games by describing
its facets. Our main result is that there is a correspondence between facet-defining
inequalities for the cone and the class of special balanced systems of coalitions,
the so-called irreducible min-balanced systems. Our method is based on refining the
notion of balancedness introduced by Shapley. We also formulate a conjecture about
what are the facets of the cone of exact games, which addresses an open problem
appearing in the literature.

Keywords Coalitional game · Totally balanced game · Balanced system · Polyhedral
cone

1 Introduction

Totally balanced games were introduced by Shapley and Shubik in their study of mar-
ket games with transferable utility (Shapley and Shubik 1969), which arise naturally
in the area ofmathematical economics. Loosely speaking,market games are coalitional
games derived from a market in which the production functions are concave and con-
tinuous. A transferable-utility coalitional game is termed totally balanced whenever
each of its subgames is balanced. The two families of coalitional games coincide, that
is, a coalitional game is totally balanced if and only if it is a market game; see Shapley
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272 T. Kroupa, M. Studený

and Shubik (1969). Kalai and Zemel (1982) showed that every totally balanced game
is the minimum of a finite set of additive (inessential) coalitional games. This charac-
terization enabled them to show that the class of totally balanced games is the same
as the class of certain games derived from graphs, the so-called flow games; cf. Kalai
and Zemel (1982, Theorems 1–2). Another characterization was given by Csóka et al.
(2009): totally balanced games are precisely risk allocation games. Despite their rela-
tive simplicity, the class of totally balanced games thus offers a rich source of examples
of game-theoretic and economical phenomena, since it also includes minimum cost
spanning tree games (Bird 1976), assignment games (Shapley and Shubik 1971), lin-
ear production games (Owen 1975), and games arising from controlled programming
problems (Dubey and Shapley 1984).

The notion of a balanced collection of coalitions, which was introduced by Shapley
(1967), is a key ingredience in dealing with totally balanced games and their sub-
families. In the literature there exist several attempts at modifying that concept; these
appear to be important in the study of special classes of games and their properties.
Specifically, Csóka et al. (2011) use exact balancedness and overbalancedness to pro-
vide new characterizations of the class of exact games. Lohmann et al. (2012) then
employed minimal exact balanced collections and showed that only these collections
are needed to guarantee exactness of a game.

In this paperwe characterize the set of totally balancedgames as a convexpolyhedral
cone. This can be done in severalways.Ourmain result, Theorem5.1, offers a complete
characterization of facet-defining inequalities of the cone; each of these is associated
with a special min-balanced system. The paper is structured as follows. We introduce
our notation and terminology inSect. 2,wherewe also reviewbasic facts aboutminimal
balanced systems of coalitions in the style of Shapley (1967). In Sect. 3 we explain
our framework for analyzing cones of set functions and introduce our machinery
for manipulating valid linear inequalities. This approach makes it possible to show
that important cones of set functions are closed under the operation of reflection
(Definition 3.1), which result even cannot be formulated with the usual definition of
a coalitional game as a set function vanishing at the empty set.Moreover, facet-defining
inequalities are often coupled into pairs of certain conjugate inequalities (Lemma 3.4).
For the purposes of this paper it is useful to work with linear inequalities in a special
form, which is derived frommin-balanced systems and normalized in a particular way;
this procedure is described in Sect. 3.3. The crucial notion, which is necessary for
the formulation of our main theorem, is the concept of an irreducible min-balanced
system discussed in Sect. 4. Every other min-balanced system (= a reducible one)
is redundant for the description of totally balanced cone (Corollary 4.1). Section 5
contains the main result (Theorem 5.1) saying that facets of the totally balanced cone
correspond to irreducible min-balanced set systems, together with a series of lemmas
leading to its proof. Interestingly enough, one of the by-products of our research is
a contribution to the question studied by Lohmann et al. (2012), namely what are the
facet-defining inequalities for the cone of exact games. We formulate a conjecture
about the form of those facet-defining inequalities in Sect. 6. “Appendix” contains
a list of min-balanced systems of sets associated with facet-defining inequalities for
small cardinalities of the player set.
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Facets of the cone of totally balanced games 273

2 Basic notions and results

Throughout the paper we assume that the reader is familiar with basic concepts and
facts from polyhedral geometry; see Schrijver (1998), Bachem and Kern (1992), for
example.

We are going to use standard notions and results from cooperative game theory; see
Peleg et al. (2007). For simplicity, we assume that a finite player set N contains n ≥ 2
players which are denoted by the first n letters of English alphabet. Thus, for example,
we write N = {a, b, c, d} in case of 4 players. Subsets of N are called coalitions.

Any n-dimensional real vector [xi ]i∈N is called a payoff allocation and by RN we
denote the collection of all such vectors. Given A ⊆ N , the symbol χA ∈ R

N is the
incidence vector of A defined by

(χA)i :=
{
1 for i ∈ A,

0 for i ∈ N\A.

The zero vector in RN will be denoted by 0.
Given a non-empty coalition A ⊆ N , the symbol P(A) will denote the collection

of all its subsets. The symbolRP(A) will be used to denote the collection of real-valued
set functions on subsets of A, that is, mappings m : P(A) → R. Given m ∈ R

P(N )

and ∅ �= A ⊆ N , the restriction of m to P(A) will be denoted by mA; formally,
mA ∈ R

P(A) is defined by mA(S) := m(S) for any S ⊆ A.
The zero vector inRP(N ) will be denoted by 0 and the scalar product of two elements

θ and m in the linear space RP(N ) by 〈θ,m〉 := ∑
S⊆N θ(S) · m(S). Given A ⊆ N ,

the symbol δA will denote its set indicator in R
P(N ) and υ↑A ∈ R

P(N ) the indicator
of its supersets:

δA(S) :=
{
1 if S = A,

0 for other S ⊆ N ,
υ↑A(S) :=

{
1 if A ⊆ S,

0 for other S ⊆ N .

The set functions υ↑A for A ⊆ N with |A| ≤ 1 then form a basis of the linear subspace
L(N ) ⊆ R

P(N ) of modular set functions m satisfying

m(C ∪ D) + m(C ∩ D) = m(C) + m(D), for all C, D ⊆ N .

The linear space L(N ) has the dimension 1 + |N |.
Given a set S ⊆ R

P(N ), its dual cone is

S∗ := {m ∈ R
P(N ) : 〈θ,m〉 ≥ 0 for any θ ∈ S }.

A well-known elementary fact is that C ⊆ R
P(N ) is a non-empty closed convex cone

iff C = C∗∗, which happens iff C = S∗ for some S ⊆ R
P(N ); see for example

(Studený 1993, Consequence 1). Thus, if one shows, for a non-empty polyhedral cone
C ⊆ R

P(N ) and D ⊆ R
P(N ) that D = C∗ then this implies that C = D∗ and,

moreover, that C andD are mutually dual polyhedral cones. Another well-known fact
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274 T. Kroupa, M. Studený

in polyhedral geometry is that the face-lattices of dual cones are anti-isomorphic; see
Bachem and Kern (1992, Theorem7.41). In particular, if C is a pointed cone, which
means −C ∩ C = {0}, then the facets of D are in bijection with the extreme rays of C.

A (transferable-utility coalitional) game over (a set of players) N is modeled by
a real function m : P(N ) → R such that m(∅) = 0. We will use G(N ) to denote
the collection of all such functions; any m ∈ G(N ) will briefly be called a “game”.
If ∅ �= A ⊆ N then the restriction mA to P(A) is called a subgame of the game
m ∈ G(N ).

The coreC(m) of a gamem ∈ G(N ) is the set of all Pareto efficient and coalitionally
rational payoff allocations, that is, formally

C(m) :=
{

[xi ]i∈N ∈ R
N :

∑
i∈N

xi = m(N ) &
∑
i∈S

xi ≥ m(S) for all S ⊆ N

}
.

We say that a game m ∈ G(N ) is

– balanced if C(m) �= ∅;
– totally balanced if every subgame of m is balanced;
– exact if, for each coalition S ⊆ N , there exists a payoff allocation [xi ]i∈N ∈ C(m)

in the core that is tight for S, which means that
∑

i∈S xi = m(S).

We introduce the following notation:

B(S) := {m ∈ G(S) : m is balanced}, for any ∅ �= S ⊆ N ,

T (N ) := {m ∈ G(N ) : m is totally balanced},
E(N ) := {m ∈ G(N ) : m is exact}.

Recall from Kalai and Zemel (1982, Theorem1) that m ∈ T (N ) iff it has a finite
min-representation, which means there exists a nonempty finite X ⊆ R

N such that

m(S) = min
x∈X

∑
i∈S

xi for any S ⊆ N .

It is well-known that m ∈ E(N ) iff it has a min-representation ∅ �= X ⊆ C(m);
see Studený and Kratochvíl (2018, Proposition1), for example. Hence, we get
the inclusions E(N ) ⊆ T (N ) ⊆ B(N ) ⊆ R

P(N ).
Moreover, all these sets are polyhedral cones in the linear spaceRP(N ). Specifically,

the fact that B(N ) is determined by finitely many linear inequalities is a consequence
of classic results byBondareva (1963) andShapley (1967), recalled in later Lemma3.5.
The cone T (N ) is polyhedral since it follows immediately from the definition that

T (N ) =
⋂

∅�=S⊆N

{m ∈ G(N ) : mS ∈ B(S) }.

Finally, E(N ) is a polyhedral cone by the results contained in Csóka et al. (2011) or
Lohmann et al. (2012). Since all the discussed cones are polyhedral, each of them is
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Facets of the cone of totally balanced games 275

fully determined by finitely many linear inequalities only. It turns out that the facet-
defining inequalities correspond to special set systems, which we define in the next
section.

2.1 Min-balanced systems

Any subset B of P(N ) is called a set system. The union of sets in B will be denoted
by
⋃

B and their intersection by
⋂

B. We will call
⋃

B the carrier of B. Minimality
of set systems is always understood in the sense of their inclusion as subsets of P(N ).

Definition 2.1 Let B ⊆ P(N ) be a non-empty set system with a carrier M ⊆ N .
We say that B is min-balanced if it is a minimal set system in P(N ) satisfying
the condition:

The vector χM belongs to the conic hull of {χS ∈ R
N : S ∈ B}. (†)

If B ⊆ P(N ) is a min-balanced system whose carrier is M , then we briefly say that
B is min-balanced on M. A min-balanced system B with |B| ≥ 2 will be named
non-trivial.

Clearly, a permutation of players transforms a non-trivial min-balanced system also
to a non-trivial min-balanced system.A catalogue of permutational types of non-trivial
min-balanced system on N , where 2 ≤ |N | ≤ 4, can be found in “Appendix”.

Lemma 2.1 A non-empty set system B ⊆ P(N ) is min-balanced if and only if
the following two conditions hold:

(i) There exist strictly positive coefficients λS > 0 for S ∈ B such that

χ⋃B =
∑
S∈B

λS · χS .

(ii) The incidence vectors {χS ∈ R
N : S ∈ B} are linearly independent.

Hence, a non-emptyB ⊆ P(N ) is min-balanced iff it is a minimal set system satisfying
(i).

The condition (i) is the balancedness condition from Shapley (1967). Therefore,
we also say that B is balanced on M whenever (i) holds with M = ⋃

B. Similar
terminology is often used in game-theoretical literature; see, for example, an equiv-
alent concept of S-balanced collection (Solymosi and Sziklai 2016, Section2–3).
The last claim in Lemma 2.1 motivated our terminology, which follows the usual
game-theoretical terminology. The condition (ii) is equivalent to the minimality and
implies the uniqueness of the coefficients λS in (i).

Proof Let M denote the carrier of B. To show the necessity of (i) write χ⋃B =
χM = ∑

S∈B λS · χS with λS ≥ 0 by (†). If λS vanishes for some S, then take
B′ = {T ∈ B : λT > 0} and get a contradictory conclusion that B′ is a strict
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276 T. Kroupa, M. Studený

subsystem ofB satisfying (†). The necessity of (ii) can then be shown by contradiction:
otherwise a non-vanishing system of real coefficients {γS : S ∈ B} exists such that∑

S∈B γS · χS = 0 ∈ R
N . For any ε ≥ 0 put λε

S := λS + ε · γS and observe that
χM = ∑

S∈B λε
S · χS . Since all λS’s are strictly positive by (i), there exists a maximal

ε > 0 such that all λε
S are non-negative. Put B′ = {T ∈ B : λε

T > 0} and derive
the contradiction analogously.

Conversely, if both (i) and (ii) hold, then χM = χ⋃B = ∑
S∈B λS · χS with

λS > 0. Assume for a contradiction that C ⊂ B exists such that χM = ∑
S∈C νS · χS

with νS ≥ 0, S ∈ C. Put νS = 0 for S ∈ B\C and note 0 = ∑
S∈B(λS − νS) · χS ,

which contradicts (ii).
The last claim in Lemma 2.1 is a direct consequence of the proven equivalence. ��
Note that the balancedness condition (i) in Lemma 2.1 cannot be weakened to (†).

Indeed, (†) with M = ⋃
B and (ii) do not imply (i) as the following example shows.

Put N = {a, b, c} andB = { {a}, {b}, {b, c} }. Thenχ⋃B = 1·χ{a}+0·χ{b}+1·χ{b,c},
but (i) is not true. We now collect basic facts about non-trivial min-balanced systems.

Lemma 2.2 Let B ⊆ P(N ) be a non-trivial min-balanced system. Then the following
conditions hold:

– ∅,
⋃

B /∈ B and |⋃B| ≥ 2,
–
⋂

B = ∅,
– there are at most |⋃B| sets in B.

Proof Since B is non-trivial, it is necessarily non-empty, so Lemma 2.1 applies. Then
Lemma 2.1(ii) implies that ∅ /∈ B. As B contains at least two non-empty sets, nec-
essarily |⋃B| ≥ 2. Assume for contradiction that

⋃
B ∈ B. Then the non-triviality

assumption |B| ≥ 2 and (i) imply together that χ⋃B can be expressed in two different
ways as a linear combination of {χS ∈ R

N : S ∈ B}, which contradicts (ii). Hence,⋃
B /∈ B.
By non-triviality we have

⋃
B\⋂B �= ∅. Assume for contradiction that

⋂
B �= ∅.

Consider i ∈ ⋂B, j ∈ ⋃B\⋂B and choose T ∈ B with j /∈ T . Then i ∈ T and
one can write using the formula in Lemma 2.1(i),

∑
S∈B

λS =
∑

S∈B:i∈S
λS = (χ⋃B)i = 1 = (χ⋃B) j =

∑
S∈B: j∈S

λS .

This implies
∑

S∈B: j /∈S λS = 0, which gives a contradictory conclusion that simulta-
neously λT > 0 and λT = 0. Hence, necessarily

⋂
B = ∅.

Consider k = |⋃B|. Since the linear space Rk is k-dimensional, there are at most
k linearly independent vectors in it. Thus, by Lemma 2.1(ii), B can have at most
k sets. ��

Every set-theoretic partition of a non-empty subset of N into non-empty blocks is
amin-balanced system. Amore general example, which is not a partition, is as follows.
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Facets of the cone of totally balanced games 277

Example 2.1 Let N := {a, b, c, d, e}. Put B := {{a, b}, {a, c}, {a, d}, {b, c, d}} and
define

λS :=
{

1
3 for S ∈ {{a, b}, {a, c}, {a, d}},
2
3 for S = {b, c, d}.

One can check using Lemma 2.1 that B is min-balanced and its carrier is {a, b, c, d}.

3 Our framework for dealing with linear inequalities

The cones of games introduced in Sect. 2 are not full-dimensional in R
P(N ). This

implies that their facet-defining inequalities have several equivalent writings in this
linear space. We are going to introduce useful conventions in order to establish a (one-
to-one) correspondence between (facet-defining) inequalities and certain set systems.

3.1 Taking the empty set into consideration

Traditional game-theoretical literature deals with set functions m : P(N ) → R satis-
fying m(∅) = 0, which typically leads to restricting considerations to the linear space
R
P(N )\{∅}. This restriction, however, causes later formal complications and hides some

important symmetries. To reveal those symmetries we intentionally consider the entire
spaceRP(N ) and extend our cones of games so that the resulting cones contain constant
set functions.

Specifically, for every m ∈ R
P(N ), a shifted set function m̃ ∈ R

P(N ) defined by

m̃(S) := m(S) − m(∅) for every S ⊆ N (1)

is a game over N and we define:

B(N ) := {m ∈ R
P(N ) : m̃ ∈ B(N ) },

T (N ) := {m ∈ R
P(N ) : m̃ ∈ T (N ) },

E(N ) := {m ∈ R
P(N ) : m̃ ∈ E(N ) }.

All these cones are full-dimensional in R
P(N ). A few basic observations about these

cones are below. Recall that by a tight valid inequality for a cone is meant such a valid
inequality for its vectors which holds with equality for at least one vector in the cone.
Note that all the considered cones have the dimension at least 1. Therefore, their facets
are non-empty, which implies that every facet-defining inequality for them is a tight
valid inequality.

Lemma 3.1 The space L(N ) of modular set functions is the (shared) linearity space
for cones B(N ), T (N ) and E(N ). Analogously, the shared linearity space for cones
B(N ), T (N ) and E(N ) is the space of modular games

L(N ) := L(N ) ∩ G(N ).
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278 T. Kroupa, M. Studený

Tight valid inequalities for each of these six cones have the following form in RP(N ):

∑
S⊆N

α(S) · m(S)

︸ ︷︷ ︸
=〈α,m〉

≥ 0 required for m ∈ R
P(N ), (2)

where the coefficient vector α ∈ R
P(N ) satisfies

∑
S⊆N : i∈S α(S) = 0 for any i ∈ N.

Moreover, the coefficient vectors of tight valid inequalities for cones B(N ), T (N ) and
E(N ) even satisfy

∑
S⊆N

α(S) = 〈α, υ↑∅〉 = 0,
∑

S⊆N : i∈S
α(S) = 〈α, υ↑{i}〉 = 0 for any i ∈ N . (3)

Proof The first observation is that, for every i ∈ N , one has υ↑{i},−υ↑{i} ∈ E(N ),
with singleton cores {χ{i}} and {−χ{i}}. Thus, υ↑{i} ∈ −E(N ) ∩ E(N ) for any i ∈ N ,
which implies L(N ) ⊆ −E(N ) ∩ E(N ). Since constant set functions ±υ↑∅ ∈ R

P(N )

belong to E(N ) one analogously observes L(N ) ⊆ −E(N ) ∩ E(N ).
The second observation is that the only r ∈ −B(N ) ∩ B(N ) satisfying r(S) = 0

for S ⊆ N , |S| ≤ 1, is the zero game 0. To this end realize that every balanced game
m̃ ∈ B(N ) satisfies m̃(N ) ≥ m̃(T ) +∑

i∈N\T m̃({i}) for any ∅ �= T ⊂ N . Indeed,
having x = [xi ]i∈N in the core C(m̃), one can write

m̃(N ) =
∑
i∈N

xi =
∑
i∈T

xi +
∑

i∈N\T
xi ≥ m̃(T ) +

∑
i∈N\T

xi

≥ m̃(T ) +
∑

i∈N\T
m̃({i}).

Thus, for any r in −B(N ) ∩ B(N ) with r(S) = 0 for S ⊆ N , |S| ≤ 1, both r and −r
can be taken in place of m̃, which results in r(N ) = r(T ) +∑

i∈N\T r({i}) = r(T ).
Taking in place of T a singleton gives r(N ) = 0; then taking general ∅ �= T ⊂ N
gives the rest.

This allows one to show −B(N ) ∩ B(N ) ⊆ L(N ). Indeed, given m ∈ −B(N ) ∩
B(N ), put r := m−m(∅) ·υ↑∅ +∑i∈N [m(∅)−m({i})] ·υ↑{i}, realize that r satisfies
the above conditions and derive r = 0 to observe that m ∈ L(N ). An analogous
consideration with games leads to −B(N ) ∩ B(N ) ⊆ L(N ).

One has E(N ) ⊆ T (N ) ⊆ B(N ), the same holds for their multiples by (−1),
giving

L(N ) ⊆ −E(N ) ∩ E(N ) ⊆ −T (N ) ∩ T (N ) ⊆ −B(N ) ∩ B(N ) ⊆ L(N ) ;

analogously E(N ) ⊆ T (N ) ⊆ B(N ) shows that L(N ) is the shared linear space for
the extended cones E(N ), T (N ) and B(N ).

Let K be any of the above discussed cones in R
P(N ). Any linear inequality for

m ∈ R
P(N ) can be re-written in the form 〈α,m〉 ≥ k with α ∈ R

P(N ) and k ∈ R;
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Facets of the cone of totally balanced games 279

otherwise we multiply the inequality by (−1). Assuming it is a tight valid inequality
for K there exists m0 ∈ K satisfying 〈α,m0〉 = k. Because K is a cone, for every
ε > 0, one has ε · m0 ∈ K and

ε · k = ε · 〈α,m0〉 = 〈α, ε · m0〉 ≥ k ⇒ (ε − 1) · k ≥ 0,

which is possible for any ε > 0 only in case k = 0. Thus, the inequality has the
form (2).

Any inequality of the form (2) which is valid for vectors m ∈ K must hold with
equality for vectors in its linearity space. This implies the rest of Lemma 3.1. ��

A coefficient vector α ∈ R
P(N ) satisfying (3) will be called o-standardized, where

o stands for “orthogonal”. Indeed, (3) means that α is in the orthogonal complement
of L(N ).

In the next lemma we show that the task to characterize facets of a cone of games
is equivalent to the task of describing facets of the associated extended cone.

Lemma 3.2 The value of the coefficient α(∅) in (2) does not influence the fact whether
(2) is facet-defining form ∈ T (N )or not. Specifically, if (2) is facet-defining inequality
for m ∈ T (N ), then re-defining the value of the coefficient α(∅) by

α(∅) := −
∑

∅�=S⊆N

α(S)

yields a facet-defining inequality for both m ∈ T (N ) and m ∈ T (N ). Conversely,
every facet-defining inequality for T (N ) is facet-defining for T (N ). The same relation
holds for the pair of cones B(N ) and B(N ) and also for the pair of cones E(N ) and
E(N ).

Proof First, let us discuss the question of validity of (2) for games. Since every m ∈
T (N ) satisfies m(∅) = 0, we get

∑
S⊆N α(S) ·m(S) = ∑

∅�=S⊆N α(S) ·m(S). Thus,
the value α(∅) is irrelevant for the validity (2) for m ∈ T (N ) and, also, it does not
influence what is the face of T (N ) specified by (2). Therefore, the fact whether (2)
is facet-defining for T (N ) is not influenced by the value of α(∅). Thus, it remains to
show, for anyα ∈ R

P(N ) satisfyingα(∅) = −∑∅�=S⊆N α(S), that (2) is facet-defining
for T (N ) iff it is facet-defining for T (N ).

First, observe for any α ∈ R
P(N ) satisfying α(∅) = −∑∅�=S⊆N α(S), that (2) is

valid for T (N ) iff is valid for T (N ). By Lemma 3.1, its validity either for T (N ) or
for T (N ) implies that α is o-standardized, that is, satisfies (3). We introduce

T�(N ) := {m ∈ T (N ) : m({i}) = 0 for any i ∈ N }
= {m ∈ T (N ) : m(S) = 0 for S ⊆ N , |S| ≤ 1 }

and realize that both T (N ) = L(N ) ⊕ T�(N ) and T (N ) = L(N ) ⊕ T�(N ), where
the symbol ⊕ denotes the direct sum of cones. The former fact implies, for o-
standardized α ∈ R

P(N ), that (2) is valid for T (N ) iff it is valid for m ∈ T�(N );
the latter fact implies the same for the cone T (N ).
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280 T. Kroupa, M. Studený

To see why the claim extends to facet-defining inequalities realize that the set

AT = { α ∈ R
P(N ) : α satisfies (3) and 〈α,m〉 ≥ 0 for m ∈ T�(N ) }

is a pointed convex cone. To this end realize that, for every A ⊆ N , |A| ≥ 2, one
has υ↑A ∈ E(N ), with the core being the convex hull of {χ{i} : i ∈ A}. Thus, by
E(N ) ⊆ T (N ), one has υ↑A ∈ T (N ), which gives υ↑A ∈ T�(N ). Hence, any α ∈ AT

satisfies 〈α, υ↑A〉 ≥ 0 for all A ⊆ N , |A| ≥ 2. In particular, α ∈ −AT ∩ AT must
satisfy those inequalities with equality, which allows one to deduce α = 0.

Owing to T (N ) = L(N )⊕T�(N ), the setAT is the dual cone to T (N ). This implies
that T (N ) andAT are polyhedral coneswhich are dual each other (seeSect. 2). Because
AT is pointed, it implies that facets of T (N ) correspond to extreme rays of AT .

Analogously, T (N ) = L(N ) ⊕ T�(N ) allows one to observe that the dual cone
to T (N ) has the form I(N ) ⊕ AT , where I(N ) denotes one-dimensional space
of functions ι ∈ R

P(N ) such that ι(S) = 0 for ∅ �= S ⊆ N . This similarly implies that
facets of T (N ) correspond to co-atoms of the face-lattice of I(N ) ⊕ AT , and these
have the form I(N ) ⊕ R, where R is an extreme ray of AT . Thus, in this context,
facet-defining inequalities for eitherT (N ) or T (N ) are precisely thosewhich are given
by α’s generating extreme rays of AT .

The arguments in the case of balanced cones and in the case of exact cones are
analogous, so, they are left to the reader. ��

3.2 Reflection and conjugate inequalities

Two of the extended cones are closed under a special linear self-transformation
of RP(N ).

Definition 3.1 By a reflection of m ∈ R
P(N ) we mean m∗ ∈ R

P(N ) given by

m∗(T ) := m(N\T ) for any T ⊆ N .

Thus, reflection is nothing but inner composition with a “complement” mapping.

Lemma 3.3 The cones B(N ) and E(N ) are closed under reflection.

Proof To show m ∈ B(N ) ⇒ m∗ ∈ B(N ) realize that one has −C(m̃) = C(m̃∗),
where m̃ is given by (1). To this end express the core C(m̃) in terms of the upper
bounds instead of the lower bounds:

C(m̃) =
{

[xi ]i∈N : m̃(N ) =
∑
i∈N

xi , m̃(S) ≤
∑
i∈S

xi , ∀ S ⊆ N

}

=
{

[xi ]i∈N : m̃(N ) =
∑
i∈N

xi , m̃(N ) − m̃(N\T ) ≥
∑
i∈T

xi , ∀ T ⊆ N

}
.
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This allows one to write

−C(m̃) =
{

[yi ]i∈N : −m̃(N ) =
∑
i∈N

yi , m̃(N\T ) − m̃(N ) ≤
∑
i∈T

yi ,∀T ⊆ N

}

=
{

[yi ]i∈N : m̃∗(N ) =
∑
i∈N

yi , m̃∗(T ) ≤
∑
i∈T

yi ,∀ T ⊆ N

}

= C(m̃∗),

because of the relation m̃∗(T )
(1)= m∗(T )−m∗(∅) = m(N\T )−m(N )

(1)= m̃(N\T )−
m̃(N ) valid for any T ⊆ N .

In order to show m ∈ E(N ) ⇒ m∗ ∈ E(N ), it is enough to realize additionally
that the inequality for S ⊆ N is tight at [xi ]i∈N ∈ C(m̃) if and only if the inequality
for T = N\S is tight at [yi ]i∈N = −[xi ]i∈N ∈ −C(m̃) = C(m̃∗). ��
Remark 3.1 There exists a widely used notion of duality in cooperative game theory;
see Peleg et al. (2007, Definition 6.6.3.). The dual game of a game m is then the game
m
 defined by

m
(S) := m(N ) − m(N\S) for all S ⊆ N .

Observe that m
 = m(N ) − m∗, where m∗ is the reflection of m from Definition
3.1. Similarly, it is possible to define the notion of an anti-dual game of m by −m
.
Using (1) observe that the anti-dual of m is precisely −m
 = m̃∗, which is discussed
in the above proof of Lemma 3.3. Then a natural question arises how main solution
concepts (e.g., the core) are related to duality or anti-duality. In this context Lemma 3.3
says that a game is balanced/exact if and only if its anti-dual is a balanced/exact game.
The interested reader is invited to consult the paper (Oishi et al. 2016) for a detailed
analysis of the relation of (anti-)duality and solution concepts.

However, the cone T (N ) is not closed under reflection as the following example
shows.

Example 3.1 Here is an example ofm ∈ T (N ) such thatm∗ /∈ T (N ). Put N = {a, b, c}
and m(N ) = 3 while m(S) = 2 for S ⊂ N with |S| = 2 and m(R) = 0 for
remaining R ⊂ N . It is a totally balanced game because it has a min-representation
by four vectors (1, 1, 1), (2, 2, 0), (2, 0, 2), (0, 2, 2). Nevertheless, m̃∗(T ) = −3 for
T ⊆ N , |T | ≥ 2, and m̃∗({i}) = −1 for i ∈ N . It is a balanced game because
of C(m̃∗) = {(−1,−1,−1)} but it is not totally balanced because of C(m′) = ∅ for
the restriction m′ of m̃∗ to subsets of {a, b}.

A concept related to the reflection is the following one.

Definition 3.2 Every inequality (2) is assigned a conjugate inequality of the form

∑
T⊆N

α∗(T ) · m(T )

︸ ︷︷ ︸
=〈α∗,m〉

≥ 0 required for m ∈ R
P(N ), (4)

where α∗ ∈ R
P(N ) is the reflection of the coefficient vector α ∈ R

P(N ) in (2).
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Note in this context that α is o-standardized iff α∗ is o-standardized. An important
fact appears to be the formula

〈α∗,m〉 =
∑
T⊆N

α∗(T ) · m(T )
T :=N\S=

∑
S⊆N

α(S) · m∗(S) = 〈α,m∗〉 (5)

valid for any pair α,m ∈ R
P(N ). It enables us to prove the following statement.

Lemma 3.4 An inequality (2) is facet-defining for E(N ) iff its conjugate inequality
(4) is facet-defining for E(N ). The same relation holds for the cone B(N ).

Proof We first show that (2) is valid for E(N ) iff (4) is valid for E(N ). Because
of α∗∗ = α it is enough to verify that the validity of (2) implies the validity of (4).

Given m ∈ E(N ), one has m∗ ∈ E(N ) by Lemma 3.3 and 〈α∗,m〉 (5)= 〈α,m∗〉 (2)≥ 0.
One can perform an analogous consideration as in the proof of Lemma 3.2, that is,

to introduce E�(N ) := {m ∈ E(N ) : m(S) = 0 for S ⊆ N , |S| ≤ 1 } and put

AE := { α ∈ R
P(N ) : α satisfied (3) and 〈α,m〉 ≥ 0 for m ∈ E�(N ) }.

The fact E(N ) = L(N ) ⊕ E�(N ) then implies that AE is the dual cone to E(N ); it
means that α ∈ AE iff (2) holds for any m ∈ E(N ). This implies the validity of (4)
for any m ∈ E(N ), which means that AE is closed under reflection. In particular,
the reflection is a one-to-one linear mapping from R

P(N ) to RP(N ) which transforms
AE onto itself. Such a linear mapping transforms faces of AE to faces of AE of the
same dimension.

One can show that AE is a pointed cone by the same arguments as in the proof
of Lemma 3.2. As the cones E(N ) andAE are dual each other the facets of E(N ) cor-
respond to the extreme rays ofAE . Since the coefficients of facet-defining inequalities
for E(N ) are just those which generate extreme rays of AE and these are mapped by
the reflection to (other) extreme rays of AE , the conjugate inequalities to them must
also be facet-defining.

The arguments for the balanced cone B(N ) are analogous and are left to the reader.
��

In fact, the statement from Lemma 3.4 holds true for any full-dimensional cone
in RP(N ) that is closed under reflection.

3.3 How to assign an inequality to amin-balanced system

Facet-defining inequalities (2) for cones B(N ) and T (N ) appear to be determined
uniquely (up to a positive multiple) by the induced set systems

Bα := { S ⊆ N : α(S) < 0 },

where α ∈ R
P(N ) is the respective coefficient vector. A converse relation is estab-

lished in this section. More specifically, given a non-trivial min-balanced system B,
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by Lemma 2.1, there are unique coefficients λS , S ∈ B, with

χM =
∑
S∈B

λS · χS where M =
⋃

B and λS > 0 for S ∈ B.

In fact, one can even show that λS ∈ Q. Indeed, χM = ∑
S∈B λS · χS means that the

coefficient vector λ ∈ R
B is a solution of a matrix equality λ ·C = χM with a zero-one

matrix C ∈ R
B×N . Since unique solution exists, a regular column B × T -submatrix

of C , where T ⊆ N , |T | = |B|, exists such that λ · CB×T = χM∩T . Since C has
zero columns for i ∈ N\M one has T ⊆ M . Nevertheless, the inverse of this regular
zero-one submatrix is a rational matrix, which implies that the components of λ are
in Q.

Thus, a unique integer k ≥ 1 exists such that all k ·λS ∈ Zwith S ∈ B are relatively
prime. For any S ⊆ N , define

αB(S) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k if S = M = ⋃
B,

−k · λS if S ∈ B,

−k + k
∑
S∈B

λS = −αB(M) − ∑
S∈B

αB(S) if S = ∅,

0 otherwise.

(6)

This ensures the following equality:

∑
S⊆N

αB(S) · χS = αB(M) · χM +
∑
S∈B

αB(S) · χS + αB(∅) · χ∅︸︷︷︸
=0

= 0 ∈ R
N . (7)

For any i ∈ M one has

∑
S⊆N : i∈S

αB(S) =
∑

S∈{M}∪B: i∈S
αB(S) = k − k ·

∑
S∈B: i∈S

λS =

= k ·
(
1 −

∑
S∈B: i∈S

λS

)
= k · 0 = 0.

Analogously, by the definition of M , one has
∑

S⊆N : i∈S αB(S) = 0 for any i ∈ N\M ;

thus, the vector αB ∈ Z
P(N ) is o-standardized. Choose i ∈ M and consider T ∈ B

such that i /∈ T (note that B is non-trivial), which allows one to write
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αB(∅) = −αB(M) −
∑
S∈B

αB(S) = − k + k ·
∑
S∈B

λS = k ·
(∑
S∈B

λS − 1

)

= k ·
( ∑
S∈B: i∈S

λS − 1

)
︸ ︷︷ ︸

=0

+ k ·
( ∑
S∈B: i /∈S

λS

)
︸ ︷︷ ︸

≥λT

> 0,

which implies αB(∅) ≥ 1. Thus, the corresponding inequality

〈αB,m〉 = αB(M) ·m(M) +
∑
S∈B

αB(S) ·m(S) + αB(∅) ·m(∅) ≥ 0 for m ∈ R
P(N )

(8)
of the form (2) is assigned the set system B = Bα with α = αB. This yields mutually
inverse transformation B ↔ αB = α between non-trivial min-balanced systems and
the coefficient vectors in the corresponding inequalities.

Definition 3.3 Given a non-trivial min-balanced system B ⊆ P(N ), the above coeffi-
cient vector in ZP(N ) defined in (6) will be denoted by αB.

Example 3.2 Consider the min-balanced system B from Example 2.1 with the player
set N = {a, b, c, d, e}, that is, B = {{a, b}, {a, c}, {a, d}, {b, c, d}}. The carrier of B
is M = {a, b, c, d} and the coefficient vector is

αB(S) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 for S = M,

−1 for S ∈ {{a, b}, {a, c}, {a, d}},
−2 for S = {b, c, d},
2 for S = ∅,

0 otherwise.

Then the inequality (8) takes the form

3 · m({a, b, c, d}) − m({a, b}) − m({a, c}) − m({a, d}) − 2 · m({b, c, d})
+2 · m(∅) ≥ 0.

The next lemma follows from the results in Shapley (1967, Theorem2); one just
applies what is said in Sect. 3.1 about the correspondence between cones B(N ) and
B(N ).

Lemma 3.5 Assuming |N | ≥ 2 the facet-defining inequalities for B(N ) are just those
which correspond to non-trivial min-balanced systems B on N. In particular, given
m ∈ R

P(N ),

m ∈ B(N ) ⇔ 〈αB,m〉 ≥ 0 f or any non − tr ivialmin − balanced system B onN.

The following concept relates the above observation to concepts from Sect. 3.2.
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Definition 3.4 Every min-balanced system B ⊆ P(N ) is assigned its complementary
system

B∗ := {N\S : S ∈ B}.

The fact that B(N ) is closed under reflection then basically implies the following.

Corollary 3.1 If B is a non-trivial min-balanced set system on N, then its complemen-
tary system B∗ is also a non-trivial min-balanced system on N inducing the conjugate
inequality to the inequality (8) with M = N.

Proof If B is a min-balanced set system on N , then write using (7) and (6):

0 = k · χN −
∑
S∈B

k · λS · χS +
(

−k +
∑
S∈B

k · λS

)
· χ∅︸︷︷︸

=0

,

where the coefficientsλS and the constant k are introduced in the beginning of Sect. 3.3.
We omit the zero term containing χ∅, multiply the equality by (−1) and extend
the right-hand side of it by ± k ·∑S∈B λS · χN to get

0 =
(

−k + k ·
∑
S∈B

λS

)
· χN −

∑
S∈B

k · λS · χN\S

=
(

−k +
∑
T∈B∗

k · λN\T

)
· χN −

∑
T∈B∗

k · λN\T · χT + k · χ∅︸︷︷︸
=0

,

because the coefficient with χ∅ = 0 is immaterial. Thus, the coefficient vectors
assigned to B and B∗ by (6) are related by α∗

B = αB∗ .
By Lemma 3.5, 〈αB,m〉 ≥ 0 is facet-defining inequality for m ∈ B(N ). By

(the second claim of) Lemma 3.4 〈αB∗ ,m〉 = 〈α∗
B,m〉 ≥ 0 is also facet-defining

inequality for m ∈ B(N ). In particular, by Lemma 3.5, αB∗ must be a positive mul-
tiple of αC for a non-trivial min-balanced system C on N . By (6), this gives B∗ = C
and B∗ is min-balanced. The fact that k · λS , S ∈ B, are relatively prime integers then
implies αB∗ = αC . Thus, 〈αC,m〉 ≥ 0 is a conjugate inequality to (8) (with M = N ).
��

Note that the above observation was already mentioned by Shapley (1967) as
an empirical fact observed in case |N | ≤ 5.

4 Irreducible systems

We are in position to introduce the following concept, which is crucial for our main
result.
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Definition 4.1 We say that a min-balanced system B ⊆ P(N ) is reducible if there
exists A ⊂ ⋃

B and B ∈ BA := {S ∈ B : S ⊂ A} such that

1. χA is in the conic hull of {χS : S ∈ BA} and
2. χ⋃B is in the conic hull of {χT : T ∈ {A} ∪ (B\{B})}.

A min-balanced system B ⊆ P(N ) that is not reducible is called irreducible.

A reducible min-balanced system is necessarily non-trivial. Note that, without
loss of generality, one can require A = ⋃

BA /∈ B in the definition of reducibil-
ity, as proved below in Lemma 4.1. The meaning of the reducibility condition is that
the inequality corresponding to B is derivable from the inequalities which correspond
to other min-balanced systems B′ satisfying

⋃
B′ ⊆ ⋃

B.
Clearly, the concept of irreducibility is invariant with respect to a permuta-

tion of players. The types of non-trivial irreducible min-balanced system on N for
2 ≤ |N | ≤ 4 can be found in “Appendix”.

Lemma 4.1 Let B be a min-balanced system. If A ⊂ ⋃
B and B ∈ BA exist such that

both BA and {A} ∪ (B\{B}) satisfy the conditions from Definition 4.1, then |A| ≥ 2
and one has both

⋃
BA = A and A /∈ B.

Moreover, there exist a min-balanced system C ⊆ BA on A with B ∈ C and a min-
balanced systemD ⊆ {A} ∪ (B\{B}) on⋃B with A ∈ D such that the inequality (8)
corresponding to B is a conic combination of inequalities corresponding to C and D.

Proof Throughout the proof we will use M to denote the carrier of B, that is, M :=⋃
B. As B is non-trivial, one can apply Lemma 2.2. Hence, B ∈ B implies B �= ∅ and

B ⊂ A gives |A| ≥ 2. The assumption that χA is in the conic hull of {χS : S ∈ BA}
means that there exist μS ≥ 0, S ∈ BA, with χA = ∑

S∈BA
μS · χS , which implies

A = ⋃
BA.

Analogously, the other assumption says that there existβT ≥ 0, T ∈ {A}∪(B\{B}),
with χM = ∑

T∈{A}∪(B\{B}) βT · χT . Thus,

χM = βA · χA +
∑

T∈B\{A,B}
βT · χT = βA ·

∑
S∈BA

μS · χS +
∑

T∈B\{A,B}
βT · χT

=
∑
S∈BA

βA · μS · χS +
∑

T∈B\{A,B}
βT · χT

= βA · μB · χB +
∑

S∈BA\{B}
(βA · μS + βS) · χS +

∑
T∈B\({A}∪BA)

βT · χT .

On the other hand, since B is min-balanced, the uniquely determined coefficients λS ,
S ∈ B, in the decomposition

χM =
∑
S∈B

λS · χS (9)

must be all strictly positive by Lemma 2.1. The uniqueness of the coefficients implies
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λB = βA · μB

λS = βA · μS + βS for S ∈ BA\{B},
λT = βT for T ∈ B\({A} ∪ BA), and

λR = 0 for other R ⊆ N . (10)

This implies A /∈ B as otherwise a contradictory conclusion λA > 0 and λA = 0 is
derived from (9) and (10).

As λS > 0 for S ∈ B, the condition (10) gives λB > 0 ⇒ βA > 0 and μB > 0.
We put

C := {S ∈ BA : μS > 0} and D := {T ∈ {A} ∪ (B\{B}) : βT > 0}

and obtain B ∈ C and A ∈ D. Since C ⊆ BA ⊆ B the linear independence condition
(ii) from Lemma 2.1 for C is evident and, therefore, again by Lemma 2.1, C is min-
balanced on A. To verify the linear independence condition (ii) for {A}∪ (B\{B}) it is
enough to show that χA is not in the linear hull of {χS : S ∈ B\{B} }. Thus, assume
for contradiction that χA = ∑

S∈B\{B} γS · χS with real γS , S ∈ B\{B}, which yields

χM = βA · χA +
∑

T∈B\{B}
βT · χT = βA ·

⎛
⎝ ∑

S∈B\{B}
γS · χS

⎞
⎠+

∑
T∈B\{B}

βT · χT

=
∑

T∈B\{B}
(βA · γT + βT ) · χT .

As B is min-balanced on M , the uniqueness of the coefficients in (9) implies
a contradictory conclusion that simultaneously λB > 0 by (9) and λB = 0. Thus,
D ⊆ {A}∪(B\{B}) satisfies both (i) and (ii), so, it ismin-balancedonM byLemma2.1.

In order to prove the last claim, apply (10) to express the inequality m(M) −∑
S∈B λS ·m(S) ≥ 0 for m ∈ R

P(N )\{∅} and non-empty components only as the sum
of inequalities

βA · m(A) −
∑
S∈BA

βA · μS · m(S) = βA · [m(A) −
∑
S∈C

μS · m(S)] ≥ 0,

m(M) − βA · m(A) −
∑

S∈B\{B}
βS · m(S) = m(M) −

∑
T∈D

βT · m(T ) ≥ 0.

As explained in Sect. 3.3, the standard inequalities for the min-balanced systems are
positive multiples of these, which implies the result in R

P(N )\{∅}. The coefficients
with the empty set are immaterial since they are determined by the o-standardization
condition. ��

Let us give a simple example of a reducible system, which illustrates Lemma 4.1.
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Example 4.1 Put N = {a, b, c, d}. Let B = { {a}, {b}, {c} } be a set system on a strict
subset M = {a, b, c} of N . The corresponding inequality (8) is

m({a, b, c}) − m({a}) − m({b}) − m({c}) + 2 · m(∅) ≥ 0.

Take A = {a, b} and observe that χ{a,b} = χ{a} + χ{b}, which gives χA ∈ cone
{χS : S ∈ BA} with BA = { {a}, {b} }. We also have χ{a,b,c} = χ{a,b} + χ{c} which
implies that

χM ∈ cone {χT : T ∈ {A} ∪ (B\BA)} ⊆ cone {χT : T ∈ {A} ∪ (B\{B})}

for both B ∈ BA = { {a}, {b} }. One has C = BA and, for both B = {a} and B = {b},
the respective D is {A} ∪ (B\BA) = { {a, b}, {c} }. The inequalities (8) for C and D
are

m({a, b}) − m({a}) − m({b}) + m(∅) ≥ 0,

m({a, b, c}) − m({a, b}) − m({c}) + m(∅) ≥ 0.

Their sum is the above inequality (8) corresponding to B.

A more complicated example of a reducible min-balanced system is as follows.

Example 4.2 Put N = {a, b, c, d, e} and consider a set system

B = { {a, b}, {c, e}, {d, e}, {a, c, d}, {b, c, d} }.

It is easy to show that B is min-balanced on N using Lemma 2.1. To show that B is
reducible according to Definition 4.1 we take A := {a, b, c, d} and observe that

BA = { {a, b}, {a, c, d}, {b, c, d} }.

It follows that χA is in the conic hull of {χS : S ∈ BA} because of

χA = 1

2
· (χ{a,b} + χ{a,c,d} + χ{b,c,d}).

Consider, for example, B := {a, c, d} ∈ BA. Also χ⋃B = χN is in the conic hull
of {χT : T ∈ {A} ∪ (B\{B})} since

χN = 1

2
· (χ{a,b,c,d} + χ{a,b} + χ{c,e} + χ{d,e}).

Hence, B is reducible.

The next example shows that some sets in an irreducible system can be inclusion
comparable.
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Example 4.3 Put N = {a, b, c, d, e} and consider a set system

B = { {a, b}, {a, c, d}, {a, c, e}, {a, b, d, e}, {b, c, d, e} }.

Then one has

χN = 1

4
· (χ{a,b} + χ{a,c,d} + χ{a,c,e} + χ{a,b,d,e}) + 1

2
· χ{b,c,d,e},

which allows one to show, using Lemma 2.1, that B is min-balanced on N .
Owing to (the first claim in) Lemma 4.1 it is enough to test sets A ⊂ ⋃

B = N
with |A| ≥ 2 and A /∈ B whether A = ⋃

BA with BA = {S ∈ B : B ⊂ A} and
the conditions from Definition 4.1 hold. First observe that there is no set A ⊂ N with
2 ≤ |A| ≤ 3 satisfying A = ⋃

BA. Second, consider A ⊂ N with |A| = 4 and A /∈ B
and distinguish three cases:

1. If A = {a, b, c, d} then BA = { {a, b}, {a, c, d} } and one has A = ⋃
BA;

however, the vector χA is not in the conic hull of {χS : S ∈ BA}.
2. If A = {a, b, c, e} then BA = { {a, b}, {a, c, e} } and the arguments are same as

in the previous case.
3. If A = {a, c, d, e} then BA = { {a, c, d}, {a, c, e} } and, again, χA is not

in the conic hull of {χS : S ∈ BA}.
In any case, the first condition in Definition 4.1 not valid for any such set A, which
implies that the min-balanced system B is irreducible.

The following result is a direct consequence of Lemma 4.1.

Corollary 4.1 Given a reducible min-balanced system B, the corresponding inequal-
ity is a conic combination of inequalities which correspond to other min-balanced
systems B′ with

⋃
B′ ⊆ ⋃

B. In particular, it is a combination of inequalities which
correspond to irreducible min-balanced systems on subsets of

⋃
B.

5 Main result

The main result of this paper, proved in Sect. 5.4, is as follows.

Theorem 5.1 Let |N | ≥ 2. The facet-defining inequalities for T (N ) are exactly those
which correspond to non-trivial irreducible min-balanced systems B with

⋃
B ⊆ N.

Note that T (N ) is not closed under reflection (Example 3.1); thus, one cannot
expect that the conjugate inequality to a facet-defining inequality for T (N ) is also
facet-defining.

5.1 Characterization of the balanced and exact cones

We are going to show that the sets B(N ) and E(N ) are rational polyhedral cones, by
simplifying the arguments from Csóka et al. (2011, Section 3). The following notation
will be instrumental.
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Definition 5.1 Assume |N | ≥ 2. For any non-empty set D ⊆ N , we put

ΘN
D := { θ ∈ R

P(N ) : θ(S) ≤ 0 for any S ⊆ N , S /∈ {∅, D, N },∑
T⊆N

θ(T ) = 0 and
∑

T⊆N : i∈T
θ(T ) = 0 for any i ∈ N }.

In words, ΘN
D is the set of o-standardized vectors which are non-positive outside

{∅, D, N }.
Lemma 5.1 If |N | ≥ 2 and ∅ �= D ⊆ N, then ΘN

N ⊆ ΘN
D and θ(N ), θ(∅) ≥ 0, for

any θ ∈ ΘN
D . The only θ ∈ ΘN

D satisfying θ(N ) + θ(∅) ≥ 0 with equality is the zero
game θ = 0. In particular,ΘN

D is a pointed polyhedral cone containingΘN
N and every

non-zero θ ∈ ΘN
N satisfies both θ(N ) > 0 and θ(∅) > 0.

Proof The inclusion ΘN
N ⊆ ΘN

D is evident. Thus, assume without loss of generality
that D ⊂ N . Then θ(N ) ≥ 0 is a valid inequality for θ ∈ ΘN

D . Indeed, take i ∈ N\D
and realize that θ(N ) = −∑T⊂N : i∈T θ(T ) ≥ 0. Analogously, for any j ∈ N ,

∑
S⊆N\{ j}

θ(S) =
∑
S⊆N

θ(S) −
∑

T⊆N : j∈T
θ(T ) = 0 − 0 = 0,

which implies that θ(∅) ≥ 0 is a valid inequality for θ ∈ ΘN
D ; it suffices to take

j ∈ D and write θ(∅) = −∑∅�=S⊆N\{ j} θ(S) ≥ 0. Thus, θ(N ) + θ(∅) ≥ 0 is a valid

inequality for θ ∈ ΘN
D .

To show that the only θ ∈ ΘN
D satisfying θ(N ) + θ(∅) = 0 is θ = 0, real-

ize that both θ(N ) = 0 and θ(∅) = 0. The identity θ(N ) = 0 implies by
0 = θ(N ) = −∑T⊂N : i∈T θ(T ) ≥ 0, for i ∈ N\D, that θ(T ) vanishes for
any T ⊆ N intersecting N\D. Analogously, the identity θ(∅) = 0 implies by
0 = θ(∅) = −∑∅�=S⊆N\{ j} θ(S) ≥ 0, for j ∈ D, that θ(S) vanishes for any S ⊂ D.
Hence, 0 = ∑

T⊆N θ(T ) = θ(D) and θ = 0.
The proof of the fact that the only θ ∈ ΘN

N satisfying θ(N ) ≥ 0 with equality is
θ = 0 is analogous: for any i ∈ N we get 0 = θ(N ) = −∑T⊂N : i∈T θ(T ) ≥ 0.
Hence, θ(T ) = 0 for any ∅ �= T ⊆ N and θ(∅) = −∑∅�=T⊆N θ(T ) = 0.

The same with θ ∈ ΘN
N satisfying θ(∅) = 0: take j ∈ N and get 0 = θ(∅) =

−∑∅�=S⊆N\{ j} θ(S) ≥ 0, which implies that θ(S) vanishes for S ⊂ N and, conse-

quently, θ(N ) = −∑S⊂N θ(S) = 0. Thus, every non-zero θ ∈ ΘN
N satisfies both

θ(N ) > 0 and θ(∅) > 0. ��
To characterize the sets B(N ) and E(N ), we are going to use the following cri-

terion for feasibility of a system of linear constraints involving both inequalities and
equalities. In the statement, CI denotes the submatrix of a matrix C specified by
a set of rows I , bI is the subvector of a vector b determined by its components in I ,
0I is the zero vector in R

I , and C�/b� denotes the transpose of a matrix C /vector b.
Inequalities and equalities for vectors are understood coordinatewise.
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Lemma 5.2 Let C ∈ R
L×N be a real matrix and b ∈ R

L a real column vector, where
L = I ∪ E with disjoint sets I and E. Then the condition

∃ x ∈ R
N such that both CI x ≤ bI and CE x = bE

is equivalent to the condition

∀ λ ∈ R
L [ λI ≥ 0I and C

�λ = 0N ] implies b�λ ≥ 0.

The reader can find this feasibility criterion in Chvátal (1983, Theorem 9.2) in slightly
modified formulation, namely as the equivalence of negations of the conditions from
Lemma 5.2.

Lemma 5.3 Assume |N | ≥ 2. For any set function m ∈ R
P(N ), we have

1. m ∈ B(N ) iff ∀ θ ∈ ΘN
N 〈θ,m〉 ≥ 0,

2. m ∈ E(N ) iff ∀ ∅ �= D ⊆ N ∀ θ ∈ ΘN
D 〈θ,m〉 ≥ 0.

Because each of the conesΘN
D is a rational polyhedral cone by definition, the cones

ΘN
N and cone (

⋃
∅�=D⊆N ΘN

D ) are generated by finitely many rational vectors. This,
together with Lemma 5.3, implies that both B(N ) and E(N ) are rational polyhedral
cones.

Proof One can assume without loss of generality thatm ∈ G(N ). Indeed, otherwisem
can be replaced by its shifted version m̃ ∈ G(N ) given by (1). Sincem = m̃+m(∅)·υ↑∅
and any θ ∈ ΘN

D , where ∅ �= D ⊆ N , satisfies
∑

T⊆N θ(T ) = 0, it follows that

〈θ,m〉 = 〈θ, m̃〉 + m(∅) · 〈θ, υ↑∅〉︸ ︷︷ ︸
=0

= 〈θ, m̃〉 =
∑

∅�=S⊆N

θ(S) · m̃(S).

Realize that both equivalences m ∈ B(N ) ⇔ m̃ ∈ B(N ) and m ∈ E(N ) ⇔ m̃ ∈
E(N ) hold.

Given a non-empty D ⊆ N and a game m ∈ G(N ), the existence of an element of
the core C(m) achieving the bound for D can be characterized in terms of ΘN

D :

[
∃ x ∈ C(m)

∑
i∈D

xi = m(D)

]
⇔

⎡
⎢⎢⎢⎢⎢⎣∀ θ ∈ ΘN

D

∑
∅�=S⊆N

θ(S) · m(S)

︸ ︷︷ ︸
〈θ,m〉

≥ 0

⎤
⎥⎥⎥⎥⎥⎦ .

(11)
The choice D = N in (11) proves the first equivalence in Lemma 5.3; the second one
follows analogously by applying (11) with all ∅ �= D ⊆ N .

To verify (11) we formulate the condition on its left-hand side of (11) as the feasi-
bility condition for a system of linear constrains fromLemma 5.2. Let L beP(N )\{∅},
with E consisting of D and N , and I being the rest of P(N )\{∅}; that is, |E | = 2
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if D �= N and |E | = 1 if D = N . The matrix C will have the entries −χS(i) for
S ∈ P(N )\{∅} and i ∈ N ; the component of the vector b for S ∈ P(N )\{∅} will be
−m(S). Thus, by Lemma 5.2, the condition is equivalent to the requirement that, for
each λ ∈ R

P(N )\{∅} such that

1. λ(S) ≥ 0 for each S ⊆ N with the exception of sets ∅, D, N , [⇔ λI ≥ 0I ]
2. − ∑

T⊆N : i∈T
λ(T ) = ∑

∅�=T⊆N
−χT (i) · λ(T ) = 0 for any i ∈ N , [⇔ C�λ = 0N ]

we get
∑

∅�=T⊆N
−m(T ) · λ(T ) ≥ 0 [⇔ b�λ ≥ 0].

We put θ(S) = −λ(S) for ∅ �= S ⊆ N and θ(∅) = ∑
∅�=T⊆N λ(T ) and observe

that the itemized conditions in terms of θ mean that θ ∈ ΘN
D and the conclusion that

〈θ,m〉 ≥ 0. Thus, the requirement is nothing but the condition on the right-hand side
of (11). ��

5.2 Extreme rays of the dual cone to the balanced cone

The following observation will be used later as an auxiliary fact.

Lemma 5.4 If |N | ≥ 2 then θ ∈ R
P(N ) generates an extreme ray of ΘN

N iff it is
a positive multiple of the coefficient vector αB for a non-trivial min-balanced system
B on N.

We would be able to give a direct proof of Lemma 5.4, analogous to our later proof
of Lemma 5.6. Nonetheless, we guess that the reader will prefer a shorter indirect
proof based on a well-known classic result reported earlier in Lemma 3.5.

Proof The first claim in Lemma 5.3 says that B(N ) is the dual cone to ΘN
N . Since ΘN

N
is a polyhedral cone, this implies that B(N ) and ΘN

N are (polyhedral) cones which
are dual each other (see Sect. 2). Therefore, the extreme rays of the pointed cone ΘN

N
(see Lemma 5.1) correspond to facets of B(N ). These are described by non-trivial
min-balanced systems on N in Lemma 3.5. In particular, θ is an extreme ray of ΘN

N
iff it has the form θ = k · αB for some k > 0 and a non-trivial min-balanced system
B on N . ��

Of course, the observation from the above proof that the cones ΘN
N and B(N ) are

dual each other allows one to derive Lemma 3.5 as a consequence of the statement
in Lemma 5.4. Note that, in the original proof of Lemma 3.5 from Shapley (1967),
the dual cone to B(N ) has been described in more complicated way, as the conic hull
of an infinite set of coefficient vectors for balancing set systems. Our simplification
allows one to observe the following.

Corollary 5.1 If |N | ≥ 2 then the cone B(N ) is the conic hull of its linearity space
L(N ) of modular set functions and the functions −δS for ∅ �= S ⊂ N.

Note that L(N ) is spanned by the functions ±υ↑∅ and ±υ↑{i} for i ∈ N . In partic-
ular, the extreme rays of the pointed cone B�(N ) := {m ∈ B(N ) : m({i}) = 0 for
i ∈ N } are those generated by functions −δS for S ⊆ N , |S| ≥ 2.
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Proof Definition 5.1 allows one to observe that the linear hull of ΘN
N is the set

of o-standardized functions and that (all) facets of ΘN
N are defined by inequalities

〈θ,−δS〉 ≥ 0 for ∅ �= S ⊂ N . Thus, the dual cone B(N ) has the orthogonal com-
plement of the linear hull of ΘN

N as its linearity space and the atomic faces of B(N )

correspond to facets of ΘN
N . These atomic faces correspond to the extreme rays of any

pointed version of B(N ). ��

5.3 Characterization of the totally balanced cone

First we introduce a polytope generating the dual cone to T (N ).

Definition 5.2 For any set M ⊆ N , |M | ≥ 2, we denote by ΔM the set of θ ∈ R
P(N )

satisfying the conditions

1. θ(S) ≤ 0, for ∅ �= S ⊂ M , θ(R) = 0 for R ⊆ N , R \ M �= ∅ and
2. θ(∅) = 1,

∑
S⊆N θ(S) = 0,

∑
T⊆N : i∈T θ(T ) = 0 for any i ∈ N .

Further, we introduce the polytope

Δ := conv

⎛
⎝ ⋃

M⊆N ,|M|≥2

ΔM

⎞
⎠ .

Note that every ΔM is a bounded polyhedron as

1 = θ(∅) =
∑

∅�=T⊆M\{i}
−θ(T ) ≥ 0

for any i ∈ M and θ(M) = ∑
S⊂M −θ(S). This makes the definition correct.

Lemma 5.5 If |N | ≥ 2 and m ∈ R
P(N ) then

m ∈ T (N ) ⇔ 〈θ,m〉 ≥ 0 for any θ ∈ Δ.

Proof If m ∈ T (N ) and θ ∈ ΔM for some M ⊆ N , |M | ≥ 2, then the restriction
of m to P(M) belongs to B(M), the restriction of θ to P(M) belongs to ΘM

M and
〈θ,m〉 = ∑

S⊆M θ(S) · m(S) ≥ 0 by Lemma 5.3 applied to N = M . A convex
combination of valid inequalities for T (N ) is a valid inequality for T (N ) which gives
〈θ,m〉 ≥ 0 for θ ∈ Δ.

Conversely, if all the inequalities hold for m ∈ R
P(N ) then, for any fixed M ⊆ N ,

|M | ≥ 2, the restriction of m to P(M) satisfies
∑

S⊆M θ ′(S) · m(S) ≥ 0 for any
θ ′ ∈ ΘM

M with θ ′(∅) = 1. By Lemma 5.1, any non-zero θ ∈ ΘM
M satisfies θ(∅) > 0 and

is a positive multiple of such θ ′. This implies the same inequalities for any θ ∈ ΘM
M .

Hence, by Lemma 5.3 applied to N = M , the restriction of m to P(M) belongs
to B(M). The same is the case with M ⊆ N , |M | = 1, which gives m ∈ T (N ). ��
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5.4 Proof of Theorem 5.1

Lemma 5.6 A vector θ ∈ R
P(N ) is an extreme point of Δ iff it is αB(∅)−1-multiple

of αB for a non-trivial irreducible min-balanced system B on some M ⊆ N, |M | ≥ 2.

Proof Let α̃B denote the αB(∅)−1-multiple of αB for any such system B. Every such
vector α̃B for a min-balanced system B on M ⊆ N , |M | ≥ 2, belongs to ΔM (see the
formula (6) in Sect. 3.3) and, therefore, it belongs to Δ.

We first show that any extreme point θ of Δ has the form α̃B for an irreducible
min-balanced system B on some M ⊆ N , |M | ≥ 2. Because of the definition of Δ

there exists such M that θ is an extreme point of ΔM . In particular, the restriction
of θ to P(M) generates an extreme ray of ΘM

M . By Lemma 5.4 applied to N = M
we derive that θ = α̃B for some non-trivial min-balanced system on M . Corollary 4.1
then implies that B must be irreducible as otherwise θ is a convex combination of
α̃C ∈ Δ for irreducible min-balanced systems C ⊆ P(M).

The second step is to show that every α̃B for a non-trivial irreducible min-balanced
system B on some M ⊆ N , |M | ≥ 2, is an extreme point of Δ. As α̃B ∈ Δ, by
the former step, one can write

α̃B =
t∑

i=1

γi · θi where t ≥ 1, γi > 0 for i = 1, . . . , t,
t∑

i=1

γi = 1, and

∀ i = 1, . . . , t, θi = α̃Bi for non-trivial min-balanced Bi on Mi ⊆ N , |Mi | ≥ 2.

We are going to show that θi = α̃B for all i = 1, . . . , t , which gives the extremity
of α̃B. Realize that, for every R ⊆ N , one has υ↑R ∈ T (N ): if ∅ �= R ⊆ S for
some ∅ �= S ⊆ N , then the restriction of υ↑R to P(S) is in B(S) ⊆ B(S) because
1

|R| · χR ∈ R
S is in its core. Therefore, by Lemma 5.5, 〈θi , υ↑R〉 ≥ 0 for any i and R.

For any R ⊆ N with R \ M �= ∅,

0 =
∑

S⊆N : R⊆S

α̃B(S) = 〈α̃B, υ↑R〉 =
t∑

i=1

γi · 〈θi , υ↑R〉︸ ︷︷ ︸
≥0

⇒ ∀ i 〈θi , υ↑R〉 = 0.

Hence, we observe by decreasing induction governed by cardinality of R that, for any
R ⊆ N with R \ M �= ∅ and i = 1, . . . , t , one has θi (R) = 0. Thus, for every i one
has Bi ⊆ P(M).

A crucial observation is that, in fact, Bi ⊆ B for any i = 1, . . . , t . To verify that
assume for contradiction that there exists j such that B j\B �= ∅. Consider inclusion
minimal set A ⊆ N such that [ ∃ j ∈ {1, . . . , t} A ∈ B j\B ]. By Bi ⊆ P(M) for
all i one has A ⊆ M . The fact A ∈ B j implies, by Lemma 2.2, that ∅ �= A ⊂⋃

B j = Mj ⊆ M , which gives A ⊂ M . Because ∅ �= A /∈ B one has 0
(6)=

α̃B(A) = ∑t
i=1 γi · θi (A) (see Sect. 3.3) and, since j exists with A ∈ B j one has

θ j (A) = α̃B j (A) < 0 ⇒ γ j · θ j (A) < 0 implying the existence of k ∈ {1, . . . , t}
such that α̃Bk (A) = θk(A) > 0, which means A = Mk = ⋃

Bk (see Sect. 3.3).
The inclusion minimality of A means, for any Z ⊂ A and i , that Z ∈ Bi ⇒ Z ∈ B.
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In particular, any Z ∈ Bk satisfies both Z ⊂ A and Z ∈ B and we have shown
Bk ⊆ BA = {S ∈ B : S ⊂ A}. Since Bk is min-balanced on Mk = A it implies that
χA is in the conic hull of {χS : S ∈ BA}.

Now, for every ε ≥ 0 we put

θε := α̃B + ε · (α̃B − θk)

and observe that, for sufficiently small ε > 0, one has θε ∈ ΔM (use Definition 5.2 and
realize thatB is onM andBk ⊆ BA ⊆ B). On the other hand, θε /∈ ΔM for sufficiently
large ε > 0 (becauseΔM is bounded). Take maximal ε > 0 such that θε ∈ ΔM , which
means that there exists B ⊂ A such that θε(B) = 0 (such B necessarily belongs
toBk ⊆ B). The definition ofΔM allows one to observe that C := {S ⊆ M : θε(S) <

0} is such that χM is in the conic hull of {χT : T ∈ C }. Indeed, realize that θε(M) > 0
(because of

⋃
Bk = A ⊂ M) and that θε vanishes outside P(M) (because θε ∈ ΔM ).

The o-standardization condition from Definition 5.2 implies, for every i ∈ M ,

θε(M) = −
∑

T⊆M : i∈T
θε(T ) = −

∑
T⊆M

θε(T ) · χT (i)

This gives

χM (i) = 1 =
∑
T⊆M

−θε(T )

θε(M)︸ ︷︷ ︸
≥0

·χT (i),

which implies the claim about C. Since C ⊆ {A}∪ (B\{B}) one has χM is in the conic
hull of {χT : T ∈ {A} ∪ (B\{B}) }. This altogether means, by Definition 4.1, that B
is reducible, which contradicts the assumption about B.

Thus,weare sure thatBi ⊆ B for all i = 1, . . . , t . IfBi is such thatMi = ⋃
Bi = M

then the assumption that B is min-balanced on M implies Bi = B and αBi = αB.
Hence, θi = α̃Bi = α̃B whenever Mi = M . It remains to show that there is no
j ∈ {1, . . . , t} such that Mj := ⋃

B j ⊂ M . Assume for a contradiction that such j
exists and write

α̃B =
t∑

i=1

γi · θi =
∑

i : Mi=M

γi · θi +
∑

j : Mj⊂M

γ j · θ j

=
∑

i : Mi=M

γi · α̃B +
∑

j : Mj⊂M

γ j · θ j .

This implies

⎛
⎝1 −

∑
i : Mi=M

γi

⎞
⎠ · α̃B(M) =

∑
j : Mj⊂M

γ j · θ j (M) =
∑

j : Mj⊂M

γ j · α̃B j (M) = 0,
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which gives a contradiction because both 1 − ∑
i : Mi=M γi > 0 and α̃B(M) > 0.

Thus, one necessarily has θi = α̃B for all i ∈ {1, . . . , t} and the extremity of α̃B is
confirmed. ��

The following is a consequence of Lemma 5.5.

Corollary 5.2 If |N | ≥ 2 and m ∈ R
P(N ) then m ∈ T (N ) iff

1. 〈αB,m〉 ≥ 0 for any non-trivial irreducible min-balanced system B on M ⊆ N,
where |M | ≥ 2;

which is equivalent to a formally stronger condition

2. 〈αB,m〉 ≥ 0 for any non-trivial min-balanced system B on M ⊆ N, where
|M | ≥ 2.

Proof The first statement follows directly from Lemmas 5.5 and 5.6. The second
condition is equivalent to the first one by Corollary 4.1. ��

Theorem 5.1 is now easy to prove.

Proof By Lemma 5.5, the cone T (N ) is dual to the cone Δ̃ spanned byΔ. The fact that
Δ̃ is a closed convex cone then implies that Δ̃ and T (N ) are each others dual cones
(see Sect. 2). Hence, the extreme points ofΔ, characterized in Lemma 5.6, correspond
to facets of T (N ). The coefficient vectors for inequalities are just the extreme points
of Δ, which are positive multiples of αB for non-trivial irreducible min-balanced
systems B ⊆ P(N ). ��

6 Conjecture concerning the exact cone

One of our research goals was to characterize facet-defining inequalities for the cone
E(N ). Despite we have not succeeded to get an ultimate answer to that question we
came to a sensible conjecture about what are these inequalities. Because a crucial
notion in our conjecture is the concept of an irreducible min-balanced system intro-
duced in Sect. 4, we will formulate the conjecture in this paper.

The first step towards the conjecture was computing all the facet-defining inequal-
ities for E(N ) in case |N | ≤ 5; their numbers are shown in Table 1. If |N | = 2, we
have E(N ) = B(N ). If |N | = 3, then E(N ) coincides with the cone of supermodular
functions. The results in case that |N | = 4 are given in Example 6.1 below.

Example 6.1 We list all six permutational types of 44 facet-defining inequalities for
E(N ) in case |N | = 4. We present a type representative, a number of inequalities
of this type, the induced set system (see Sect. 3.3), and indicate what is the conjugate
inequality (see Definition 3.2).

Table 1 Numbers of facets of
E(N ) and of its types for
n = |N | ≤ 5

Number of players n = 2 n = 3 n = 4 n = 5

Number of facets 1 6 44 280

Number of its permutational types 1 2 6 16
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1. m(ab) − m(a) − m(b) + m(∅) ≥ 0 6×
Bα = {a, b} conjugate type 4.

2. m(abc) − m(a) − m(bc) + m(∅) ≥ 0 12×
Bα = {a, bc} conjugate type 5.

3. 2 · m(abc) − m(ab) − m(ac) − m(bc) + m(∅) ≥ 0 4×
Bα = {ab, ac, bc} conjugate type 6.

4. m(abcd) − m(acd) − m(bcd) + m(cd) ≥ 0 6×
Bα = {acd, bcd} conjugate type 1.

5. m(abcd) − m(ad) − m(bcd) + m(d) ≥ 0 12×
Bα = {ad, bcd} conjugate type 2.

6. m(abcd) − m(ad) − m(bd) − m(cd) + 2 · m(d) ≥ 0 4×
Bα = {ad, bd, cd} conjugate type 3.

In case |N | = 5 we have processed the results of computation performed by
Quaeghebeur (2009) in context of imprecise probabilities. The point is that the con-
cept of a coherent lower probability, used in that context, corresponds to the notion of
a normalized exact game. The reader is referred to Miranda and Montes (2017) for
more details about the correspondence between some game-theoretical concepts and
those appearing in the context of imprecise probabilities.

The next step was to classify the inequalities into their permutational types.
Finally, we have analyzed the results from a theoretical point of view and formulated
the following conjecture, which is known to be true in case |N | ≤ 5.

Conjecture 6.1 If |N | ≥ 3 then the facet-defining inequalities for the cone E(N ) are
just the inequalities corresponding to non-trivial irreducible min-balanced systems B
with

⋃
B ⊂ N and their conjugate inequalities.

The conjecture agrees with the fact that E(N ) is closed under reflection (see
Lemma 3.4). As a consequence of our main result we obtain the following simpler
version of the conjecture, which is formally weaker.

Corollary 6.1 The validity of Conjecture 6.1 implies

E(N ) = T (N ) ∩ T ∗(N ) where T ∗(N ) := {m ∈ R
P(N ) : m∗ ∈ T (N ) }.

Thus, in words, the weaker version of the conjecture is as follows (see Remark 3.1):

A gamem ∈ G(N ) is exact iff both m and its anti-dual−m
 are totally balanced.

Proof The inclusion E(N ) ⊆ T (N ) and the fact that E(N ) is closed under reflection
(see Lemma 3.3) imply E(N ) ⊆ T ∗(N ). Hence, the inclusion E(N ) ⊆ T (N )∩T ∗(N )

surely holds. To show the converse inclusion consider m ∈ T (N ) ∩ T ∗(N ) and,
by Theorem 5.1 and the formula (5), observe that inequalities 〈αB,m〉 ≥ 0 and

〈α∗
B,m〉 (5)= 〈αB,m∗〉 ≥ 0 are valid for every non-trivial irreducible min-balanced

system B with
⋃

B ⊂ N . This implies, by validity of Conjecture 6.1, thatm ∈ E(N ).
Thus, T (N ) ∩ T ∗(N ) ⊆ E(N ). ��
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In fact, we are able to prove the converse of the statement from Corollary 6.1,
namely that E(N ) = T (N ) ∩ T ∗(N ) implies the validity of the conjecture. Nonethe-
less, because a detailed proof of that statement would require 10 additional pages
of technicalities while such a result is only marginally relevant to the main topic of
this paper, we decided to omit that proof herein.

7 Conclusions

The prime focus of this paper is on the polyhedral cone of totally balanced games.
We have introduced a highly relevant concept of an irreducible min-balanced set
system (Definition 4.1). Our main result, Theorem 5.1, says that there is a one-to-one
correspondence between facet-defining inequalities for the cone of totally balanced
games and non-trivial irreducible min-balanced systems on subsets of the player set.
We have only paid attention to the outer (= facial) description of the cone, whereas
the problem of its inner description (= characterizing it as the conic hull of finitely
many vectors) seems to be relevant as well; this remains to be an open task.

Some of our minor results concern the cone of balanced games. The extended
version of this cone is closed under reflection transformation, which implies that
every facet-defining inequality for it is accompanied with a conjugate facet-defining
inequality (Lemma3.4).We have re-visited a procedure that associates a facet-defining
inequality with a min-balanced set system and extended a well-known classic result
by Shapley (1967) saying that the facet-defining inequalities for the cone of balanced
games correspond to non-trivial min-balanced systems on the whole player set N ; see
Sect. 3.3. What we have shown is that a complementary set system to a min-balanced
set system on N is also a min-balanced system on N and gives a conjugate inequality
(Corollary 3.1). Further side-result is the inner description of the cone of balanced
games (Corollary 5.1).

Our tools made it also possible to contribute to the study of the cone of exact games.
The extended version of this cone is also closed under reflection transformation, which
implies that facet-defining inequalities for it come in pairs of mutually conjugate
inequalities (Lemma 3.4). In this paper we have formulated a conjecture about what
are facet-defining inequalities for this cone,which complieswith the above observation
(see Conjecture 6.1). Our hypothesis is supported by computations for a small number
of players; thus,wewill concentrate on proving/disproving this conjecture in our future
research. Note in this context that the extremity of an exact game can be recognized
by a relatively simple linear-algebraic test; see Studený and Kratochvíl (2018, Propo-
sition 4) for the details.

AMin-balanced systems for a small number of players

Here we give a list of all permutational types of non-trivial min-balanced systems for
at most four players. We present a type representative, indicate what is the type of
the complementary system (Definition 3.4) and whether the type is irreducible, give
the standard inequality ascribed to the system (see Sect. 3.3) and say what is
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the number of systems of this type. In order to shorten the notation we write abc
instead of {a, b, c}.

A.1 Two players

The only non-trivial min-balanced system on N = {a, b} is as follows.
1. B = {a, b} self-complementary, irreducible

m(ab) − m(a) − m(b) + m(∅) ≥ 0 1×

A.2 Three players

The following are all three types of 5 non-trivial min-balanced systems on N =
{a, b, c}.

1. B = {a, b, c} complementary type 3.
m(abc) − m(a) − m(b) − m(c) + 2 · m(∅) ≥ 0 1×

2. B = {a, bc} self-complementary, irreducible
m(abc) − m(a) − m(bc) + m(∅) ≥ 0 3×

3. B = {ab, ac, bc} complementary type 1., irreducible
2 · m(abc) − m(ab) − m(ac) − m(bc) + m(∅) ≥ 0 1×

Thus, one has two types of 4 irreducible min-balanced systems on N = {a, b, c}.

A.4 Four players

The following are all nine types of 41 non-trivial min-balanced system on N =
{a, b, c, d}.

1. B = {a, b, c, d} complementary type 9.
m(abcd) − m(a) − m(b) − m(c) − m(d) + 3 · m(∅) ≥ 0 1×

2. B = {a, b, cd} complementary type 6.
m(abcd) − m(a) − m(b) − m(cd) + 2 · m(∅) ≥ 0 6×

3. B = {ab, cd} self-complementary, irreducible
m(abcd) − m(ab) − m(cd) + m(∅) ≥ 0 3×

4. B = {a, bcd} self-complementary, irreducible
m(abcd) − m(a) − m(bcd) + m(∅) ≥ 0 4×

5. B = {a, bc, bd, cd} complementary type 8.
2 · m(abcd) − 2 · m(a) − m(bc) − m(bd) − m(cd) + 3 · m(∅) ≥ 0 4×

6. B = {ab, acd, bcd} complementary type 2., irreducible
2 · m(abcd) − m(ab) − m(acd) − m(bcd) + m(∅) ≥ 0 6×

7. B = {a, bd, cd, abc} self-complementary
2 · m(abcd) − m(a) − m(bd) − m(cd) − m(abc) + 2 · m(∅) ≥ 0 12×

8. B = {ab, ac, ad, bcd} complementary type 5., irreducible
3 · m(abcd) − m(ab) − m(ac) − m(ad) − 2 · m(bcd) + 2 · m(∅) ≥ 0 4×

9. B = {abc, abd, acd, bcd} complementary type 1., irreducible
3 · m(abcd) − m(abc) − m(abd) − m(acd) − m(bcd) + m(∅) ≥ 0 1×
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Thus, there are five types of 18 irreducible min-balances systems on N =
{a, b, c, d}.
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