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Abstract—Vector fields are a special kind of multidimensional data, which are in a certain sense similar to digital color images, but are

distinct from them in several aspects. In each pixel, the field is assigned to a vector that shows the direction and the magnitude of the

quantity, which has been measured. To detect the patterns of interest in the field, special matching methods must be developed. In this

paper, we propose a method for the description and matching of vector field patterns under an unknown affine transformation of the

field. Unlike digital images, transformations of vector fields act not only on the spatial coordinates but also on the field values, which

makes the detection different from the image case. To measure the similarity between the template and the field patch, we propose

original invariants with respect to total affine transformation. They are designed from the vector field moments. It is demonstrated by

experiments on real data from fluid mechanics that they perform significantly better than potential competitors.

Index Terms—Vector field, total affine transformation, affine invariants, template matching, vector field moments

Ç

1 INTRODUCTION

ANALYSIS of vector fields has been attracting an increasing
attention in last ten years. Vector fields are special kind

of multidimensional data, that appear in numerous scientific
and engineering areas, such as in mechanical engineering,
fluid dynamics, medicine, computer vision, and meteorol-
ogy. They describe particle velocity, wind velocity, optical/
motion flow, image gradient, and other phenomena.

In fluid mechanics, flow fields and their mathematical
models (mostly based on Navier-Stokes equations) have
been studied for centuries. However, in connection with
new devices/techniques producing vector or even tensor
field data, such as diffusion tensor imaging, the tasks
appeared which seem to be better resolved by signal-proc-
essing approach rather than by traditional fluid mechanics.

A typical example of such task is the detection of various
patterns of interest. It comprises not only detection of
singularities such as vortices, saddle points, vortex-saddle
combinations, and double vortices (these could be found
by traditional techniques as well), but also detection of
arbitrary patterns, which are similar to the patterns stored
in the pattern-of-interest database (these patterns may be
extracted from similar fields or obtained as a result of
a simulation). Since the patterns of interest may not have
any special mathematical properties, their detection by
traditional tools is questionable or even impossible.

The detection of these patterns can be accomplished by
template matching, which is a technique widely applied in
image processing but relatively new in vector field analysis.
The search algorithm evaluates the similarity between the
template and a field patch and must be primarily invariant

with respect to all possible pattern deformations, which
might be present (for instance, the template stored in the
database may depict a circular vortex, but we want to find
also all elliptic vortices of arbitrary size and orientation,
which may appear near obstacles and boundaries). Fig. 1
schematically shows the pattern matching in a vector field.

The main contribution of this paper is the derivation of
a new class of vector-field invariants, which are suitable for
template matching. We assume the template deformations
can be modeled by so called total affine transformation
(TAFT – see Section 2 for mathematical description). This
assumption is realistic and the underlaying model is reason-
ably general, but still possible to be handled thanks to its
linearity. This problem formulation is original and we are
not aware of any other paper, which would come up with
a formulation and/or a solution of a similar task. We
also introduce multilayer graphs, which can represent the
invariants and can be employed for their automatic genera-
tion and for studying their properties. Showing the connec-
tion between the invariants and the multilayer graphs is
another significant theoretical contribution of the paper.

The paper is structured as follows. After giving a survey
of relevant literature in Section 3, we introduce vector field
invariants w.r.t. TAFT, composed of the moments of the
field, in Section 4. In Section 5, we introduce the notion of
a multi-layer graph and establish the connection between
the invariants and the multi-layer graphs, which helps to
understand the structure of the set of invariants. Section 6
presents algorithms for generating all graphs that represent
the invariants. Since such set is highly redundant, we pro-
pose a selection of complete and independent set in Sec-
tion 7. Finally, in Section 8 we demonstrate the performance
and the advantages of these invariants in affine-invariant
template matching on simulated and real data.

2 VECTOR FIELDS AND THEIR TRANSFORMATIONS

In this section, we formally define a vector field, introduce
the notion of its total transformation and show how the
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transformations of “traditional” images and vector fields
differ from one another, even if both can be understood as
particular cases of total transformations.

Definition 1. A 2D vector field fðxÞ is an ordered pair of scalar
fields fðxÞ ¼ ðf1ðxÞ; f2ðxÞÞ.
At each point x ¼ ðx; yÞ, the value of fðxÞ shows the orien-

tation and the magnitude of the measured vector. The scalar
field fiðxÞ can be understood as a graylevel image which
may contain also negative values.1

By a total transformation we understand any transforma-
tion in the vector field space, which acts simultaneously in
spatial and function domains. Even if this definition can be
used for arbitrary (non-linear) transformations, in this paper
we restrict to linear ones.

Definition 2. Let A and B be regular matrices and f be a vector
field. The transformation f ! f0, where

f0ðxÞ ¼ BfðA�1xÞ; (1)

is called independent total affine transformation of the field
f. Matrix A is called inner transformation matrix (or just
inner transformation for short), while matrix B is called outer
transformation matrix.

The above transformation model does not contain a shift,
which is basically for two reasons. The shift in the outer
part might occur as a basic flow in the background and can
be removed by subtracting the background flow from the
entire field. The shift in the inner part, which is independent
of the outer shift, may appear in some applications and cap-
tures the translation of the field in the plane. In such a case,
A�1x is replaced with A�1xþ t in the model. However, for
pattern detection via template matching it is irrelevant to
include the shift into the deformation model, because the
shift is the key parameter we want to detect. If, in some
other applications, incorporating the shift was desirable, it
would be sufficient to replace the moments in the invariants
(see Section 4) with central moments related to a properly
defined field centroid and we automatically obtain invari-
ants to inner translation.

In reality, vector fields aremostly transformed by a slightly
simpler transformation than (1) in which A ¼ B. Such
a model is called special total affine transformation and captures

one of the basic properties of vector fields – if the field is trans-
formed in the space domain, the function domain (i.e., the vec-
tor values) are transformed by the same transformation. The
scenarios where A 6¼ B are rare, but may happen as well if,
for instance, the measuring device exhibits different calibra-
tions for inner and outer part. The special transformation can
be understood intuitively. Let us imagine the vector field as
an array of arrows. If we deform spatially the array, the abso-
lute orientation and length of the arrows must be changed
accordingly such that their relative orientation and length is
preserved (see Fig. 2 for an example).

This is the principal difference between “true” vector fields
and images. Traditional images can be viewed as particular
cases of vector fields, where the number of components
equals the number of the spectral bands. Most often, they are
transformed with B ¼ I, where I is an identity matrix, and
the transformation is purely spatial. The total transformation
model can also capture the spatial transformation accompa-
nied by contrast changes of individual channels (when B is
diagonal different from I) or by spectral mixing (when B is
not diagonal). However, the situationswhenB is not diagonal
are rare for traditional images and in any case, there is abso-
lutely no reasonwhyB should be the same asA.

In the theory of invariants, it is well known that the set of all
admissible transformations, with respect to which we want to
design invariants, must form a group or at least a semi-group
(see, for instance, [1] or [2] for explanation). In particular,
the transformations must exhibit the closure property—the
composition of two arbitrary transformations must be again
a transformation within the given set. The set of all indepen-
dent total affine transformations is closed under composition.
To see this, consider two such transformations given bymatri-
ces Ai;Bi; i ¼ 1; 2, which have been applied consecutively
to a vector field. The result is equivalent to applying a single
independent total affine transformations with matrices
A ¼ A2A1 and B ¼ B2B1. The closure property is preserved,
if we consider special total affine transformations only. Both
transformations are invertible and contain a unit element
(identity transformation). Hence, both sets are groups (but not
Abelian groups asmatrixmultiplication is not commutative).

3 LITERATURE SURVEY

Although affine invariants of vector fields have never
been studied, we still found several inspiring papers that
formed the background of our current work. They fall
basically into two categories: papers on rotation invari-
ants of vector fields and papers on affine invariants of
scalar and color images.

The problem of finding vector field invariants to total rota-
tion was raised for the first time relatively recently by
Schlemmer et al. [3], who adapted the scalar moment invari-
ants proposed by Mostafa and Psaltis [4] and Flusser [5], [6]
and designed invariants composed of geometric complex
moments of the field. Schlemmer et al. used these invariants to
detect specific patterns in a turbulent swirling jet flow. Rota-
tion invariants from geometric complex moments have found
several applications. Liu and Ribeiro [7] used them, along
with a local approximation of the vector field by a polynomial,
to detect singularities on meteorological satellite images
showing wind velocity. Basically the same kind of rotation

Fig. 1. Vortex detection in a swirling fluid by template matching. The
detection method must be invariant to the template deformation.

1. Apart from 2D vector fields, there exist also 3D vector fields,
matrix fields, and tensor fields. The study of these more general fields
is beyond the scope of this paper.
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invariants were used by Liu and Yap [8] for the indexing and
recognition of fingerprint images. A generalization to more
than two dimensions using tensor contraction was proposed
by Langbein and Hagen [9]. Bujack et al. [10], [11] studied
the invariants of complex moments thoroughly, generalized
the previous works, and showed that the invariants can be
derived also by means of the field normalization approach.
Yang et al. improved the numerical stability of the invariants
by using orthogonal Gaussian-Hermite [12] and Zernike [13]
moments instead of the geometric ones. Most recently,
Bujack [14] introduced so-called flexible basis of the invariants
to avoid moments that vanish on the given templates. In all
these papers, the authors considered the total rotation model
only. The gap between total rotation and total affine transfor-
mation is so big that almost nothing from the referenced
papers can be used or adapted to derive invariants w.r.t. total
affine transformation.

Apart of the above methods, which all were more or less
inspired by signal processing and approached a vector field
as a specific multi-valued image, we can find several “non-
image methods in flow analysis for detecting singularities.
Comparing to the signal-based methods, they suffer from
several limitations. The most serious one is that they were
designed for detection of singularities only and cannot detect
arbitrary templates. Majority of the existing methods con-
cerns with the detection of vortices, other methods are able
to detect foci, stable points or nodes. Vortex detection meth-
ods mostly compute the curl of the flow field, which charac-
terizes vortices. Almost all methods for detection of other
singularities calculate the gradient of the flow velocity and
locally calculate the eigenvalues of the underlying tensor.
The criterion “vortex/focus/node/...” is evaluated from
these eigenvalues, differently in each individual method.
They are not affine-invariant and cannot be easily general-
ized to this invariance, because intrinsically assume circular
shape of the vortices. Some of those methods assume (at least
implicitly) that the flow is ruled by Navier-Stokes equations.
This is, however, not generally true for gradient fields and
optical flow fields. Many methods of this kind can be found
in the literature. A good survey of vorticity measures based
on the determinant and trace of the flow velocity gradient
tensor is given in [15], where themethod of helicity [16], swirl
parameter method [17], �2 method [18], Predictor-Corrector
method [19], parallel vectors method [20], and streamline
method [21] are reviewed and compared. Chen [22] describes
various criteria (vorticity measures) for detection of vortices
and their simplification in planar flow – Delta-criterion, �ci

criterion,Q criterion, and �2 criterion (we use this method in
the experimental section for comparison).

Comparing to the above group of papers on vector field
rotation invariants, affine moment invariants (AMIs) of gray-
level images have been studied in hundreds of papers and
books in the last 100 years.2 They can be traced back to the
end of the 19th century, to the times when neither com-
puters nor automatic object recognition existed. Probably
the first one who systematically studied invariants to affine
transformation was the famous German mathematician
David Hilbert. He did not work explicitly with moments
but studied so called algebraic invariants [23]. The algebraic
invariants are polynomials of coefficients of a binary form,
which are invariant w.r.t. an affine transformation. Hilbert
had many followers, who elaborated the traditional theory
of algebraic invariants in the late 19th and early 20th cen-
tury, see for instance [24], [25], [26], [27], [28]. The algebraic
invariants are closely linked with the AMIs through the
Fundamental theorem of the AMIs, formulated (unfortunately
incorrectly) by Hu [29] in 1962. Through this link, the core
of the Hilbert’s work can be adapted to moments in
a relatively straightforward way. The Fundamental theorem
of the AMIs was later corrected by Reiss [30] and Flusser
and Suk [31]. Since then, several new methods of deriving
AMIs have appeared. They differ from each other in the
mathematical tools used. One may use graph theory as was
proposed in [32], [33], tensor algebra [34], direct solution of
proper partial differential equations [35], transvectants [36],
and derivation via image normalization [37]. The resulting
AMIs achieved by all these approaches are theoretically
equivalent, because there exists a polynomial one-to-one
mapping between any two AMI sets. However, differences
can be found in complexity of the derivation and in numeri-
cal properties of the respective AMI’s.

Special AMIs were proposed for color images [38], [39],
[40], [41], [42], where the between-channel bond and vari-
ous kinds of linear color changes were considered together
with the spatial affine transformation.

4 CONSTRUCTION OF VFAMIS

In this section, we propose vector field moment invariants w.r.t.
total affine transformation (VFAMIs). The invariants, whichwe

Fig. 2. Vector field transformations: (a) An original vector field, (b) its inner affine transformation, (c) its outer affine transformation, (d) its special total
affine transformation. The green arrows in (c) and (d) show the vector field without the outer transformation.

2. There exist also many affine invariants, which are not based on
moments, but they are irrelevant for this work, so we do not mention
them here.
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are going to construct, are functions of geometric moments
of the field. In case of a 2D vector field fwith the components
f1 and f2 we may use standard geometric scalar moments
[1], [2] given as

mðiÞ
pq ¼

Z 1

�1

Z 1

�1
xpyqfiðx; yÞ dx dy : (2)

Let us for simplicity assume that f is compactly supported
and both fi are piecewise continuous. Under these assump-
tions, all moments mðiÞ

pq of indices p; q ¼ 0; 1; 2; . . . are well-
defined and completely characterize the field f.

4.1 Invariants to Inner Transformation

Let us first construct the VFAMIs for the particular case of
B ¼ I (this is essentially the problem of AMIs for two-band
images). We start by constructing the AMIs for components
f1 and f2 separately. To do so, we use the method proposed
in [32] and further elaborated in [33], which guarantees to
produce a complete set.

Let us consider two arbitrary points x1 ¼ ðx1; y1Þ, x2 ¼
ðx2; y2Þ from the support of f. Let us denote the “cross-
product” of these points as C12

C12 ¼ x1y2 � x2y1:

Geometric meaning of C12 is the oriented double area of the
triangle, whose vertices are ðx1; y1Þ, ðx2; y2Þ, and (0, 0). After
an affine transformation x0 ¼ Ax has been applied, the
cross-product is transformed as C0

12 ¼ JA � C12, where JA ¼
detðAÞ is the Jacobian of the transformation. This proves
that C12 is a relative invariant with respect to inner
transformation A. Now we consider various numbers of
points ðxi; yiÞ and we integrate their cross-products (or
some integer powers of their cross-products) over the sup-
port of f. These integrals can be expressed in terms of
moments and, after eliminating the Jacobian by a proper
normalization, they yield absolute affine invariants.

More precisely, having r > 1 distinct points ðx1; y1Þ ; . . . ;
ðxr; yrÞ, we define functional I of scalar f depending on r
and on non-negative integers nkj as

IðfÞ ¼
Z 1

�1
� � �

Z 1

�1

Yr
k;j¼1

C
nkj
kj �

Yr
i¼1

fðxi; yiÞ dxi dyi : (3)

Note that it is meaningful to consider only j > k, because
Ckj ¼ �Cjk and Ckk ¼ 0.

After an inner affine transformation we have f 0ðxÞ ¼
fðA�1xÞ and Iðf 0Þ becomes

Iðf 0Þ ¼
Z 1

�1
� � �

Z 1

�1

Yr
k;j¼1

C
nkj
kj �

Yr
i¼1

fðA�1xiÞ dxi dyi

¼
Z 1

�1
� � �

Z 1

�1

Yr
k;j¼1

ðCnkj
kj Þ0 �

Yr
i¼1

fðxi; yiÞjJAjr dxi dyi

¼ Jw
A jJAjr � IðfÞ ;

(4)

where w ¼ P
k;j nkj is the weight of the invariant and r is its

degree. Hence, IðfÞ is a relative affine invariant, too. If IðfÞ
is normalized by mwþr

00 , we obtain a desirable absolute

affine invariant

IðfÞ
mwþr

00

� �0
¼ IðfÞ

mwþr
00

� �
; (5)

(if w is odd and J < 0 the sign change occurs in Eq. (5)). If
we expand the integrand in Eq. (3) and integrate term-wise,
we obtain an expression of I in terms of geometric moments
of f . Varying r and nkj, we can generate infinitely many
invariants of all orders. Such a set is complete but highly
redundant. The process of eliminating reducible invariants
is described in [33].

The invariants from Eq. (5) can be derived separately for
both field components f1 and f2. In addition to that, we can
further employ the fact that transformation A is the same for
both components, which brings a possibility of constructing
joint invariants (i.e., those containing moments of both f1 and
f2 at the same invariant). This idea was proposed in [38] in the
context of invariants for color images and slightly increases
the number of independent invariants.

For the sake of completeness, it should be mentioned that
Eq. (3) may be formulated in a more general way as

IðfÞ ¼
Z 1

�1
� � �

Z 1

�1

Yr
k;j¼1

C
nkj
kj �

Yr
i¼1

fviðxi; yiÞ dxi dyi ; (6)

where vi are arbitrary powers. Eqs. (4) and (5) still hold
(note that the normalization in (5) does not depend on vi).
However, the integration of (3) does not lead to moments of
f but generally to moments of fvi . This is highly redundant,
because the moment uniqueness theorem (see [2] for instance)
assures that all moments of any fvi can be calculated from
the moments of f . Hence, using vi 6¼ 1 in (3) is generally use-
less and we do not follow that approach in this paper (it
might be justifiable only if we confine ourselves to a few
low moment orders, where the redundancy is weak, as for
instance did the authors in [39], [40]).

4.2 Invariants to Outer Transformation

If B 6¼ I, it is not easy to extend the “inner” invariants from
the previous section. The exception is when B is diagonal,
so the components f1 and f2 are not mixed together. This is
not realistic for “true” vector fields, but this model was
studied in the connection with color images of indoor
scenes, underlaying photometric transformation due to
a varying illumination [43], [44]. If B is diagonal, the invari-
ants (3) of the component fi are just multiplied by Br

ii. This
multiplication factor can be eliminated by taking a ratio of
two invariants of the same r or by a ratios of proper powers
of two arbitrary invariants.

Now let us consider arbitrary regular B, but assume for
simplicity that A ¼ I, so only an outer transformation of the
vector field is effective. We proceed analogously to the pre-
vious section. The role of Ckj has been taken over by
“component cross-products” Fkj

Fkj ¼ f1ðxk; ykÞf2ðxj; yjÞ � f1ðxj; yjÞf2ðxk; ykÞ :
Fkj is a relative invariant w.r.t. outer affine transformation as

F 0
kj ¼ JB � Fkj ;

where JB ¼ det ðBÞ (see Appendix A for the proof). The
simplest moment invariants are given as
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OpqstðfÞ ¼
Z 1

�1
� � �

Z 1

�1
xp1y

q
1x

s
2y

t
2F12 dx1 dx2 dy1 dy2 ; (7)

which yields, after the term-wise integration, the moment
form

OpqstðfÞ ¼ mð1Þ
pq m

ð2Þ
st �m

ð1Þ
st m

ð2Þ
pq : (8)

The relative invariance property Opqstðf 0Þ ¼ JB �OpqstðfÞ fol-
lows immediately from the same of F12. Eq. (8) yields a non-
trivial invariant for arbitrary combinations of indices except
ðp; qÞ ¼ ðs; tÞ (note that OpqpqðfÞ ¼ 0 for any p; q, and f ).
Swapping of the indices ðp; qÞ $ ðs; tÞ just changes the sign
as OpqstðfÞ ¼ �OstpqðfÞ and does not yield an independent
invariant. Hence, using all non-trivial configurations of
indices p; q; s; t up to the given order R, we obtain
RðRþ 1ÞðRþ 2ÞðRþ 3Þ=8 invariants of the form (8). Since
there exist only ðRþ 1ÞðRþ 2Þ moments, it is clear that the
set of invariants is redundant and must contain dependent
invariants. Since the outer transformation has four degrees
of freedom, the number of independent invariants is at
most ðRþ 1ÞðRþ 2Þ � 4. Although the number of the invar-
iants (8)) is higher for any R > 0, it is not automatically
guaranteed that they are complete.

To prove the completeness, we show that from the
knowledge of all invariants of the form (8) we can recover
all moment values, except four freely chosen moments the
value of which may be arbitrary. Let us assume there exists
at least one invariant such that Opqst 6¼ 0 (if this is not the
case, then f1 ¼ af2, all invariants (8) vanish, and f is called
a coupled field). Choose indices a; b arbitrary such that
ða; bÞ 6¼ ðp; qÞ and ða; bÞ 6¼ ðs; tÞ and solve the system

mð2Þ
pq m

ð1Þ
ab �mð1Þ

pq m
ð2Þ
ab ¼Oabpq

m
ð2Þ
st m

ð1Þ
ab �m

ð1Þ
st m

ð2Þ
ab ¼Oabst;

(9)

for m
ð1Þ
ab and m

ð2Þ
ab . The determinant of the system equals

Opqst, which means the system is regular and unambigu-
ously solvable, regardless of particular values of mð1Þ

pq ;m
ð2Þ
pq ;

m
ð1Þ
st , and m

ð2Þ
st , which may be chosen freely. Keeping their

choice fixed, this process is repeated for all admissible cou-
ples ða; bÞ. In this way we recover all moments of the field
from its invariants, up to the four degrees of freedom due to
the transformation matrix B.

Invariants to outer transformation of a field can also be
obtained in a general form analogous to Eq. (6) as

OðfÞ ¼
Z 1

�1
� � �

Z 1

�1

Yr
k;j¼1

F
vkj
kj �

Yr
i¼1

x
pi
i y

qi
i dxi dyi ; (10)

which leads to relative invariants given by

Oðf 0Þ ¼ Jv
B �OðfÞ ;

where v ¼ P
vkj. However, in the case of pure outer trans-

formation this is useless. Since Eq. (8) generates a complete
set of invariants by itself, any additional invariant designed
by Eq. (10) is a function of them and does not carry any
independent information.

Summarizing this section, we proved that Eq. (8) consti-
tutes relative invariants w.r.t. outer transformation of
a vector field. We proved they form a complete system.
Absolute invariants are obtained as a ratio of any two non-

trivial relative invariants (8). We also showed that the only
vector fields laying in the joint null-space of the invariants
are coupled fields, which must be handled separately and
described by other invariants.

4.3 Invariants to Total Transformation

In this section, we go to the core of the problem. We show
how to put the inner and outer invariants together and we
propose vector field invariants w.r.t. total affine transforma-
tion. The key definition, analogous to (6) and (10), is now

V ðfÞ ¼
Z 1

�1
� � �

Z 1

�1

Yr
k;j¼1

C
nkj
kj � Fvkj

kj �
Yr
i¼1

dxi dyi : (11)

V ðfÞ is a relative invariant as

V ðf0Þ ¼ Jv
BJ

w
A jJAjrV ðfÞ : (12)

To eliminate JA and JB and obtain an absolute invariant,
we have to normalize the relative invariant (11) by proper
powers of other two relative invariants such that both Jaco-
bians get canceled.3

If used extensively with many various parameters, Eq. (11)
yields a huge number of redundant invariants. The first step
to eliminate the redundancy is to fulfill the constraint that
V ðfÞ must be composed solely of moments of the field f. This
is equivalent to the constraints imposed on the powers vkj.
Considering all possible index pairs ðk; jÞ, each of the points
ðx1; y1Þ; . . . ; ðxr; yrÞ must be involved just once in all Fkj’s
used. Hence, any vkj can only equal 0 or 1, v ¼ r=2 (which
immediately implies that r must be even), and vkj ¼ 0 for all
k � j (this constraint is because Fkj ¼ �Fjk and Fkk ¼ 0, so it
would be useless to include them into the invariant). If
vkj ¼ 1, then vmj ¼ vjm ¼ vkm ¼ vmk ¼ 0 for all index pairs dif-
ferent from ðk; jÞ.

We may notice, that generating VFAMIs from Eq. (11),
even if the choice of vkj has been constrained as mentioned
above, leads to many invariants, which are identically zero
or which are somehow dependent on the other invariants
that have been obtained from Eq. (11)) with other settings of
the parameters. For instance, the simplest ever choice of
r ¼ 2; v12 ¼ 1 and n12 ¼ 0 yields a vanishing invariant; the
same is true for r ¼ 2; v12 ¼ 1; n12 ¼ 2 and for many other
choices with higher r (the setting of r ¼ 4; v14 ¼ v23 ¼ 1 and
n12 ¼ n13 ¼ n24 ¼ n34 ¼ 1; nkj ¼ 0 otherwise, is an example
leading to another vanishing invariant). As an example of
a simple dependency, we may choose r ¼ 4; v12 ¼ v34 ¼
1; n12 ¼ n34 ¼ 1; nkj ¼ 0 otherwise, which leads to invariant
V ðfÞ ¼ V 2

a . Another example is the setting r ¼ 4; v12 ¼ v34 ¼
1; n12 ¼ 3; n34 ¼ 1; nkj ¼ 0 otherwise, which yields V ðfÞ ¼
VaVb (see below for explicit forms of Va and Vb). Dependent
invariants do not contribute to the recognition power of the
system and only increase the dimensionality of the invariant
set. It is highly desirable to identify them and exclude them
from the set. An algorithm for detection of dependent invar-
iants is proposed in Section 7.

3. Unlike scalar AMIs, we cannot normalize by a power of m00

because m00 is not a relative invariant w.r.t. the total affine
transformation.
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As an example, we show four simple VFAMIs in explicit
forms below; hundreds of other invariants generated from
Eq. (11) can be found on our webpage zoi.utia.cas.cz/affine-
vector-fields.

The simplest non-trivial choice is r ¼ 2 and n12 ¼ v12 ¼ 1,
which yields

Va ¼ m
ð1Þ
10 m

ð2Þ
01 �m

ð2Þ
10 m

ð1Þ
01 :

The choice of r ¼ 2; v12 ¼ 1 and n12 ¼ 3 yields

Vb ¼ m
ð1Þ
30 m

ð2Þ
03 � 3m

ð1Þ
21 m

ð2Þ
12 þ 3m

ð1Þ
12 m

ð2Þ
21 �m

ð1Þ
03 m

ð2Þ
30 :

The parameters r ¼ 2, v12 ¼ 1 and n12 ¼ 5 lead to the invari-
ant

Vc ¼ m
ð1Þ
50 m

ð2Þ
05 � 5m

ð1Þ
41 m

ð2Þ
14 þ 10m

ð1Þ
32 m

ð2Þ
23 � 10m

ð1Þ
23 m

ð2Þ
32

þ 5m
ð1Þ
14 m

ð2Þ
41 �m

ð1Þ
05 m

ð2Þ
50 :

If we choose r ¼ 4, v12 = v34 = 1 and n12 = n13 = n24 = n34 = 1,
nkj = 0 otherwise, we obtain

Vd ¼ �ðmð1Þ
20 Þ2ðmð2Þ

02 Þ2 þ 4m
ð1Þ
20 m

ð1Þ
11 m

ð2Þ
11 m

ð2Þ
02

þ 2m
ð1Þ
20 m

ð1Þ
02 m

ð2Þ
20 m

ð2Þ
02 � 4m

ð1Þ
20 m

ð1Þ
02 ðmð2Þ

11 Þ2

� 4ðmð1Þ
11 Þ2mð2Þ

20 m
ð2Þ
02 þ 4m

ð1Þ
11 m

ð1Þ
02 m

ð2Þ
20 m

ð2Þ
11

� ðmð1Þ
02 Þ2ðmð2Þ

20 Þ2 :

If the vector field in question is a coupled field, all invari-
ants generated from Eq. (11) obviously vanish. In such
a case, we use only the first component of the field and treat
it as a scalar image undergoing spatial affine transformation
and contrast stretching. Any ratio of absolute scalar
AMIs (5) of the same degree r and weight w yields a desired
invariant.

4.4 Invariants to Special Total Transformation

As we already explained, the inner and outer transforma-
tions of a vector field are often the same, i.e., A ¼ B and
Eq. (12) is simplified to the form

V ðf0Þ ¼ J
wþr=2
A jJAjrV ðfÞ : (13)

The normalization can be accomplished just by one invari-
ant, while the other one, which was needed to cancel JB
before, can be saved for recognition. This is, however, not
the only difference. Since the number of degrees of freedom
of the transformation has been reduced from eight to four,
one may expect the existence of four additional indepen-
dent invariants.

For a special total transformation, there exists yet another
possibility how to generate invariants. We can replace the
“intensity cross-product” Fkj by the “mixed cross-product”

Dkj ¼ yjf1ðxk; ykÞ � xjf2ðxk; ykÞ :
Dkj is a relative invariant w.r.t. special total transformation as

D0
kj ¼ JA �Dkj:

(see Appendix B for the proof). Unlike the previous case,
here generallyDkj andDjk are independent, andDkk 6¼ 0.

Similarly to Eq. (11), we define functional

W ðfÞ ¼
Z 1

�1
� � �

Z 1

�1

Yr
k;j¼1

C
nkj
kj �Dukj

kj �
Yr
i¼1

dxi dyi ; (14)

which is a relative invariant because

Wðf0Þ ¼ Jwþu
A jJAjrWðfÞ : (15)

Eq. (14) leads to moments only under certain restrictions,
imposed on exponents ukj. Each of the points ðx1; y1Þ; . . . ;
ðxr; yrÞ must be involved just once as a field argument in
all Dkj’s used. Hence, any ukj can only equal 0 or 1 and
u � P

ukj ¼ r.
We may go even further and generate invariants of the

form

ZðfÞ ¼
Z 1

�1
� � �

Z 1

�1

Yr
k;j¼1

C
nkj
kj � Fvkj

kj �Dukj
kj �

Yr
i¼1

dxi dyi : (16)

In this case, however, the constraints on v and u are differ-
ent from the previous cases and are linked together. It still
holds that each point ðxi; yiÞmust appear just once as a field
argument in the integrand. Hence, 2vþ u ¼ r. Any vkj and
ukj can only equal 0 or 1 as before, but they are further con-
strained as follows. If vkj ¼ 1, then vmj ¼ vjm ¼ vkm ¼ vmk ¼
0 for all index pairs except ðk; jÞ and ukm ¼ ujm ¼ 0 for any
m. If ukj ¼ 1, then ukm ¼ 0 for any m 6¼ j and vkm ¼ vmk ¼ 0
for anym.

Z is again a relative invariant, since

Zðf0Þ ¼ Jwþvþu
A jJAjrZðfÞ : (17)

It should be, however, noted, that each of the sets
generated by Eqs. (11), (14), and (16) is highly redundant
even on its own, and this redundancy increases, if two or
all three sets are used together. Actually, the invariants
obtained from Eqs. (11) and (14) are nothing but a subset
of those obtained from Eq. (16). Careful selection of inde-
pendent (or at least irreducible) invariants is highly
recommended for practical applications. Section 7 presents
a selection algorithm.

5 VFAMIS AND MULTI-LAYER GRAPHS

In this section, we establish the correspondence between
VFAMIs generated by Eqs. (11), (14) and (16) and multi-layer
graphs. The representation by multi-layer graphs helps to
understand the structure of the VFAMIs and is also useful
for elimination of reducible invariants. We start with the
definition of multi-layer graphs.

Definition 3. Let V be a set of vertices (nodes) and E1; E2; . . . ;
Em be sets of edges. An ordered ðmþ 1Þ-tuple G ¼ ðV;E1; E2;
. . . ; EmÞ is called a multi-layer graph on V. Graph
Gk ¼ ðV;EkÞ is called the kth layer of graph G. If m ¼ 2, G is
called a bi-layer graph. If there exists a layer Gk, which
is a multigraph (i.e., which contains multiple edges), then G is
calledmulti-layer multigraph.

Definition 4. Let G ¼ ðV;E1; E2; . . . ; EmÞ be a multi-layer
(multi)graph. Ordinary (multi)graph UG ¼ ðV;E1 [E2 [
� � � [ EmÞ is called a union of G. G is called connected multi-
layer graph if UG is a connected graph.
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Multi-layer graphs serve in many areas for modelling
different network layers on the same set of nodes. The edges
of different layers may be totally independent or there may
be a kind of band among them.

An arbitrary invariant generated by Eq. (11) can be repre-
sented by a bi-layer graph as follows. Each point ðxk; ykÞ cor-
responds to a graph node, so we have r nodes. Each cross-
product Ckj corresponds to nkj edges of the first layer con-
necting the kth and jth nodes (generally, the first layer is
a multigraph). The second layer is constructed in a similar
way—each intensity cross-product Fkj corresponds to vkj
edges (note that vkj can only be zero or one). In Fig. 3, we
can see the graphs representing invariants Va; Vb; Vc, and Vd

from Section 4.3. More examples of representation graphs
can be found in Appendix C.

We can immediately make several simple statements
about the bi-layer graphs than represent VFAMIs from
Eq. (11).

1) The number of nodes is even.
2) In G2, all nodes have degree one. If r > 2, then G2 is

not a connected graph.
3) Neither layer is a directed graph.
4) Neither layer contains self-loops.
5) If G is not connected, then the corresponding invari-

ant is a product of several simpler invariants, which
correspond to each connected component of G.

6) Any invariant of the form (11) is in fact a sum, where
each term is a product of r moments. The order of
the moments is preserved in all terms (for instance
in V4, there are always four moments of the second
order in each term). The moment orders contained in
a single term are the same as the degrees of all verti-
ces in G1.

The proof of all above statements follows immediately
from Eq. (11) and from the definition of the corresponding
graphs. We can see that the problem of generating all invari-
ants is equivalent to finding all connected bi-layer graphs,
satisfying the constraints 1–4.

Now let us assume the affine transformation is special one
and consider themixed invariants generated by Eq. (16). They
can be represented by three-layer graphs, where the first two
layers correspond to cross-products Ckj and Fkj, respectively,
as before. The third layer G3 corresponds to mixed cross-
products Dkj. G3 is a directed graph because Dkj and Djk are
different andwe have to distinguish between them.Wedefine

the “direction” of the edge corresponding to Dkj as from
ðxk; ykÞ to ðxj; yjÞ. It is easy to prove the following simple state-
ments, they follow from Eq. (16) and from the way how the
graph has been constructed.

1) The number of nodes may be arbitrary.
2) G3 may contain loops, self-loops and double edges

(with reverse direction).
3) In G3, we define the outdegree of the vertex as the

number of “tail” edge ends adjacent to this vertex.
The indegree is the number of “head” edge ends adja-
cent to the vertex. The outdegree of any vertex is less
or equal one. The indegree of any vertex may be arbi-
trary from zero to u.

4) Consider graph ðV;E2 [ E3Þ. For each vertex, the
sum of its degree in E2 and its outdegree in E3 is
called the cumulative degree. The cumulative degree
always equals one.

5) If there are two or more edges in E2, then
ðV;E2 [ E3Þ is not a connected graph. If there is one
or no edge in E2, then ðV;E2 [ E3Þ may or may not
be connected.

Examples of representation graphs of this kind can be
found in Appendix D.

The established correspondence between the invariants
and the graphs can be efficiently used to generate the invari-
ants. Instead of working directly with Eqs. (11) and (16) all
trying all possible point pairs and parameter combinations,
it is sufficient to generate all multi-layer graphs satisfying
the constraints presented above. In the next section, we
present an algorithm for a systematic graph generation.

6 GENERATING THE REPRESENTATION

MULTI-LAYER GRAPHS

The algorithms for generating the graphs, which represent
invariants Vi (11) andZi (16) are similar inmain principles and
differ from one another in details (yet important ones) only.
We start with an algorithm that generates invariants Vi (11).

The task is to generate all bi-layer graphs satisfying the
constraints. Each layer is generated separately. The graph
nodes are numbered from 1 to r. The main idea is to begin
with a graph that have the node labels as low as possible
and then successively increase the node labels until the last
possible graph has been reached.

To generate all possible first layers with w edges, we start
with the graph on two nodes with a w-multiple edge con-
necting them. Matrix representation of such graph is

1 1 . . . 1 1
2 2 . . . 2 2

� �
; (18)

where the column
1
2

means an edge connecting the nodes 1

and 2. The “last” graph, onwhich the algorithm should stop, is

1 2 3 4 . . . w� 2 w� 1 w� 1
2 3 4 5 . . . w� 1 w w

� �
: (19)

Starting from the first graph, we iterate the algorithm shown
in Fig. 4.

To generate the second layer, we proceed analogically
with some modifications. The first graph is now

Fig. 3. The graphs representing invariants Va; Vb; Vc, and Vd. The edges
belonging to E1 are shown in black, magenta edges belong to E2.
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1 3 . . . r� 3 r� 1
2 4 . . . r� 2 r

� �
: (20)

As we already explained, r must be even and the represen-
tation matrix has r=2 columns. The inner loop of the algo-
rithm must be modified, too. The criterion, if a matrix
element can be increased, is not its comparison with the
final graph, but the test, if there is a non-used node.

1) Set k to r� 1, it is the last but one edge.
2) Test the second node of the kth edge. If there is

a node with higher label, set it; otherwise decrease k
by one.

3) If k is zero, no other graph can be generated. Stop.
4) Assign the free nodes to the edges behind k.
5) got to 2).
The generating algorithm of Zi is in principle analogical

to the previous one. Modifications are required when gener-
ating E3 edges because the third layer is a directed graph,
self-loops are allowed and there is a strong constraint on
a cumulative E2 �E3 degree of each vertex. Since these
modifications are rather technical ones, we do not describe
this algorithm in detail.

A complete description of the algorithms for generating of
both Vi and Zi, including commented codes, can be found on
http://zoi.utia.cas.cz/affine-vector-fields. On the sameweb-
site, the reader may find extensive collections of the invari-
ants (explicit formulas along with the representation graphs)
– 6,323 invariants of type Zi and 1,890 invariants of type Vi.
On http://zoi.utia.cas.cz/Afintensors, we made available
the software by means of which these invariants were

generated. The software is in C++, has a user-friendly GUI
and a detailed manual, so the readers may generate their
own collections of the invariants with various parameters.

7 SELECTION OF A COMPLETE AND INDEPENDENT
SET OF THE INVARIANTS

In an ideal case, any feature set for object recognition should
be complete and independent. The completeness means that
the object can be precisely reconstructed (modulo the intra-
class transformation group) from the values of the invari-
ants and guarantees the maximum possible discrimination
power. The independence ensures that the invariants do not
contain any redundant information. The features are called
dependent, if some of them is a function of the others; other-
wise they are independent. While the independence is
always desirable to keep the feature space dimensionality
low, the completeness may not be necessary. In most practi-
cal cases, the objects in question can be discriminated from
each other by a small incomplete subset.

Both the invariants Vi (11) and Zi (16) form theoretically
complete sets, if all possible parameter settings have been
used. In reality, when the invariants are generated by the
algorithms described in the previous section, we are always
limited by the maximum number of edges w and that of
nodes r, which leads to an incomplete set. This is, however,
not a principal problem in practice. For any given database
of sampled and quantized objects, we can find finite w and r
such that the objects are distinguishable.

If used extensively, the algorithm generates a huge num-
ber of dependent invariants. We distinguish two kinds of
dependencies among the invariants. The “simple” ones,
which comprise linear combinations and products, can be
found in the same way as in the case of graylevel AMIs
(see [2], Chapter 5). The main idea is that a linear depen-
dency may occur among invariants, whose representation
graphs have the same numbers of nodes and the same num-
bers of edges going from individual nodes. We assemble
a matrix of coefficients of all invariants generated by these
graphs; the dependent invariants can be identified by singu-
lar value decomposition of this matrix. The eliminated
invariants are called reducible, the remaining linearly and
product independent invariants are called irreducible.

After the reducible invariants have been eliminated,
there may still be polynomial dependencies among remain-
ing invariants. The only method, which guarantees identify-
ing all these dependencies is a kind of full search, but it is
not computationally feasible. Instead, we propose two heu-
ristics. No one guarantees to find all polynomial dependen-
cies, but both are close to this optimum.

The first heuristics is based on the idea that the number of
independent invariants ni should equal the number of inde-
pendent variables (moments) nm minus the number of free
parameters of the transformation group np (which is 8 for
invariants Vi (11) and 4 for Zi (16), if no translation is consid-
ered; otherwise it increases by two). We can take the gener-
ated irreducible invariants order by order, calculate the
number ni for each order separately and throw away all
the invariants above this number. Thismethod is very fast. As
the result, we get the correct number of invariants, but there
still might exist polynomial dependencies among them.

Fig. 4. Algorithm for the next graph generation. d ¼ 1 for invariants Vi

and d ¼ 0 for invariants Zi.
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The second method is inspired by [36], it can also be
found in [9]. If we have a dependent set of nk invariants,
there must exist function F such that

F ðI1; I2; . . . ; InkÞ ¼ 0 : (21)

It must hold, for its derivatives with respect to an arbitrary
moment (the proof is in [45])

@F ðI1; I2; . . . ; InkÞ
@m

ðsÞ
pq

¼ 0 : (22)

Let us sort somehow the moments mðsÞ
pq and change their

labels to mj, where j ¼ 1; 2; . . . ; nm. We can decompose
Eq. (22) to the form

@F ðI1; I2; . . . ; InkÞ
@mj

¼
Xnk
‘¼1

@F ðI1; I2; . . . ; InkÞ
@I‘

@I‘
@mj

¼ 0 ;

(23)
where again j ¼ 1; 2; . . . ; nm.

The invariants as the functions of the moments are

known, so the factor
@I‘
@mj

can be evaluated for specific values

of the moments. The factor
@F ðI1; I2; . . . ; InkÞ

@I‘
is unknown,

but it is the same for all j, it depends only on ‘. Eq. (23) can
be understood as a system of linear equations with the

matrix of elements aj‘ ¼ @I‘
@mj

of size nk � nm and the vector

of unknown coefficients b‘ ¼
@F ðI1; I2; . . . ; InkÞ

@I‘
of the size

nk. If the invariants are independent, the system can only
have one solution with b‘ ¼ 0 for all ‘. Then the matrix ðaj‘Þ
must have full rank nk (it also means nk � nm). If the rank
nr is less than nk, then only nr invariants are independent
(in this case nk can be greater than nm).

The above idea is clear and correct. However, when
implementing it, we encounter some problems in comput-
ing the rank nr of matrix ðaj‘Þ. It cannot be determined by
symbolic computation. We should calculate ðaj‘Þ on
a representative set of objects and set nr as the maximum
particular rank. This would be impractical and time-con-
suming. Instead, we generate randomly five sets of moment
values4 and calculate the rank of the matrices via SVD using
the Matlab in-built function rank. Then we estimate nr as
the maximum of these five particular ranks.

If we end up with nr 	 nk, we must somehow select nr

invariants out of nk such that they are independent. We
apply a sequential incremental procedure. First, we select the
simplest invariant available. As soon as a subset of invariants
has been selected, we add a new one such that the rank of
ðaj‘Þ increases by one. We iterate this process until the num-
ber nr of the chosen invariants has been reached. Theoreti-
cally, this algorithm may select a dependent set due to the
nesting effect. To improve it, we could implement a kind of
backtracking, but this is actually a borderline problem that
need not be solved in this case.

As we already pointed out, the graph generation algo-
rithm is limited by the maximum number of edges. We run

it for w ¼ 9 at most. After eliminating the reducible
invariants, we obtained 1,890 irreducible invariants of the
type (11) and 6,323 irreducible invariants of the type (16) in
explicit form. The selection algorithm based on the rank of
ðaj‘Þ yielded 76 and 77 independent invariants, respectively.
They are listed on http://zoi.utia.cas.cz/affine-vector-
fields. This process took 50 hours on a computer with
the processor Intel Core i7-2600K CPU 3.4 GHz and 16 GB
operational memory. It might seem too long, but note that
this process is applied only once and does not depend on
any data. As soon as the invariant sets have been created,
we can apply them to any vector field without the necessity
of their re-generation.

8 NUMERICAL EXPERIMENTS

8.1 Verification of the Invariance

In the first experiment, we verified the invariance property
under simulated conditions. We transformed a vector field
(which had been obtained as a gradient field of a grayscale
Lena image, see Fig. 5) by 100 randomly generated indepen-
dent TAFTs (i.e., transformations of the type (1), where A
and B were independent) and calculated five invariants of
V -type and five ones of Z-type. Theoretically, all Vk should
be exactly invariant, while some Zk may change since they
are generally not invariant. The experiment confirmed this
expectation (see Fig. 6 for visualization of the results). The
small fluctuations of the Vk values appear due to the field
resampling and interpolation, while the fluctuations of the
Zk values are really significant. If we constrain the transfor-
mation such that B ¼ A, invariants Zk become really invari-
ant, as can be seen in Fig. 6c.

When we relaxed the perfect conditions, the invariance
property became violated, but still the invariants exhibit
a good robustness. We repeated the previous experiment,
but we had added Gaussian noise independently to both
field components before the field was transformed. We can
observe the behavior of one selected invariant in Fig. 7, the
others behave similarly. If SNR > 10 dB, the relative error
is under 5 percent, which is fully acceptable.

8.2 Template Matching in a Gradient Field

In this experiment, we demonstrate the performance in tem-
plate matching, for the present again in a controlled environ-
ment to be able to evaluate the results quantitatively. We
calculated a gradient field of a real photograph and randomly
selected 100 circular templates (see Fig. 8), the coordinates of
which were drawn from a uniform distribution. Then we
transformed the gradient field by a TAFT transformation and
tried to localize the templates in the deformedfield.

The matching was implemented as a search of all possible
template locations and the matching position is determined
as that one which minimizes ‘2-distance in the space of 33
invariants. If the localization error was less or equal than two
pixels, thematchwas considered correct, and false otherwise.

We run this experiment ten times for various deforma-
tions and various template sets. The success rate in each run
depends on the significance (structure) of the selected tem-
plates and also on the particular deformation. It ranged
from 100 to 75 percent, being almost uniformly distributed
between 95 and 80 percent. For a comparison, we applied in

4. Moment values of a vector field could be almost arbitrary, the
only constraint is so-called complete monotonicity [2].
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each run also rotation vector field invariants from [13]. Their
success rate never exceeded 10 percent, which clearly
illustrates the advantage of the affine invariants over the
rotational ones if a true affine deformation is present.

8.3 Template Matching in a Fluid Flow Field

In this experiment, we demonstrate the applicability of the
proposed invariants in an important problem from fluid
dynamics engineering—vortex detection in a fluid flow vec-
tor field. We used the field showing the K�arm�an vortex

street, which is a repeating pattern of swirling vortices
caused by the flow of a fluid around blunt bodies. In the
K�arm�an pattern, we can see several vortices arranged into
two rows. The orientation of the “street” is given by the
main flow direction and is generally not known a priori.

Fig. 6. The values of the invariants over 100 randomly generated total
affine transformations. (a) Five selected invariants of the V -type exhibit
very good invariance (except a few cases when the transformation is
close to singular). (b) Invariants of the Z-type are not really invariant
under these conditions. (c) The same invariants of the Z-type when the
transformations were constrained such that B ¼ A.

Fig. 5. (a) Gradient field of a grayscale image, which served as a test
vector field in the synthetic experiments, (b) an example of the vector
field transformed by a randomly generated TAFT, (c) colormap for gradi-
ent visualization, where the brightness corresponds to the magnitude
and the hue to the direction of the gradient.
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The data used in this experiment come from a computer
simulation, not from a real physical measurement. The sim-
ulation resulted in a 300-frame video, showing the time-
development of the K�arm�an street.

In the initial frame, we selected a template with a typical
vortex, see Fig. 9. Then we deformed the video by two dif-
ferent TAFTs, which comprised anisotropic scaling with
a factor of 5/4 and 7/4, respectively. The task is to find all
vortices of a similar shape modulo TAFT in each frame of
the deformed video. The search is performed in the space of
invariants Zk. We search for all local minima of ‘2-distance
below a user-defined threshold. Such a task definition is
rather “soft”, because it specifies neither the significance of
the vortices to be detected nor the required degree of simi-
larity with the template. The results may be controlled by
the number/order of the invariants we use.5

We matched the template to each frame individually. We
repeated the experiment for various maximum invariant
order. So, we matched the templates in ten videos, which
means we processed 3,000 frames altogether. The resulting
videos showing the vortex tracking can be found at zoi.utia.

cas.cz/Experiment-with-Karman-Street. Two sample frames,
one for each deformation, can be seen in Fig. 10.

Since the ground truth is not known in this experiment,
the matching accuracy cannot be evaluated quantitatively.
However, visual inspection of the videos provide a good
insight into the performance of the method. Most of the vor-
tices were correctly found, but we can also observe some
gross errors. They arose most probably because the neigh-
borhood, the invariants were calculated from, was always
circular and of the same size as the original template. To
comply with all theoretical assumptions, the neighborhood
should be transformed according to the inner transforma-
tion into an ellipse. However, we did not follow this
approach in order to simulate real-world conditions (in
practice, the transformation is unknown).

8.4 Vortex Detection in NOAA Data

In this experiment, we show on real data how our method
can be used for vortex detection in weather satellite
images and we also compare the results with two of
“non-image” vortex detection methods [22]. We used the
world wind maps from the NOAA satellite [46], which
are publicly available through www.esrl.noaa.gov/psd/.
We used 18 frames from different days. We extracted
three typical circular templates of a wind vortex of the
same size (two from the northern and one from the south-
ern hemisphere). Then we tried to locate vortices of the
same shape in the other frames. The results achieved by
the invariants in two sample frames are shown in Fig. 11.
For the template matching, we used 35 independent
invariants up to the order five (both types Vi and Zi were
included). Since there is no measurable ground truth, we
are left to a visual evaluation. We can see the detection

Fig. 7. The relative error of the invariant Z9 over 100 randomly generated
total affine transformations and SNR ranging from 30 to -5 dB. The
robustness is very good for SNR > 10 dB. Only the ratio of the “noisy”
and original value is visualized.

Fig. 8. Gradient field with 100 randomly selected templates used in
a single run of the experiment. The colormap is the same as in Fig. 5.

Fig. 9. The K�arm�an vortex street with the selected template (the first
frame of the video).

Fig. 10. The detected vortices in the deformed field when invariants Zi

up to 7th order were employed. The deformation comprised anisotropic
scaling with factors 5/4 (top) and 7/4 (bottom). The full videos can be
found at zoi.utia.cas.cz/Experiment-with-Karman-Street.

5. The number of matches may be influenced also by the choice of
the threshold. To eliminate this influence, we used thresholds of the
same significance in each moment order.
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works quite well. Thanks to the affine invariance, also
some vortices that exhibit an elongated shape due to data
resampling in polar areas were detected (when searching
the polar areas, the templates were not resampled, only
the underlaying patch in the image was taken elliptical
rather than circular). The method missed some vortices
which look similar to the templates in magnitudes but
their structure is different.

Then we applied the method from [22], which is a typical
representative of “non-image” methods. It calculates the
vorticity measure locally in each pixel from the gradient of
the wind velocity. A vortex is a connected region where the
vorticity measure exceeds a given threshold. We used two
vorticity measures proposed in [22] – �ci and Delta criterion,
respectively. The results for one frame are shown in Fig. 12.
We can see that the sensitivity of the �ci method is low and
only few vortices were found. On the other hand, the Delta
method has higher sensitivity but low specificity, which
leads to many false positives (as soon as the wind trajectory
is curved enough, the area is considered to be a vortex).
Both algorithms were applied with the parameter setting
recommended in [22].

9 CONCLUSION

This paper introduced invariants of vector fields w.r.t. total
affine transformation based on the moments of the vector
field. The behavior of VFs under TAFT is significantly
different from scalar and color images under standard
affine transformation and the traditional techniques cannot
be used. We derived new invariants in explicit closed form
and showed that they can be represented by multilayer
graphs. We also proposed the algorithm for selection
of a maximal independent set of the invariants and use it to
derive irreducible and independent invariants up to the
weight nine. We demonstrated the performance of the
invariants in template matching on gradient fields, on simu-
lated data from fluid dynamics, and on real data from
NOAA satellite. The comparison to rotation invariants and
two “non-image” vortex detection methods showed the
advantages of the proposed affine invariants.

APPENDIX A

Let B ¼ ðBmnÞ be a regular outer transformation matrix.
Then

Fig. 11. Vortex detection in NOAA images by means of the invariants. The images display the wind magnitude only but the orientation is
available as well and was used for the detection.

Fig. 12. Vortex detection by �ci (left) and Delta method (right) from [22]. The first method missed many vortices, the second one exhibits
numerous false positives.
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F 0
kj ¼ f 01ðxk; ykÞf 02ðxj; yjÞ � f 0

1ðxj; yjÞf 0
2ðxk; ykÞ

¼ B11f1ðxk; ykÞ þB12f2ðxk; ykÞ½ 
 B21f1ðxj; yjÞ
�

þB22f2ðxj; yjÞ
�� B11f1ðxj; yjÞ þB12f2ðxj; yjÞ

� �
B21f1ðxk; ykÞ þB22f2ðxk; ykÞ½ 


¼ B11B21f1ðxj; yjÞf1ðxk; ykÞ
þB11B22f1ðxk; ykÞf2ðxj; yjÞ
þB12B21f2ðxk; ykÞf1ðxj; yjÞ
þB12B22f2ðxk; ykÞf2ðxj; yjÞ
�B11B21f1ðxj; yjÞf1ðxk; ykÞ
�B11B22f1ðxj; yjÞf2ðxk; ykÞ
�B12B21f2ðxj; yjÞf1ðxk; ykÞ
�B12B22f2ðxj; yjÞf2ðxk; ykÞ

¼ ðB11B22 �B12B21Þ f1ðxk; ykÞf2ðxj; yjÞ
�

�f2ðxk; ykÞf1ðxj; yjÞ
� ¼ JB � Fkj :

APPENDIX B

Let A ¼ ðAmnÞ be a regular outer and inner transformation
matrix. Then

D0
kj ¼ y0jf

0
1ðx0

k; y
0
kÞ � x0

jf
0
2ðx0

k; y
0
kÞ

¼ ðA21xj þA22yjÞ A11f1ðxk; ykÞ þA12f2ðxk; ykÞ½ 

�ðA11xj þA12yjÞ A21f1ðxk; ykÞ þA22f2ðxk; ykÞ½ 

¼ A21A11xjf1ðxk; ykÞ þA21A12xjf2ðxk; ykÞ
þA22A11yjf1ðxk; ykÞ þA22A12yjf2ðxk; ykÞ
�A11A21xjf1ðxk; ykÞ �A11A22xjf2ðxk; ykÞ
�A12A21yjf1ðxk; ykÞ �A12A22yjf2ðxk; ykÞ

¼ ðA11A22 �A12A21Þ yjf1ðxk; ykÞ � xjf2ðxk; ykÞ
� �

¼ JA �Dkj :

APPENDIX C

In this appendix, we present the multilayer graphs represent-
ing the invariants V ðfÞ (11). The black edges belong toE1 and
the magenta edges belong to E2. The invariants V1; V2; . . . ; V8

shownherewere selected from the set of the irreducible invar-
iants http://zoi.utia.cas.cz/affine-vector-fields, where they
are labeled as Vr1; Vr2; Vr4; Vr7; Vr15; Vr18; Vr3, and Vr19 respec-
tively. The invariants V1; V2; . . . ; V8 create a complete and
independent set of the second and third-order VFAMIs. The
invariants V1 and V2 are shown also in their explicit forms.
For explicit formulas of all other invariants, please visit the
website http://zoi.utia.cas.cz/affine-vector-fields.
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APPENDIX D

In this appendix, we present the multilayer graphs represent-
ing the invariants w.r.t. special total transformation ZðfÞ (16).
The black edges belong to E1, the magenta edges belong to
E2, and the black-magenta edges depict the layer E3 (the
head-end of the edge is black). The invariants Z1; Z2; . . . ; Z10

shown here were selected from the set of the irreducible
invariants http://zoi.utia.cas.cz/affine-vector-fields, where
they are labeled as Zr3; Zr4; Zr6; Zr8; Zr9; Zr19; Zr20; Zr21; Zr11,
and Zr13 respectively. The invariants Z1; Z2; . . . ; Z10 create
a complete and independent set of the second and third order.
For higher-order invariants please visit the website http://
zoi.utia.cas.cz/affine-vector-fields.
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