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A B S T R A C T

This paper examines the hedging potential of crude oil financial derivatives in the marine industry and
concentrates on the dependence between marine fuels and crude oil futures. We argue that marine fuel
consumers and producers can reduce uncertainty regarding their portfolios under environmental regulations
aimed at air pollution reduction. Our results show that uncertainty can be reduced up to 72%. In addition,
we find that complex dynamic hedging strategies do not provide significant benefits compared to the static
method, and asymmetries in dependence structures are not driving the results. We also identify Gasoil and
Brent Crude futures as the universal hedging instruments to manage uncertainty across the global ports.
1. Introduction

The marine fuel1 price accounts for up to 60% of the overall trans-
portation costs of a cargo carried by marine vessels (Wang and Teo,
2013). It is also estimated that the cost of transportation represents,
on average, 15% of the value of imported goods (UNCTAD, 2017).
Therefore, the expenditures associated with marine fuels represent a
considerable part of the final price of the globally shipped goods. Any
distortion that causes an increase in the price of marine fuels, thus,
inevitably raises the price of these goods. Since more than 80% of
internationally traded goods are shipped via sea (UNCTAD, 2017),
the uncertainty regarding fuel prices negatively impacts consumers
purchasing imported goods and the overall level of consumption, the
inherent part of the gross domestic product. While consumers would
benefit from any reduction in this uncertainty, they cannot reduce
it by themselves. In contrast, marine fuel consumers/producers can
reduce bunker price uncertainty through active hedging of their spot
positions with a reward of stabilized cash flows. Our paper shows that
hedging spot exposure by futures contracts is effective under the strict
environmental regulations known as ‘‘IMO 2020’’ introduced by the
International Maritime Organization (IMO).2
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E-mail addresses: frantisek.cech@fsv.cuni.cz (F. Čech), 74104475@fsv.cuni.cz (M. Zítek).
1 The historical term for fuels used in the shipping and marine sectors is bunker fuel, and we use it in our work interchangeably.
2 IMO is a specialized agency of the United Nations that is responsible for the safety, security and ecological protection measures of shipping on a global scale.
3 Efforts to limit the harmful impact of ship emissions date back to 1973 when the Marine Pollution Convention (MARPOL) was adopted.
4 Restrictions affect the marine and shipping industries, as well as other energy segments, redefining crude oil market dynamics in general. They also pose a

challenge to producers, physical traders, crude oil refining companies, etc.

The need for environmentally friendly transport stems from the
fact that shipping is one of the main contributors to air pollution.
According to IGU (2017), one large container ship using bunker fuel
with 3% sulfur content emits as much sulfur oxides as 50 million diesel-
burning cars. To mitigate these negative impacts, the IMO issued fuel
regulations that reduce the sulfur emissions in fuels from the current
level of 3.5% to 0.5%. Cutting the sulfur content in fuels has been an
urgent issue for a considerable amount of time,3 and the IMO hopes
for a 77% drop in overall sulfur oxide emissions from ships. Due to its
broad impact,4 the IMO 2020 regulation is thought to be one of the
major challenges of the modern era.

There are currently three paths to compliance with the IMO 2020
regulation that are constantly being revisited to detect the most eco-
nomically efficient candidate. The first method consists of installing
scrubbers, i.e., an exhaust gas cleaning system that removes sulfur from
postcombustion exhaust emissions, in conjunction with the usage of
heavy-sulfur fuel oils (HSFOs). The second option to meet the low-
sulfur requirements is to switch from HSFOs to low-sulfur fuel oils
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(LSFOs),5 such as marine gasoil (MGO). Conversion to alternative fuels
is the third compliance path — due to their early development in ports
and the impossibility of combining alternative fuels with old watercraft,
such a method is not the object of this paper’s interest.

This paper stresses the importance of hedging spot bunker positions
because marine fuels take up to 7% of the crude oil barrel (Halff
et al., 2019) and are significantly affected by oil price fluctuations.
By hedging, companies lock in the price and shield their portfolios
against potential adverse price movements in the markets. The liter-
ature focuses mainly on optimal hedging strategies represented by the
minimum variance hedge ratio (MVHR).6 The traditional estimation of
MVHR is carried out via ordinary least squares (OLS) regression (Ed-
erington, 1979); however, this method has been criticized by Myers
and Thompson (1989) because it cannot capture the maximum in-
formation available when the hedging decision is made. As a result,
a more flexible mechanism accounting for (asymmetric) time-varying
volatility from (multivariate) generalized autoregressive conditional
heteroscedasticity (GARCH) models was formulated (Myers, 1991; Lien
and Yang, 2008; Adams and Gerner, 2012; Cifarelli and Paladino,
2015). This approach also has critics, who argue that a more accurate
volatility estimation does not always translate into better performance
from the risk-minimizing standpoint beyond OLS (Ku et al., 2007; Ji
and Fan, 2011). Moreover, Lien et al. (2002) discuss the trade-off
between the benefits of a dynamic hedge and the costs of portfolio
rebalancing, and Lien (2009) contend that GARCH-based and random
coefficient models produce excessively volatile MVHR, which leads to
unnecessary transaction costs. Motivated by the possible nonexistence
of a corresponding futures contract, the concept of cross-hedging7 has
been developed — in the absence of a derivative contract on the asset
whose price is being hedged, the hedger should choose a derivative
contract of a similar asset to the underlying.

Marine fuel hedging is not a new issue in the literature. Among oth-
ers, Menachov and Dicer (2001) and Alizadeh et al. (2004) concentrate
on the use of standardized oil futures contracts for hedge construction.
The work of Alizadeh et al. (2004) demonstrates a variance reduction
of 43% in hedging bunker prices in Rotterdam by using the weekly
Brent futures traded on Intercontinental Exchange (ICE). Our work
follows this strand of literature8 as it allows us to concentrate on
both the supply and demand side of the marine fuel industry. To be
specific, oil futures contracts can be used to hedge the demand of
shipping companies as well as the supply of oil producers and bunker
fuels providers. Moreover, this approach leads to a straightforward
comparison of the hedging effectiveness of the IMO 2020 compatible
fuels without making additional assumptions regarding shipping routes,
cargo quantity, vessel type etc. In addition to oil futures hedging
strategy we have used the freight price proxied by Baltic Dry Index to

5 Low-sulfur oils are generally considered to contain 1% of sulfur and, thus,
o not comply with the IMO. However, for ease of reporting, the abbreviation
SFOs stands for fuels compliant with the regulations.

6 The other hedging strategies include hedge ratios based on expected
tility maximization (Cecchetti et al., 1988), the mean extended-Gini coef-
icient (Kolb and Okunev, 1992), value-at-risk (Hung et al., 2006; Cao et al.,
010), and generalized semivariance (Lien and Tse, 2000).

7 Some papers use the term proxy and cross hedging interchangeably.
8 Besides fuel hedging, it is possible to hedge also the freight price or

he value of the vessel using various over-the-counter (OTC) traded finan-
ial derivatives. Among others, Samitas and Tsakalos (2010) investigate the
ffectiveness of freight forward agreements (FFAs) during financial crises and
easure their impacts on shipping firms’ value, and Adland et al. (2020) argue

hat the hedging efficiency is greater for newer vessels up to fifteen years
f age and that the static hedging ratio is better than the dynamic hedging
atio. In contrast to oil-futures hedge, the disadvantage of OTC derivative-
ased hedging strategies is the lack of liquidity and transparency. Moreover,
he freight price/vessel value hedge does not allow us to study the impact of
he transition to the IMO 2020 compliant fuels. Therefore we do not consider
his way of hedging in our work.
2

Y

hedge marine fuels. Overall, the hedging effectiveness of this approach
is almost zero/negative, and we do not present the full results of this
analysis in the main text.9

Our results indicate that highly liquid oil futures contracts traded on
the New York Mercantile Exchange (NYMEX) and ICE effectively mit-
igate marine fuel price uncertainty. To remain in compliance with the
IMO 2020 regulation and following Panasiuk and Turkina (2015), Chu-
Van et al. (2019), and Zhu et al. (2020), we analyze dependencies
between two types of bunker fuels, i.e., heavy and low sulfur fuel oils,
and various oil futures contracts. We rely on three strands of hedge
construction — naïve hedge, the standard OLS approach and multivari-
ate GARCH (MGARCH) models. Alternative strategies are compared via
rolling window out-of-sample forecasting exercises, allowing for new
market information arrival and flexible adjustment.

We document that low sulfur bunker fuels can be hedged with oil
futures contracts, resulting in a variance reduction up to 71.94% on a
weekly basis and almost 21.88% on a daily basis. We obtain slightly
worse performance for a high sulfur alternative, i.e., 51%/15.5% for
a weekly/daily hedging horizon. The hedging effectiveness measured
by variance reduction reveals that complex dynamic hedging strategies
do not provide significant benefits compared to the static approach,
and we have not detected substantial asymmetric effects in the spot-
futures commodity pairs. Our results also indicate that Gasoil and Brent
futures should be used for hedging purposes in the bunker industry,
notwithstanding the local conditions at the different ports used in our
study.

2. Data and methodology

Our empirical analysis is based on spot and futures energy com-
modity contracts obtained from three separate sources. The NYMEX
futures contracts were extracted from the U.S. Energy Information
Administration, and we analyze the West Texas Intermediate Crude Oil
(WTI), which is considered to be the global benchmark in oil pricing,
No. 2 heating oil traded as New York Harbor ultra-low sulfur No. 2
diesel (ULSD), and reformulated blendstock for oxygenate blending
gasoline (RBOB). The European complements were collected from the
ICE Market data, and we consider North Sea Brent, the European coun-
terpart to WTI, and Gasoil, the ICE benchmark in low sulfur futures.
The spot contracts were retrieved from the Bix Bunker Index, and we
collect data from Rotterdam, Singapore, Fujairah and Houston, which
are four key bunkering ports that together cover approximately 25% of
global bunker volumes (Ship & Bunker, 2020). We study intermediate
fuel oil 380 (IFO), the most widely used high-sulfur fuel, and low-sulfur
MGO.

Our data set is quoted in U.S. dollars and consists of the daily
closing prices from April 2, 2008 until March 30, 2020. We explicitly
exclude all observations that fall on weekends, U.S. federal holidays
and some state holidays10 according to the trading schedule of each
exchange. In addition, some values that are missing in the respective
time series due to different exchanges and port operations are replaced
by the preceding day’s values. Our final dataset consists of 3062 trading
days. For ease of empirical analysis, we transform closing prices into
continuously compounded return series and define them as

𝑟𝑖,𝑡 = 100 ∗ ln
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
,

where 𝑟𝑖,𝑡 represents the log-returns of commodity 𝑖 at time 𝑡, 𝑃𝑖,𝑡
denotes the closing price of commodity 𝑖 at time 𝑡 and 𝑃𝑖,𝑡−1 is the
corresponding lagged closing price. Basic descriptive statistics for the

9 Detailed results are available from authors upon request.
10 Martin Luther King Jr. Day, President’s Day, Good Friday, Memorial Day,

ndependence Day, Labor Day, Thanksgiving Day, Christmas Day, and New
ear’s Day.



Energy Economics 113 (2022) 106204F. Čech and M. Zítek

1
s
e

2

v
c
v

𝜆

w
s

𝑟

w
f
b
c

v

w

d
f
e
r

𝑡

data are included in Table 5 in Appendix A. We use a rolling window
with a fixed length of 1250 observations, i.e., five years, for estimation
and forecasting purposes.

The simplest hedging strategy we employ in our work is the naïve
hedge. It represents minimizing the exposure in that the investor who is
long in the spot should sell the unit of futures contracts and repurchase
them when she sells the spot, i.e., one-to-one hedge. If the prices
between these two markets change by the same amount, the investor’s
net position remains unchanged, resulting in a perfect hedge (Myers,
1991). In commodity markets, the perfect hedge is a purely theoretical
concept since it is infeasible11 under normal conditions to (cross) hedge
00% of the respective asset. It is worth noting that the majority of the
tudies on financial time series ascertain that any type of hedge is more
ffective than a naked exposure.

.1. Optimal hedge ratio

The optimal hedge ratio (OHR) 𝜆, also known as the minimum
ariance hedge ratio (Johnson, 1960), is defined as the ratio of the
ovariance between the underlying spot and futures returns to the
ariance of futures returns, i.e., as follows:

=
cov(𝑠, 𝑓 )
var(𝑓 ) , (1)

here 𝜆 is the risk-minimizing hedge ratio, 𝑠 denotes the return of the
pot position and 𝑓 is the return of the futures position.

Let 𝑟𝐻𝑡 be the return of the hedged portfolio defined as follows:

𝐻
𝑡 = 𝑠𝑡 − 𝜆𝑡𝑓𝑡, (2)

here 𝜆𝑡 is the number of futures contracts the hedger must sell/buy
or each unit of the spot asset bought/sold. The OHR can therefore
e viewed as the proportion of the long (short) spot position that is
overed by futures sales (purchases) (Cifarelli and Paladino, 2015).

The conditional variance in Eq. (2) is given as follows:

ar(𝑟𝐻𝑡 ∣ 𝛺𝑡−1) = var(𝑠𝑡 ∣ 𝛺𝑡−1)+𝜆2𝑡 var(𝑓𝑡 ∣ 𝛺𝑡−1)−2𝜆𝑡cov(𝑠𝑡, 𝑓𝑡 ∣ 𝛺𝑡−1), (3)

here 𝛺𝑡−1 is the information set available at time 𝑡−1, cov(𝑠𝑡, 𝑓𝑡 ∣ 𝛺𝑡−1)
denotes the conditional covariance between spot and futures returns,
and var(𝑓𝑡 ∣ 𝛺𝑡−1) is the conditional variance of futures returns. Johnson
(1960) demonstrates that the OHR is equal to the value of 𝑟𝐻𝑡 mini-
mizing the conditional variance of the hedged portfolio returns on the
given information set, as follows:12

𝜆*
𝑡 = arg min

𝜆𝑡
var(𝑟𝐻𝑡 ∣ 𝛺𝑡−1). (4)

It is worth noting that if futures returns are martingale processes and
spot and futures returns are jointly normal, the optimal hedge ratio
from any hedging strategy converges to the minimum variance hedge
ratio (Cifarelli and Paladino, 2015).

In our analysis, we start with the standard econometric practice for
cross hedging, the OLS method. In the simplest case, the unconditional
(static) hedge ratio is based on the model proposed by Ederington
(1979). A linear relationship between returns is given as follows:

𝑠𝑡 = 𝜇 + 𝜆𝑓𝑡 + 𝑢𝑡, 𝑢𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝜎2), (5)

where 𝜇 and 𝜆 are the regression parameters. The OLS estimate of
the coefficient on 𝑓𝑡 is the time 𝑡 optimal unconditional hedge ratio

11 According to Hull (2014), the investor might not be sure of the exact
ate the asset will be bought or sold. In addition, there may be a requirement
or the futures contract to be closed out before its delivery month. Market
xpectations and the cost of carry are equally important to consider. For these
easons, a perfect hedge is rare.
12 To derive the OHR at time 𝑡 conditional on the information available at
−1, it is necessary to take the partial derivative of Eq. (3) with respect to 𝜆𝑡,
3

set it equal to zero and solve for 𝜆𝑡.
estimator 𝜆*
𝑡 . In our empirical analysis, we calculate the OHR for each

period with a fixed window length. We, therefore, obtain a series of
unconditional OHRs.

Within the context of multivariate GARCH (MGARCH) models, Bail-
lie and Myers (1991) and Kroner and Sultan (1993) note that the
optimal time-varying conditional hedge ratio can be written as follows:

𝜆*
𝑡∣𝛺𝑡−1

=
cov(𝑠𝑡, 𝑓𝑡 ∣ 𝛺𝑡−1)

var(𝑓𝑡 ∣ 𝛺𝑡−1)
. (6)

We obtain the inputs for Eq. (6) using the (asymmetric) dynamic con-
ditional correlation ((A)DCC) GARCH model of Engle (2002) and Cap-
piello et al. (2006). Similar to Pan et al. (2014), we filter the univariate
time series by an autoregressive process of order one prior to applica-
tion of the (A)DCC-GARCH models. The (A)DCC-GARCH used in our
work is defined as follows:

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡,

where 𝐷𝑡 is a diagonal matrix of conditional time varying standard de-
viations and 𝐷𝑡 = 𝑑𝑖𝑎𝑔

(√

ℎ𝑖,𝑡
)

and ℎ𝑖,𝑡 are univariate GARCH processes.
We rely on the standard GARCH(1,1) of Bollerslev (1986), i.e. ℎ𝑖,𝑡 =
𝜔𝑖+𝛼𝑖𝑟2𝑖,𝑡−1+𝛽𝑖ℎ𝑖,𝑡−1, and the GJR-GARCH(1,1,1) of Glosten et al. (1993),
which account for asymmetry in returns, i.e., ℎ𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝜀2𝑖,𝑡−1 +
𝛾𝑖𝜀2𝑖,𝑡−1𝐼𝑖,𝑡−1 + 𝛽𝑖ℎ𝑖,𝑡−1, where 𝐼𝑖,𝑡−1 = 1 if 𝜀𝑖,𝑡−1 < 0, and zero otherwise.

The dynamics of the correlation matrix are given by the transfor-
mation

𝑅𝑡 = 𝑄∗−1
𝑡 𝑄𝑡𝑄

∗−1
𝑡 ,

where for DCC:

𝑄𝑡 = (1 − 𝐴 − 𝐵) �̄� + 𝐴
(

𝜖𝑡−1𝜖
𝑇
𝑡−1

)

+ 𝐵𝑄𝑡−1

and for ADCC:

𝑄𝑡 = (1 − 𝐴 − 𝐵) �̄� − 𝐺�̄� + 𝐴
(

𝜖𝑡−1𝜖
𝑇
𝑡−1

)

+ 𝐵𝑄𝑡−1 + 𝐺𝑚𝑡−1𝑚
𝑇
𝑡−1,

with �̄� = 𝐸(𝜖𝑡−1𝜖𝑇𝑡−1) being the unconditional covariance matrix of
the standardized residuals from the univariate GARCH processes, 𝑄∗

𝑡 =
𝑑𝑖𝑎𝑔

(

√

𝑞11,𝑡,… ,
√

𝑞𝑛𝑛,𝑡
)

, �̄� = 𝐸(𝑚𝑡−1𝑚𝑇
𝑡−1) and 𝑚𝑡 = 𝐼(𝑟𝑡 < 0)⊙ 𝑟𝑡, with

𝐼 [⋅] being an 𝑛 × 1 indicator function that takes on the value of 1 if
the argument is true, and 0 otherwise, and ⊙ refers to the Hadamard
product, i.e. element-by-element multiplication.

2.2. Hedging performance measures

One of the most widely used criteria for evaluating the hedging
effects for different models is the hedging effectiveness index (HEI)
derived by Ederington (1979). The HEI assesses the extent to which
changes in the value of the futures returns offset changes in the value
of the spot returns. By construction, the higher positive values of
the HEI indicate a better hedging approach that leads to a greater
risk reduction. The measure of relative performance improvements is
represented by the percentage variance reduction, which is given as
follows:

𝐻𝐸𝐼 = 1 −
var(𝑟𝐻𝑡 )

var(𝑟𝑈𝑡 )
, (7)

where var(𝑟𝐻𝑡 ) denotes the variance of the returns to a hedged portfolio
and var(𝑟𝑈𝑡 ) is the variance of the returns to an unhedged portfolio on
the spot market.

Our analysis also provides a statistical comparison of the forecasting
performance of the competing models. To compare the predictive accu-
racy of the forecasts obtained from the respective models, we perform
a standard Diebold–Mariano test (Diebold and Mariano, 1995). The
statistical significance of apparent predictive superiority relies on the
loss differential 𝑑𝑖𝑗,𝑡, which is defined as follows:
𝑑𝑖𝑗,𝑡 = 𝓁𝑖,𝑡 − 𝓁𝑗,𝑡,
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Fig. 1. Weekly Rotterdam MGO - GASOIL optimal hedge ratios. Note: The OHRs from DCC are the solid black line, those from ADCC are the dashed dark gray line and those
rom OLS are the black dotted line.
here 𝓁𝑖,𝑡 and 𝓁𝑗,𝑡 are loss functions of the i and j models, respectively,
t time t. The individual loss function is of the following form:

𝑖,𝑡 =
(

𝑠𝑡 − 𝜆𝑖,𝑡𝑓𝑡
)

,

nd the null hypothesis of 𝓁𝑖,𝑡 = 𝓁𝑗,𝑡 says that the expected losses of
both models are equal.

3. Empirical analysis and discussion of results

In this section, we present the results of our empirical analysis.
Specifically, we investigate the hedging effectiveness of energy com-
modities and try to identify the best hedging instrument and a rea-
sonable hedging strategy. Furthermore, we address differences across
regional spot markets.

3.1. The out-of-sample evidence — weekly data

We start discussing our results with a hedge duration equivalent to
one week. Such a setup is the industry standard because the effects of
the daily price fluctuations in the volatile markets are moderated in the
longer horizon. The weekly data used in our analysis are a subset of our
daily dataset and consist of the end-of-week prices.

Let us now comment on the out-of-sample hedging effectiveness
presented in Table 1. We start with the naïve hedge, the simplest
method employed in our paper. In all but two cases, a one-to-one hedge
of the IFO contracts reduces the variance to some extent, as seen in
the upper part of Table 1. Importantly, for specific spot-futures pairs
(e.g., Rotterdam IFO - ULSD), it provides higher variance reduction
than (A)DCC models; however, the naïve hedge does not show the best
performance in any of the cases. Concentrating on the MGO contracts,
the RBOB futures show the worst performance in all ports. In Fujairah,
the naïve approach massively increases the variance notwithstanding
the futures used for hedging. In the remaining ports, the situation is as
follows: the naïve hedge reduces the variance when all but the RBOB
futures are used in Rotterdam and Singapore, while in Houston, the
WTI and BRENT futures increase the variance to some extent.

Moving to the OLS- and MGARCH-based hedging strategies, the
Rotterdam bunkers show the greatest hedging effectiveness across all
four ports, giving a slight preference to LSFOs. The best risk reduction
of 71.94% can be attained when the Rotterdam MGO spot contract
forms a pair with Gasoil futures. In contrast, the lowest effectiveness is
achieved once RBOB is included. This is valid worldwide and supported
by daily data analysis in a similar manner. Singapore bunkers also
advocate that the LSFO alternative may be more beneficial if added
into the portfolio to minimize risks as much as 60.42%. Next, the
hedging performance for the port of Fujairah results in a variance
4

reduction ranging from 14.06% to 37.48%. In contrast to Rotterdam
and Singapore, a better hedging performance is achieved using high
sulfur fuel. The hedging performance on Houston spot contracts does
not clearly favor LSFOs or HSFOs. For the low sulfur option, the HEI
takes values from 26.12% to 42.61%, whereas it varies between 25.91%
and 42.02% in the case of the heavy sulfur alternative. Overall, the best
performance in terms of variance reduction is achieved by the standard
OLS method.

Thus far, we have presented the overall performance of the models.
As is customary in the literature, we also provide a pairwise comparison
of the predictive accuracy using a standard Diebold–Mariano test. The
results are presented in Table 2, where we compare the naïve hedging
strategy to the OLS/DCC/ADCC models in Panel A.1/A.2/A.3, the OLS-
based hedge to the DCC/ADCC models in Panel B.1/B.2, and DCC to
ADCC in Panel C.

Panels A.1-A.3 of Table 2 show that for low sulfur fuel the naïve
hedge strategy is outperformed in almost all spot-futures pairs by all
competing models. In the high sulfur alternative, a one-to-one hedge is
always dominated by the OLS and (A)DCC models when RBOB is used
as the hedging instrument. Interestingly, OLS is the only method that
is never outperformed by naïve hedges. In contrast, a naïve hedge is
preferred when (A)DCC models are combined with the ULSD futures
in Rotterdam and Houston. Panels B.1-B.2 of Table 2 show that in
the majority of cases, OLS outperforms the MGARCH models and,
hence, yields greater protection against risk exposure. We must stress
here that while for some spot-futures pairs, the difference in hedging
effectiveness is relatively small, e.g., Singapore MGO - Gasoil 60.42%
OLS vs. 58.94% ADCC variance reduction, for other pairs (e.g., Houston
IFO - WTI), there is a difference of almost 12 percentage points.
Finally, Panel C indicates the similar performances of the symmetric
and asymmetric DCC models.

As has already been indicated, dynamic models may induce greater
variance while forming portfolios. Allowing for time variation across
the entire variance–covariance matrix of returns, the hedge ratios are
too sensitive to the size and sign of the change in prices as a conse-
quence of information arrival. Furthermore, multivariate conditional
correlation models require a sufficient time frame, thereby allowing
us to infer particular features of our time series accordingly. Reducing
the number of observations in the case of weekly data may play a
significant role in identifying a more flexible model for bunker hedging
since there might be a problem with the convergence behavior and the
efficiency of the optimization of MGARCH models. Despite the clear
advantages of the (A)DCC models and their justification in the field of
correlation modeling, it becomes obvious that the relatively simple OLS
method is on a comparable level, if not better, from the standpoint of
risk diversification. It is more or less stable and not as volatile as its

advanced counterparts; see Fig. 1. This is sensible from the perspective
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Table 1
Out-of-sample hedging effectiveness — weekly horizon.

IFO

WTI ULSD RBOB BRENT GASOIL

Variance HEI Variance HEI Variance HEI Variance HEI Variance HEI

Rotterdam
Unhedged 29.07 – 29.07 – 29.07 – 29.07 – 29.07 –
Naïve 18.33 36.83 17.31 40.33 26.97 7.04 14.72 49.27 14.36 50.49
OLS 16.41 43.46 16.81 42.06 20.16 30.51 14.13 51.32 14.33 50.62
DCC 18.19 37.42 19.09 34.35 22.42 22.88 15.35 47.19 15.18 47.80
ADCC 18.66 35.81 19.19 33.98 21.05 27.62 15.46 46.84 15.05 48.23

Singapore
Unhedged 24.81 – 24.81 – 24.81 – 24.81 – 24.81 –
Naïve 20.59 16.80 17.58 28.95 28.13 −13.65 16.74 32.34 14.85 40.01
OLS 16.31 34.11 16.19 34.57 18.56 25.00 14.59 41.06 14.33 42.11
DCC 17.55 29.27 18.27 26.37 18.92 23.75 15.16 38.91 14.64 40.97
ADCC 17.82 28.17 18.14 26.86 18.84 24.06 15.33 38.21 14.80 40.33

Fujairah
Unhedged 25.96 – 25.96 – 25.96 – 25.96 – 25.96 –
Naïve 23.94 7.58 20.32 21.55 32.90 −27.01 19.70 23.92 16.88 34.83
OLS 18.62 28.12 18.54 28.41 21.05 18.72 16.92 34.66 16.19 37.48
DCC 19.91 23.29 20.28 21.87 22.26 14.27 17.94 30.89 16.80 35.29
ADCC 20.79 19.91 20.54 20.86 22.14 14.71 18.51 28.69 17.21 33.72

Houston
Unhedged 32.62 – 32.62 – 32.62 – 32.62 – 32.62 –
Naïve 24.31 25.30 22.66 30.38 31.38 3.58 21.54 33.83 19.00 41.62
OLS 21.53 33.84 21.64 33.50 24.11 25.91 20.11 38.21 18.87 42.02
DCC 24.88 23.71 24.23 25.72 27.64 15.25 22.69 30.45 20.28 37.83
ADCC 25.48 21.88 24.30 25.50 26.23 19.57 22.53 30.92 20.22 38.00

MGO

WTI ULSD RBOB BRENT GASOIL

Variance HEI Variance HEI Variance HEI Variance HEI Variance HEI

Rotterdam
Unhedged 16.40 – 16.40 – 16.40 – 16.40 – 16.40 –
Naïve 11.57 29.33 7.43 54.63 19.69 −20.26 8.69 46.89 4.86 70.33
OLS 7.68 53.10 6.60 59.68 10.37 36.63 6.53 60.09 4.59 71.94
DCC 8.27 49.59 7.71 53.00 10.81 34.09 6.92 57.83 5.03 69.35
ADCC 8.05 50.90 7.41 54.85 10.44 36.32 6.91 57.88 4.93 69.93

Singapore
Unhedged 14.31 – 14.31 – 14.31 – 14.31 – 14.31 –
Naïve 13.53 5.23 9.68 32.17 21.21 −48.54 10.79 24.42 6.69 53.15
OLS 7.80 45.34 7.57 46.98 9.72 31.93 7.05 50.61 5.65 60.42
DCC 8.53 40.39 8.44 41.03 10.38 27.47 7.39 48.34 5.98 58.24
ADCC 8.39 41.38 8.11 43.35 10.16 28.97 7.34 48.72 5.88 58.94

Fujairah
Unhedged 3.57 – 3.57 – 3.57 – 3.57 – 3.57 –
Naïve 19.60 −449.64 14.07 −294.60 25.97 −628.46 17.02 −377.50 13.31 −273.45
OLS 2.89 18.86 3.08 13.54 3.05 14.56 2.82 20.83 3.03 15.01
DCC 2.91 18.55 3.11 12.77 3.42 4.27 2.83 20.64 3.07 14.13
ADCC 2.97 16.94 3.07 14.06 3.37 5.50 2.84 20.53 3.07 13.94

Houston
Unhedged 14.90 – 14.90 – 14.90 – 14.90 – 14.90 –
Naïve 16.84 −13.29 11.67 21.51 23.46 −57.8 15.22 −2.39 10.60 28.72
OLS 9.78 34.22 9.01 39.40 11.01 25.94 9.68 34.90 8.53 42.61
DCC 10.27 31.10 9.75 34.58 11.03 26.02 10.17 31.76 9.04 39.37
ADCC 10.07 32.44 9.58 35.73 11.01 26.12 9.84 33.97 8.70 41.62

Note: The panels are structured according to spot contract specifications and display percentage values of portfolio variance and HEI (hedging effectiveness index). The best/worst
hedging performances for individual bunkers are reported in bold/italics.
of transaction costs since portfolio rebalancing would not need to be
executed weekly.

3.2. Robustness check — daily data

In this section, we provide the results of the robustness check when
daily data are used for the analysis. Although the higher frequency
of the data is not standard for marine fuel hedging, it might provide
us with valuable information regarding the nature of the time series
dynamics. Using the daily data for estimation, we also address an issue
regarding the sufficient length of data from the previous section. The
results with the out-of-sample hedging effectiveness are presented in
5

Table 3. For the purpose of reporting, the variances are rounded up to
two decimal points, which is why they sometimes completely coincide
in terms of the static and dynamic models, but the reduction may differ
to some degree. The results of the pairwise comparison are presented
in Table 4, where we compare the OLS to the DCC/ADCC models in
Panel A.1/A.2 and the DCC to ADCC in Panel B. We do not display
the comparison of the naïve hedging strategy because it was always
dominated by the other models.

The most discernible characteristic of more granulated data is that
the hedging effectiveness altogether declines for any combination of
commodities. Our results are in line with previous literature which,

demonstrates decreasing hedging effectiveness with decreasing hedging
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Table 2
Pair-wise forecasting accuracy comparison — weekly horizon.

IFO MGO

WTI ULSD RBOB BRENT GASOIL WTI ULSD RBOB BRENT GASOIL

Panel A.1
Rotterdam 1.49* 0.63 2.24*** 1.18 0.16 2.88*** 1.37* 3.15*** 3.66*** 1.69**
Singapore 2.05** 1.52* 2.58*** 2.40*** 1.23 3.30*** 2.18*** 3.22*** 4.26*** 2.71***
Fujairah 1.81** 1.76** 2.32*** 2.15** 1.49* 6.31*** 7.11*** 4.35*** 6.63*** 7.84***
Houston 1.87** 1.08 2.54*** 1.61** 0.40 5.25*** 2.89*** 4.58*** 4.66*** 3.34***

Panel A.2
Rotterdam 0.13 −1.87** 1.67** −0.67 −1.11 2.85*** −0.84 3.01*** 2.67*** −0.66
Singapore 1.92** −0.81 2.32*** 1.60* 0.44 3.61*** 1.84** 3.15*** 4.02*** 1.83**
Fujairah 1.37* 0.09 2.09** 1.04 0.15 6.36*** 7.31*** 4.47*** 6.73*** 8.14***
Houston −0.43 −2.16** 1.75** −0.74 −2.09** 4.67*** 2.24*** 4.53*** 3.91*** 1.97**

Panel A.3
Rotterdam −0.16 −1.70** 2.09** −0.65 −0.75 2.52*** 0.07 3.11*** 2.66*** −0.27
Singapore 1.50* −0.61 2.35*** 1.37* 0.12 3.11*** 2.32*** 3.21*** 3.96*** 2.22***
Fujairah 1.06 −0.17 2.01** 0.69 −0.33 6.38*** 7.27*** 4.43*** 6.71*** 8.09***
Houston −0.71 −1.64** 2.42*** −0.59 −1.48* 5.06*** 2.51*** 4.65*** 4.40*** 2.73***

Panel B.1
Rotterdam −2.02** −1.52* −1.25 −1.43* −1.11 −2.18*** −1.96** −1.32* −1.77** −2.23***
Singapore −1.54* −1.44* −0.30 −0.93 −0.43 −1.74** −1.63** −1.89** −2.26*** −1.14
Fujairah −1.62** −1.65** −1.34* −1.09 −0.85 −0.01 −0.11 −1.21 0.05 −0.15
Houston −2.59*** −2.20*** −1.99** −1.99** −2.04** −2.17** −2.54*** −0.03 −1.87** −2.16**

Panel B.2
Rotterdam −1.71** −1.47* −0.68 −1.25 −0.77 −1.97** −1.91** −0.17 −1.52* −2.14**
Singapore −1.78** −1.37* −0.21 −1.07 −0.64 −2.66*** −1.36* −1.07 −1.48* −1.74**
Fujairah −2.02** −1.56* −1.00 −1.47* −1.23 −0.58 0.26 −1.31* −0.03 −0.26
Houston −2.40*** −2.26*** −1.70** −1.63** −1.64** −1.71** −2.25*** 0.06 −0.88 −0.85

Panel C
Rotterdam −0.64 −0.18 1.82** −0.30 0.28 0.75 1.09 2.97*** 0.09 0.52
Singapore −0.69 0.30 0.30 −0.94 −0.70 0.41 1.09 1.70** 0.41 0.45
Fujairah −2.11** −0.50 0.27 −1.98** −1.34* −1.66** 0.68 0.55 −0.21 −0.33
Houston −1.08 −0.11 1.70** 0.39 0.13 1.12 0.97 0.11 1.84** 1.52*

Note: Panels A.1/A.2/A.3 report comparisons of the naïve (benchmark) and OLS/DCC/ADCC GARCH models. Panel B.1/B.2 report comparisons of the OLS (benchmark) and
DCC/ADCC GARCH models. Panel C reports comparisons of the DCC (benchmark) and ADCC GARCH models. For each spot-futures pair, we report the Diebold–Mariano test
statistics — significantly more/less accurate forecasts with respect to the benchmark model are in bold/italics; significance at the 1%, 5%, and 10% levels are denoted by ***, **,
and *, respectively.
horizon.13 In our case, the naïve hedging strategy has the most striking
change in performance. The naïve approach massively increases the
variance for all but one pair (Rotterdam IFO - Gasoil) and could be
regarded as a rather unreliable technique. In such a case, institutions
are better off if their portfolios are completely unhedged.

Moving to the remaining types of hedging, a close inspection of
Rotterdam bunkers indicates a slight preference for the LSFOs. The best
hedging effectiveness can be achieved using MGO spots with Gasoil,
in which a reduction in risk by as much as 21.88% is reached. For
the rest of the Rotterdam spot — future pairs, the reduction is lower
than 10%. Overall, the Rotterdam fuels show the highest hedging
efficiency in both HSFO and LSFO fuels. Singapore spot contracts do not
appear to give any significant preferential treatment concerning low-
and heavy-sulfur alternatives — the WTI, ULSD and Brent futures are
better alternatives to hedge the IFO contract, while RBOB and Gasoil
are better for hedging MGO. Similar to Rotterdam, the highest hedging
effectiveness is obtained in the MGO-Gasoil pair with a variance reduc-
tion of 13.44%, thus slightly favoring LSFOs. The hedging effectiveness
patterns for Fujairah port are different than those for Rotterdam and
Singapore. The LSFO fuel represented by MGO shows the least potential

13 Among others, Merrick (1988) demonstrate that weekly hedging effective-
ess of the S&P 500 futures is superior to daily hedge, Chen et al. (2004) using
ine hedging horizons and 25 commodities find that hedging effectiveness
ncreases with the length of the hedging horizon, Lien and Shrestha (2007)
bserve that as the hedging horizon increases, the performance of wavelet
edge ratio improves and Dewally and Marriott (2008) document increasing
edging effectiveness with increasing hedging horizon in base metal markets.
he possible sources of differences of hedging performance are discussed

n Wang et al. (2015).
6

for cross-hedging – the maximum variance reduction, which is achieved
by RBOB, is only 1.68%. Our analysis of Fujairah contracts narrowly
supports the choice of HSFOs in terms of the variance reduction, which
is as much as 8.05% obtained from the OLS model. Using Houston spot
contracts, we obtain similar results as in Fujairah; i.e., HFSOs generally
provide higher variance reduction than LSFOs, although the highest
reduction is achieved by the MGO-Gasoil pair. Overall, across the ports,
Gasoil is the most effective hedging futures contract, followed by Brent
and WTI, which have similar performances. The RBOB seems to be the
least effective contract.

Regarding the statistical comparison of the hedging strategies, Panel
A of Table 4 displays similar forecasting performances for the OLS
and (A)DCC models in the majority of spot-futures pairs. The (A)DCC
performs better than OLS in Singapore, Fujairah and Houston when
WTI is used for cross hedging. In contrast, OLS outperforms (A) DCC
when Gasoil is used to hedge MGO in Rotterdam and IFO in Fujairah.
In Panel B, there is no apparent difference in hedging effectiveness
between the symmetric MGARCH model and its asymmetric equivalent.
As both of the models are computationally demanding in the same way,
there is no clear winner in this respect. Visual inspection of the optimal
hedge ratios of the Rotterdam MGO-GASOIL cross-hedge, i.e., the spot-
futures pair with the highest variance reduction, displayed in Fig. 2,
reveals the possible benefits of using an OLS-based strategy. The OLS
approach produces more stable, less volatile hedging ratios that might
translate into lower transaction costs.

3.3. To hedge, or not to hedge

We have shown in our main analysis that the low sulfur fuels
provide better hedging potential compared to their high sulfur coun-
terparts, i.e almost 72% vs. nearly 51.5% variance reduction for MGO
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Table 3
Out-of-sample hedging effectiveness — daily horizon.

IFO

WTI ULSD RBOB BRENT GASOIL

Variance HEI Variance HEI Variance HEI Variance HEI Variance HEI

Rotterdam
Unhedged 6.19 – 6.19 – 6.19 – 6.19 – 6.19 –
Naïve 8.55 −38.10 7.53 −21.62 10.78 −74.15 7.74 −25.04 5.96 3.68
OLS 5.64 8.83 5.78 6.63 5.92 4.42 5.61 9.32 5.24 15.35
DCC 5.57 9.98 5.73 7.43 5.89 4.77 5.58 9.84 5.28 14.67
ADCC 5.60 9.60 5.72 7.54 5.89 4.91 5.62 9.22 5.28 14.65

Singapore
Unhedged 5.96 – 5.96 – 5.96 – 5.96 – 5.96 –
Naïve 9.28 −55.77 7.86 −31.99 11.06 −85.69 8.17 −37.17 6.33 −6.35
OLS 5.68 4.57 5.71 4.07 5.78 3.04 5.60 6.03 5.31 10.89
DCC 5.58 6.26 5.66 5.03 5.72 3.89 5.54 7.00 5.36 9.95
ADCC 5.55 6.81 5.55 6.76 5.72 3.99 5.46 8.41 5.39 9.47

Fujairah
Unhedged 6.50 – 6.50 – 6.50 – 6.50 – 6.50 –
Naïve 9.82 −50.99 8.37 −28.68 11.40 −75.38 8.84 −36.03 7.16 −10.10
OLS 6.24 4.00 6.25 3.82 6.29 3.27 6.19 4.84 5.98 8.05
DCC 6.15 5.43 6.22 4.28 6.27 3.61 6.15 5.46 6.08 6.56
ADCC 6.18 5.00 6.24 3.95 6.29 3.27 6.18 4.92 6.09 6.33

Houston
Unhedged 7.42 – 7.42 – 7.42 – 7.42 – 7.42 –
Naïve 10.85 −46.19 9.55 −28.72 12.80 −72.45 9.83 −32.49 8.45 −13.93
OLS 7.22 2.70 7.29 1.70 7.31 1.47 7.17 3.38 7.08 4.55
DCC 7.13 3.90 7.28 1.91 7.24 2.40 7.08 4.61 7.13 3.96
ADCC 7.19 3.15 7.31 1.53 7.19 3.09 7.17 3.34 7.13 3.86

MGO

WTI ULSD RBOB BRENT GASOIL

Variance HEI Variance HEI Variance HEI Variance HEI Variance HEI

Rotterdam
Unhedged 3.57 – 3.57 – 3.57 – 3.57 – 3.57 –
Naïve 7.10 −98.75 5.40 −51.37 9.08 −154.46 6.06 −69.75 3.68 −3.01
OLS 3.33 6.72 3.32 7.05 3.45 3.40 3.28 8.10 2.79 21.88
DCC 3.34 6.46 3.32 7.09 3.43 3.90 3.29 7.72 2.87 19.54
ADCC 3.31 7.16 3.31 7.40 3.44 3.73 3.28 7.99 2.87 19.59

Singapore
Unhedged 3.08 – 3.08 – 3.08 – 3.08 – 3.08 –
Naïve 7.42 −140.72 5.43 −76.01 8.64 −180.04 6.26 −102.87 4.07 −32.13
OLS 2.99 3.15 2.94 4.70 2.96 4.01 2.94 4.81 2.67 13.44
DCC 2.99 3.20 2.92 5.19 2.94 4.68 2.93 4.92 2.69 12.90
ADCC 2.97 3.55 2.92 5.26 2.94 4.52 2.92 5.31 2.69 12.70

Fujairah
Unhedged 1.22 – 1.22 – 1.22 – 1.22 – 1.22 –
Naïve 6.80 −458.19 4.60 −277.47 7.97 −554.26 5.69 −367.21 4.22 −246.58
OLS 1.22 0.05 1.21 0.99 1.20 1.65 1.21 0.80 1.21 0.44
DCC 1.21 0.73 1.21 0.48 1.20 1.68 1.21 1.03 1.21 0.63
ADCC 1.22 0.24 1.22 −0.57 1.20 1.24 1.21 0.74 1.21 0.65

Houston
Unhedged 2.95 – 2.95 – 2.95 – 2.95 – 2.95 –
Naïve 8.03 −171.77 5.96 −101.70 9.66 −227.15 6.93 −134.52 4.87 −64.90
OLS 2.97 −0.61 2.96 −0.19 2.96 −0.29 2.96 −0.18 2.85 3.37
DCC 2.89 2.11 2.91 1.61 2.92 1.04 2.88 2.49 2.84 4.02
ADCC 2.90 1.73 2.91 1.47 2.91 1.55 2.89 2.24 2.81 4.84

Note: The panels are structured according to spot contract specifications and display the percentage values of portfolio variance and HEI (hedging effectiveness index). The best/worst
hedging performances for individual bunkers are reported in bold/italics.
and IFO respectively. This feature could be observed in every port,
and a clear preference for cross-hedges can be observed in the hedging
effectiveness analysis. Moreover, the hedging performance of the IFO
is in line with Alizadeh et al. (2004) - the best performing contract
is Brent with almost 51.5% variance reduction (43% in Alizadeh et al.
(2004)). In contrast, when we concentrate on a robustness check where
daily data were employed, it is questionable whether lower values,
particularly around 10% of the HEI, are appealing to companies or
whether other methods of risk protection could be more attractive in
the bunker market. In general, variance reductions ranging up to 20%
for the positive outcome are mostly deemed ineffective (Maghyereh
et al., 2017).
7

The order of the futures from the most to the least efficient is as
follows: Gasoil; Brent with WTI alternating; ULSD and RBOB. This re-
sult suggests that the persistence in the transfer of information between
spot and futures markets is one of the strongest for crude oil financial
derivatives. Moreover, it can favorably be compared to Wang and Wu
(2012), who assert that conventional or reformulated gasoline prices
could be regarded as the most volatile commodities. As opposed to Lim
and Turner (2016) and Pan et al. (2014), our results do not confirm that
ULSD is usually the best cross hedge in energy markets. Moreover, our
conclusions do not agree with the proposition of Chang et al. (2011)
that the WTI specification displays greater efficacy in risk protection
than Brent crude oil. However, it is well established in the literature
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Table 4
Pair-wise forecasting accuracy comparison — daily horizon.

IFO MGO

WTI ULSD RBOB BRENT GASOIL WTI ULSD RBOB BRENT GASOIL

Panel A.1
Rotterdam 0.85 0.64 0.34 0.37 −0.48 −0.31 0.03 0.52 −0.46 −1.79**
Singapore 1.56* 0.79 1.24 0.95 −0.59 0.08 0.72 1.13 0.19 −0.62
Fujairah 1.70** 0.69 0.60 1.00 −1.48* 0.53 −0.54 0.09 0.62 0.42
Houston 0.88 0.18 0.99 1.09 −0.44 1.66** 1.13 1.02 1.59* 0.48

Panel A.2
Rotterdam 0.52 0.71 0.54 −0.07 −0.44 0.66 0.39 0.36 −0.22 −1.85**
Singapore 1.99** 1.50* 1.14 1.56* −1.01 0.54 0.58 0.81 0.72 −0.89
Fujairah 1.04 0.23 0.00 0.12 −1.49* 0.13 −0.94 −0.57 −0.03 0.53
Houston 0.45 −0.14 1.41* −0.05 −0.58 1.41* 1.01 1.43* 1.42* 1.16

Panel B
Rotterdam −0.98 0.20 0.42 −1.34* −0.05 1.61** 0.67 −0.40 0.31 0.09
Singapore 0.69 1.53* 0.32 1.34* −0.75 1.10 0.18 −0.68 0.95 −0.51
Fujairah −1.39* −0.77 −1.40* −1.49* −0.46 −1.21 −1.01 −1.11 −0.40 0.13
Houston −0.86 −1.25 1.21 −1.96** −0.16 −1.62** −0.71 0.67 −1.48* 1.09

Note: Panel A.1/A.2 report the comparison of the OLS(benchmark) and DCC/ADCC GARCH models. Panel B reports the comparison of the DCC(benchmark) and ADCC GARCH
models. For each spot-futures pair, we report the Diebold–Mariano test statistics — the significantly more/less accurate forecasts with respect to the benchmark model are in
bold/italics; significance at the 1%, 5%, and 10% levels are denoted by ***, **, and *, respectively.
Table 5
Descriptive statistics of daily returns.

Mean Max Min St. Dev. Skewness Kurtosis

WTI −0.05 21.36 −28.22 2.57 −0.59 14.42
ULSD −0.03 10.41 −19.75 2.04 −0.53 7.30
RBOB −0.05 21.66 −38.42 2.69 −1.53 25.16
BRENT −0.05 13.64 −27.58 2.30 −0.62 10.75
GASOIL −0.04 12.09 −14.00 1.90 −0.02 5.02

Rotterdam
IFO −0.04 18.10 −25.05 2.40 −0.45 10.86
MGO −0.04 10.35 −20.72 1.87 −0.26 7.02

Singapore
IFO −0.03 15.58 −27.56 2.30 −0.66 11.86
MGO −0.04 11.06 −20.76 1.73 −0.65 10.34

Fujairah
IFO −0.03 14.02 −27.63 2.32 −0.68 12.16
MGO −0.02 10.05 −9.93 1.04 −0.72 14.25

Houston
IFO −0.03 20.39 −25.39 2.45 −0.02 10.09
MGO −0.03 8.89 −10.22 1.76 −0.14 4.31

Note: The values for the mean, maximum, minimum and standard deviation are displayed in %.
Table 6
Unconditional correlations between OHR from DCC and ADCC GARCH.

Weekly Data

IFO MGO

WTI ULSD RBOB BRENT GASOIL WTI ULSD RBOB BRENT GASOIL

Rotterdam 0.9189 0.9224 0.9448 0.9221 0.9153 0.9016 0.8268 0.9431 0.7423 0.6604
Singapore 0.9356 0.9508 0.9623 0.9480 0.9465 0.9133 0.8956 0.9379 0.7979 0.8357
Fujairah 0.9361 0.9389 0.9561 0.9477 0.9497 0.9264 0.9418 0.9569 0.9338 0.9424
Houston 0.8889 0.8900 0.9076 0.8885 0.9057 0.7178 0.738 0.8605 0.8206 0.7830

Daily Data

IFO MGO

WTI ULSD RBOB BRENT GASOIL WTI ULSD RBOB BRENT GASOIL

Rotterdam 0.9686 0.9663 0.9702 0.9720 0.9599 0.9350 0.9163 0.9306 0.8835 0.8644
Singapore 0.9670 0.9552 0.9481 0.9595 0.9512 0.8926 0.8607 0.8682 0.8229 0.8489
Fujairah 0.9629 0.9545 0.9643 0.9685 0.9390 0.9076 0.7940 0.7868 0.9088 0.9639
Houston 0.9455 0.9801 0.9413 0.9553 0.9727 0.9850 0.9877 0.9670 0.9903 0.9708

Note: The table displays the unconditional correlations between the optimal hedge ratios from DCC and ADCC GARCH models.
hat there are limited hedging opportunities owing to the absence of a
roper derivatives market that would sufficiently offset the risk of price
ovement in the spot market (Basher and Sadorsky, 2016; Maghyereh

t al., 2017).
Further attention is centered on different ports. We have demon-

trated that the local conditions influence the degree of hedging ef-
8

ectiveness but not the chosen derivatives. As is usually assumed in
the bunker industry, we confirm that ICE contracts are generally more
convenient than NYMEX energy futures. Moreover, different local con-
ditions prevent the uncomplicated pricing of mainly low sulfur op-
tions (Stefanakos and Schinas, 2014).

Our paper also contends that the sensitivity of hedging ratios to
the asymmetry phenomenon is not supported by our data. The visual

comparison of the optimal hedge ratios from the DCC and ADCC
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Table 7
Yearly DM comparison: DCC vs. ADCC GARCH.

Weekly Data

IFO MGO

2013 2014 2015 2016 2017 2018 2019 2020 2013 2014 2015 2016 2017 2018 2019 2020

Rotterdam
WTI −0.55 −1.23 −0.55 0.93 0.28 0.79 −1.1 0.14 0.42 −0.7 0.18 0.72 −0.73 −0.05 −0.18 0.75
ULSD −2.77*** −0.62 0.15 1.19 −0.02 −0.6 0.52 −1.12 0.93 0.01 1.26 0.32 −0.11 −1.05 0.61 0.55
RBOB −1.39* 0.48 0.89 1.77** −0.65 0.99 0.65 −1.44* −0.53 1.64** 1.07 2.33*** 0.73 0.42 −0.43 1.35*
BRENT −0.94 −0.83 0.67 0.99 0.31 −0.76 −0.02 −0.93 −0.15 −0.13 1.11 2.21** −0.9 −1.01 −0.47 −0.18
GASOIL −2.83*** −0.93 −0.05 1.40* 0.45 −0.33 0.28 −0.77 1.63* 0.15 0.19 0.99 0.42 −1.07 0.66 0.09

Singapore
WTI −0.37 0.78 −0.32 −0.39 −0.58 −0.48 −1.86** 0.09 0.71 −0.96 −0.8 −0.08 1.05 −0.11 0.48 0.59
ULSD −2.68*** 0.62 0.95 0.15 −1.54* −0.84 −2.00** 0.29 2.19** 0.18 0.56 −1.02 1.24 −0.79 0.87 1.14
RBOB 0.22 0.91 0.81 1.68** −0.77 −1.16 −0.7 −1.23 1.13 0.23 0.33 1.73** 0.14 0.18 1.50* 0.91
BRENT 0.22 −0.22 0.3 1.17 −1.34* −0.17 −1.32* −0.94 1.39* −0.77 −0.67 0.61 0.45 −0.79 1.67** −0.14
GASOIL −3.01*** −0.35 −0.06 1.39* −0.3 −0.22 −1.71** −0.26 2.29*** −1.49* −0.49 0.75 0.55 −0.75 0.31 0.29

Fujairah
WTI 0.8 −1.33* 0.22 −0.5 0.5 0.04 −2.11** −1.95** 1.99** −1.05 −1.05 −1.08 −0.07 −1.2 1.33* −0.65
ULSD −1.46* 0.75 −0.18 0.01 −0.29 −0.12 −1.59* −0.14 2.46*** 0.57 −1.18 −0.4 −0.33 0.46 −0.76 1.02
RBOB 0.11 0.61 0.04 0.5 −0.91 −0.35 −0.58 0.28 −1.30* 0.13 −2.23*** −0.5 −1.13 −1.02 −1.25 1.17
BRENT 1.87** −0.56 0.67 0 −0.38 −0.26 −1.53* −2.13** 1.24 0.1 −0.08 −0.8 1.33* −0.63 1.96** 0.01
GASOIL −2.63*** −0.29 1.1 1.22 0.08 0.28 −1.71** −2.14** −1.45* −0.63 −0.27 −1.17 0.62 −0.64 1.47* 0.35

Houston
WTI 0.67 −0.93 0.22 0.77 −0.87 −0.21 −0.97 −1.17 −0.46 −0.92 0.01 0.23 0.28 0.57 1.84** 1.27
ULSD 0.71 −0.56 1.14 0.69 −0.56 −1.54* −0.13 −1.50* 1.52* −0.84 1.54* −0.41 −0.66 −0.38 0.91 0.68
RBOB 0.8 −0.05 1.41* 1.64** 0.18 0.12 −1.39* 0.32 −1.08 −0.73 0.24 0.08 1.73** −0.46 1.42* −0.3
BRENT 1.38* −0.8 1.49* 0.88 0.61 0.15 0.02 −1.09 −0.48 −1.21 0.3 0.77 0.42 1.37* 1.70** 1.40*
GASOIL −1.03 −1.18 1.06 1.67** −0.64 −1.26 −0.7 −0.83 −1.03 −1.14 0.66 1.93** −0.21 0.19 −0.37 1.27

Daily Data

IFO MGO

2013 2014 2015 2016 2017 2018 2019 2020 2013 2014 2015 2016 2017 2018 2019 2020

Rotterdam
WTI 0.57 1.48* −1.05 1.79** 1.53* 1.25 −0.1 −2.13** 0.69 3.09*** −0.53 1.68** 1.98** −0.05 −0.91 1.23
ULSD 1.52* −0.11 −1.09 2.39*** 1.87** −0.9 0.87 −0.88 1.52* −1.45* 0.18 2.11** 2.58*** −0.72 0.53 −0.52
RBOB −1.06 −1.57* −0.06 1.16 −1.08 −1.24 0.12 0.91 −0.42 −0.81 0.34 1.17 −1.01 −0.86 −0.71 1.08
BRENT 0.73 1.18 −1.24 1.23 0.83 0.41 −0.42 −1.66** −0.23 1.27* 0.03 0.82 1.47* −1.25 −1.2 0.21
GASOIL −0.86 −0.09 −2.16** 0.53 −0.88 −0.66 0.59 −0.1 −0.31 0.64 −0.47 1.39* −0.41 −0.95 −0.81 0.16

Singapore
WTI 1.44* 0.16 −0.04 0.64 1.60* 0.48 −0.41 0.86 0.08 0.62 0.01 1.77** 2.34*** −0.49 −1.02 0.73
ULSD 2.00** −0.42 0.14 2.13** −0.17 −0.69 −1.06 1.51* 0.94 −0.46 −0.81 0.58 2.61*** −1.08 −0.17 0.28
RBOB −1.08 −0.57 −0.87 1.52* −1.41* −1.92** −1.11 1.07 −0.92 −0.57 −0.92 0.9 −1.07 0.47 −1.06 1.16
BRENT 1.38* 1.31* −0.72 0.32 0.83 −0.69 −0.81 1.78** 0.12 0.89 −0.97 0.62 1.08 −0.53 −0.93 1.36*
GASOIL −0.75 0.08 −1.93** −0.29 −1.16 −0.5 −0.87 0.09 −0.17 −0.43 0.04 0.18 −1.18 −1.50* −0.43 −0.34

Fujairah
WTI −1.18 2.00** −0.54 1.11 −0.33 1.33* −1.41* −1.28* −1.60* −1.18 −1.53* −0.77 0.31 −0.87 0.16 −0.34
ULSD 2.90*** −0.34 0.69 1.04 0.73 −1.78** −0.62 −1.07 1.38* −0.93 −1.96** −0.89 0.28 −1.67** 1.29* 0.52
RBOB −0.16 −1.12 −0.41 0.19 −1.03 −1.54* −1.21 −0.84 −0.6 −1.34* −1.37* 1.86** −0.88 −1.03 0.14 −0.58
BRENT 1.90** 0.95 −0.39 0.43 1.09 0.59 −1.66** −1.17 0.12 0.26 1.81** −0.03 −0.07 1.92** −0.48 −0.47
GASOIL 0.6 −0.27 −1.2 0.08 0.1 0.35 −2.04** 0.63 0.9 1.28* 0.33 −1.23 −0.39 1.65** 0.34 −0.08

Houston
WTI −0.39 1.37* −0.66 −1.25 0.4 −1.1 −0.68 −0.53 −1.26 2.39*** −0.73 −1.2 0.93 −1.74** −0.61 −1.1
ULSD 1.05 −1.95** −0.12 0.63 −0.88 0.96 −1.33* −0.73 −0.16 −2.32*** −1.22 −0.64 −0.77 0.48 0.67 0
RBOB 1.06 −1.48* 0.51 1.70** −1.09 −1.01 −0.95 1.40* −0.11 −1.97** −1.33* 0.52 −1.07 −0.52 −1.44* 1.53*
BRENT 0.03 −1.02 −0.84 −0.23 0.25 −0.01 −0.63 −1.76** 0.41 0.17 −0.43 −0.7 0.12 −2.31*** −0.54 −0.88
GASOIL −0.81 1.34* −1.65** −1.15 0.31 −0.05 −0.1 0.27 0.1 0.27 −0.3 −1.23 0.13 −1.47* 0.61 1.21

Note: Table reports the comparison of the DCC(benchmark) and ADCC GARCH models for given years. For each spot-futures pair, we report the Diebold–Mariano test statistics —
the significantly more/less accurate forecasts with respect to the benchmark model are in bold/italics; significance at the 1%, 5%, and 10% levels are denoted by ***, **, and *,
respectively.
models indicates very similar patterns (Figs. 1, 2). Moreover, we docu-
ment high unconditional correlations between the optimal hedge ratios
obtained from symmetric and asymmetric MGARCHs - the average
unconditional correlation14 across the ports and futures is 0.923/0.854
or IFO/MGO in the weekly hedging horizon and 0.960/0.904 in the
ase of the daily horizon. Our results thus support findings documented
n Basher and Sadorsky (2016) where correlations of optimal hedge
atios from DCC and ADCC GARCHs were more than 0.95. Besides

14 Detailed results are presented in Table 6.
9

studying the optimal hedge ratios, we have also compared the pair-wise
forecasting accuracy for individual years of our out-of-sample period.
The overall results reported in Table 7 indicate similar performance
of both DCC and ADCC models. Moreover, the results are qualita-
tively very similar to those presented in our main analysis (Tables 2
and 4). The similar performance of the symmetric and the asymmet-
ric MGARCHs differ from results found in the papers of Radchenko
(2005), Efimova and Serletis (2014) and Baruník et al. (2015) where
asymmetries in oil markets were documented. Following Pan et al.
(2014), we suggest that more sophisticated models might not generate
better hedging outcomes due to larger estimation errors as a conse-

quence of more parameters in the multivariate models. In addition,
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Fig. 2. Daily Rotterdam MGO - GASOIL optimal hedge ratios. Note: The OHRs from DCC are plotted with the solid black line, those from ADCC are the dashed dark gray line
and those from OLS are the black dotted line.
dynamic hedge ratios are likely far too volatile to ascertain the highest
hedging effectiveness across the whole range of commodities within
the marine and shipping industries. If we combine these two premises
and couple them with a market that is far too variable, we arrive
at the conclusion that the simple OLS approach should be used as a
benchmark for more complex models.

We conclude that it is convenient to assume that bunker prices are
affected by the pricing of petroleum futures contracts, although they
do not fully reflect the changes occurring in the derivatives market.
Furthermore, we argue that there is more space to hedge low sulfur
bunker fuels and that our setup is sufficiently robust given that four
different locations were analyzed. Overall, the solution to the IMO
2020 cannot be obtained explicitly; however, we are optimistic that
the commodities could be hedged in some interesting combinations to
take advantage of the diversification effects, as aforesaid.

4. Conclusions

Our paper extends the earlier empirical literature on the bunker
industry and connects it with the environmental regulations set by
the International Maritime Organization. By considering four major
bunkering hubs and the five most actively globally traded energy
commodity futures, we study cross-hedging opportunities. We account
for the intensity among crude oil, its refined products and two classes
of bunker fuel oils.

Our empirical analysis reveals that the uncertainty regarding the
price of bunker fuels can be reduced almost by 72%. Specifically, the
hedging performance of the OLS and (A)DCC-GARCH methods, quanti-
fied by portfolio variance reduction, results in a hedging effectiveness
index ranging from 4.27% to 71.94% when we rely on the weekly
frequency and −0.61% to 21.88% in daily data analysis. The positive
alues of the hedging effectiveness index indicate potential economic
ains by means of reduced bunker fuel price uncertainty. From the
ractical point of view, the lower fuel price uncertainty can directly
ranslate into stabilized cash flows for the shipping companies and
esult in reduction of fuel price risk premium. Non-increasing (or even
ecreasing) risk premium can subsequently have a positive impact
n the overall consumption of the globally traded goods. Since the
onsumption is an inherent part of the gross domestic product and the
ast majority of goods are transported by marine vessels, our results
re of great concern for economic agents worldwide.

Local conditions across megahubs undoubtedly affect the degree of
edging effectiveness, but the choice of derivatives is fairly universal.
e have identified Gasoil and Brent to be the best hedging instruments

round the globe. The out-of-sample performance also shows that
ow sulfur oils are more appealing spot contracts for Rotterdam and
ingapore, while high sulfur oils are more attractive for Fujairah, and
here is no clear preference for Houston. By utilizing rolling window
nalysis, we demonstrate that dynamic hedge models cannot consis-
ently outperform their OLS equivalent. The hedging effectiveness is
10
very similar across the symmetric and asymmetric MGARCH models,
with only occasional superiority of the asymmetric version. We have
not identified many desired effects for the naïve hedge — in the weekly
data analysis, for certain spot-futures pairs, there is a positive variance
reduction; however, competitors have statistically better performance.
In the daily data analysis, the one-to-one hedging strategy increases the
portfolio variance; hence, remaining unhedged is a better option in such
a case. Overall, we are positive that active hedging can significantly
reduce marine fuel prices’ uncertainty.
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