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Abstract

We apply a quasistatic nonlinear model for nonsimple viscoelastic materials
at a finite-strain setting in Kelvin’s-Voigt’s rheology to derive a viscoelastic plate
model of von Kármán type. We start from time-discrete solutions to a model of
three-dimensional viscoelasticity considered in Friedrich and Kružík (SIAM J
Math Anal 50:4426–4456, 2018) where the viscosity stress tensor complies with
the principle of time-continuous frame-indifference. Combining the derivation of
nonlinear plate theory by Friesecke, James and Müller (Commun Pure Appl
Math 55:1461–1506, 2002; Arch Ration Mech Anal 180:183–236, 2006), and the
abstract theory of gradient flows in metric spaces by Sandier and Serfaty (Com-
mun Pure Appl Math 57:1627–1672, 2004), we perform a dimension-reduction
from three dimensions to two dimensions and identify weak solutions of viscoelas-
tic form of von Kármán plates.

1. Introduction

Dimension-reduction problems play a significant role in nonlinear analysis and
numerics because they allow for simpler computational approaches, still preserv-
ing the main features of the bulk system. In this context, it is important that
a clear relationship between the full three-dimensional problem and its lower-
dimensional counterpart is made rigorous. The last decades have witnessed remark-
able progress in this direction through the use of variational methods, particularly
by �-convergence [18] together with quantitative rigidity estimates [23]. Among
the large body of results, we mention here only the rigorous justification of mem-
brane theory [29,30], bending theory [16,23,37], and von Kármán theory [24,28]
for plates as variational limits of nonlinear three-dimensional elasticity for vanish-
ing thickness. In particular, we refer to [24] for the derivation of a hierarchy of
different plate models and for a thorough literature review.
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In the present work, we apply a similar scenario of deriving plate theories to
problems in nonlinear viscoelasticity: starting from a three-dimensional model of a
nonsimple viscoelasticmaterial at a finite strain setting inKelvin’s-Voigt’s rheology
(that is, a spring and a damper coupled in parallel), recently treated by the authors
in [22], we derive a model of von Kármán (vK) viscoelastic plates.

In [22], the existence of weak solutions for such a three-dimensional model of
nonsimple viscoelastic materials was established with the help of gradient flows
in metric spaces developed in [3,40]. The notion of a nonsimple (or second-grade)
material refers to the fact that the elastic energy depends also on the second gradient
of the deformation. This concept, first suggested by Toupin [42,43], has proved to
be useful inmodernmathematical elasticity; see for example [7,8,10,26,34,35,39].
We also refer to [15,20] where thermodynamical consistency of such models has
been shown. We point out that this approach seems to be currently unavoidable in
order to obtain the existence of solutions in the nonlinear viscoelastic setting; see
[22,35] and [33] for a general discussion about the interplay between the elastic
energy and viscous dissipation. Nevertheless, a main justification is the observation
in [22] that, in the small strain limit, the problem leads to the standard system for
linearized viscoelasticity without second gradient.

In the present work, we consider a thin plate of thickness h and pass to the
dimension-reduction limit h → 0 in the vK energy regime. We show that this gives
rise to effective equations in terms of suitably rescaled in-plane and out-of-plane
displacements which feature membrane and bending terms both in the elastic and
the viscous stress. This represents a dissipative counterpart of the purely elastic
vK theory which was first formulated more than hundred years ago [44]. Besides
identifying the correct two-dimensional limiting equations of viscous vK plates,
which to the best of our knowledge has not been done in previous literature, themain
goals of this contribution are twofold: (1) we show the existence of solutions to the
effective two-dimensional system, and (2) we prove rigorously that these solutions
are in a certain sense the limits of solutions to the three-dimensional equations as
h → 0; see Theorem 2.2 and Theorem 2.3 for details.

Let usmention that there are previousworks on viscoelastic plates [11,38], some
even including inertial effects [12,13]. Their starting point, however, is already a
plate model. Our model, derived rigorously from three-dimensional viscoelasticity,
is new and, if viscosity is dropped, it reduces to the well-known model of elastic
plates [24]. Let us emphasize that for purely elasticmodels neglecting viscosity var-
ious existence results were obtained for Föppl-von Kármán plates without resorting
to a second-grade material; see for example [9,24,28,31,32]. We refer to [23] for a
numerical study of vK viscoelastic plates, and mention that in that paper we have
also proved the existence of solutions to the viscoelastic vK plate equations by
means of converging numerical discretizations. This work, however, already relies
on the plate model derived in the present paper. For the derivation of a plate model
without viscosity but with inertia we refer to [1].

We now describe our setting in more detail. Without inertia, a nonlinear vis-
coelastic material in Kelvin’s-Voigt’s rheology satisfies the system of equations

−div
(
∂F W (∇w) + ∂Ḟ R(∇w, ∂t∇w)

)
= f e3 in [0, T ] × �h . (1.1)
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Here, [0, T ] is a process time interval with T > 0, �h := S × (− h
2 , h

2 ) ⊂ R
3

is a smooth, thin, bounded domain representing the reference configuration, and
w : [0, T ] × �h → R

3 is a deformation mapping with deformation gradient
∇w. Moreover, W : R

3×3 → [0,∞] is a stored energy density representing a
potential of the first Piola-Kirchhoff stress tensor ∂F W := ∂W/∂ F and F ∈ R

3×3

is the placeholder of ∇w. The function R : R
3×3 × R

3×3 → [0,∞) denotes
a (pseudo)potential of dissipative forces, where Ḟ ∈ R

3×3 is the placeholder of
∂t∇w. Finally, f : �h → R is a volume density of external forces, which is
considered independent of time and the deformation y, and for simplicity acting
on �h only in normal direction e3.

We assume that W is a frame-indifferent function, that is, W (F) = W (QF) for
Q ∈ SO(3) and F ∈ R

3×3. This implies that W depends on the right Cauchy-Green
strain tensor C := F�F , see for example [17]. The second term on the left-hand
side of (1.1) is the stress tensor S(F, Ḟ) := ∂Ḟ R(F, Ḟ) which has its origin in
viscous dissipative mechanisms of the material. We point out that its potential R
plays an analogous role as W in the case of purely elastic, that is, non-dissipative
processes. Naturally, we require that R(F, Ḟ) � R(F, 0) = 0. The viscous stress
tensormust complywith the time-continuous frame-indifference principlemeaning
that S(F, Ḟ) = F S̃(C, Ċ), where S̃ is a symmetric matrix-valued function and Ċ
denotes the timederivative of the rightCauchy-Green strain tensorC . This condition
constraints R so that R(F, Ḟ) = R̃(C, Ċ) for some nonnegative function R̃, see
[4,5,33]. In what follows, we suppose that the material is homogeneous, that is,
neither the elastic stored energy density nor the dissipation depend on material
points. Moreover, for technical reasons, we will restrict our analysis to the case of
zero Poisson’s ratio in the out-of-plane direction, see (2.17)–(2.18) and Remark
5.11 for some details in that direction. Such an assumption, also present in other
works (see for example [9]), simplifies the analysis.

Following the study in [22], we consider a version of (1.1) for second-grade
materialswhere the elastic stored energy density (and the first Piola-Kirchhoff stress
tensor, too) depends also on the second gradient of w. In this case, we get

−div
(
∂F W (∇w) + εLP (∇2w) + ∂Ḟ R(∇w, ∂t∇w)

)
= f e3 in [0, T ] × �h,

(1.2)

where ε > 0 is small andLP is a first order differential operator which corresponds
to an additional term

∫
�h

P(∇2w) in the stored elastic energy, associated to a convex
and frame-indifferent density P . (We refer to (2.9) for more details.) As already
mentioned, this idea by Toupin [42,43] has proved to be useful in mathematical
elasticity because it brings additional compactness to the problem. For example,
concerning existence theory for second-grade materials, no convexity properties of
W are needed, in particular, we do not have to assume that W is polyconvex [6,17].
Moreover, it is shown in [25] that, if W satisfies suitable and physically relevant
growth conditions (as W (F) → ∞ if det F → 0), then every minimizer of the
elastic energy is a weak solution to the corresponding Euler-Lagrange equations.

In [24], it has been shown that for forces scaling like ∼ h3, which corresponds
to an energy per thickness of ∼ h4, the nonlinear elastic energy can be related
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rigorously by �-convergence as h → 0 to the so-called von Kármán functional.
This functional is given in terms of rescaled in-plane displacements u and out-
of-plane displacements v. The corresponding Euler-Lagrange equations take the
form

div
(
CW

(
e(u) + 1

2∇v ⊗ ∇v
)) = 0,

−div
(
CW

(
e(u) + 1

2
∇v ⊗ ∇v

)
∇v

)
+ 1

12
div div

(
CW ∇2v

) = f in S,

where e(u) := (∇u + (∇u)�)/2 denotes the linear strain tensor, and CW is the
tensor of elastic constants, derived suitably from W (see (2.17)–(2.19) below for
details). The first equation corresponds to the membrane strain, which was used
already earlier in Föppl’s work [21] and leads to a nonlinearity in the vK equations.
The second equation includes also a bending contribution. In the present context,
we will see that the passage from the nonlinear elastic energy to the vK functional
by �-convergence remains true if the nonlinear energy is enhanced by a second
gradient term ε

∫
�h

P(∇2w) for certain scalings of ε, see Theorem 5.6.
In the frame of viscoelastic materials, we address the relation between the

nonlinear equations (1.2) to the following equations for viscoelastic vK plates:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 = div
(
CW

(
e(u) + 1

2∇v ⊗ ∇v
) + CR

(
e(∂t u) + ∇∂tv ⊗ ∇v

))
,

f = −div
((

CW
(
e(u) + 1

2∇v ⊗ ∇v
) + CR

(
e(∂t u) + ∇∂tv ⊗ ∇v

))∇v
)

+ 1
12 div div

(
CW ∇2v + CR∇2∂tv

)
in [0,∞) × S,

(1.3)

whereCR is the tensor of viscosity coefficientswhich is derived from the dissipation
potential R. More precisely, we prove the existence of solutions to (1.3) and make
the dimension reduction rigorous, that is, we show that solutions to (1.2) converge
to solutions of (1.3) in a specific sense. The solutions have to be understood in a
weak sense, see (2.22) for the exact definition. We point out that the same relation
is expected to hold also for the original problem of simple materials (1.1) (that
is, only the first gradient of w is considered), but a proof seems unreachable (or at
least rather difficult) at the moment.We emphasize that a nonsimple material model
is used here because viscous phenomena are considered, too. In fact, dissipation
due to viscosity leads to the loss of weak lower semicontinuity in semidiscretized
variational problems; see [33] for a detailed discussion.

Our general strategy is to treat the system of quasistatic viscoelasticity in the
abstract setting of metric gradient flows [3], where the underlying metric is given
by a dissipation distance suitably related to the potential R (see (2.6) below).
To the best of our knowledge, this was formulated for the first time in [33] for
simple materials. In a fashion similar to [22], our starting point is the existence of
time-discrete solutions to the three-dimensional equations (1.2). Here, the second
gradient term allows to obtain an existence result without polyconvexity conditions
[6] for the dissipation which seems to be incompatible with frame indifference. The
existence of solutions to the equations (1.3) of viscous vK plates is guaranteed by
identifying them as limits of solutions to the nonlinear three-dimensional equations
(1.2). In this context, we follow the abstract framework of sequences of metric
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gradient flows, developed in [36,40,41]. In using this theory, the challenge lies in
proving that the additional conditions needed to ensure convergence of gradient
flows are satisfied.

More specifically, to use the abstract convergence result, lower semicontinuity
of (i) the energies, (ii) the metrics, and (iii) the local slopes is needed. (i) The esti-
mate for the energies essentially follows from [24] where we show that it still holds
for nonsimple materials if the contribution of the second gradient in terms of ε (see
(1.2)) is chosen sufficiently small, cf. Theorem 5.6. (ii) The lower semicontinuity
of the metrics can be established in a very similar fashion. (iii) The lower semicon-
tinuity of the local slopes, however, is very technical and the core of our argument.
We briefly explain the main idea. The local slope of an energy φ in a metric space
with metric D is defined by

|∂φ|D(y) := lim sup
z→y

(φ(y) − φ(z))+

D(y, z)
.

Consider a sequence of deformations (wh)h of thin plates converging to a limit
(u, v). The first step in the proof is to show that the local slope in the limiting
setting at some configuration y = (u, v) can be determined by considering only
variations of the form z = (us, vs) = (u, v)+ s(ũ, ṽ) for s > 0 small. This follows
from a specific representation; see Lemma 4.9, which is based on some generalized
convexity properties. (Recall, however, that the vK model is actually nonconvex.)
Then the crucial step is to choose sequences (wh

s )h,s where wh
s → wh represents a

competitor sequence for the local slope in the three-dimensional setting. For each
s > 0, (wh

s )h has to be constructed as a mutual recovery sequence of (us, vs),
that is, for both the elastic energies and the dissipations. In this context, the rate
of convergence needs to be linear in s as h → 0. The realization is in fact quite
technical and the details are contained in Theorem 5.10. An important step in this
analysis is to understand the strain difference of the configurations wh and wh

s ; see
Lemma 5.5.

Let us mention that a derivation of a nonlinear bending theory (see [23]) in
the setting of viscoelasticity seems to be even more involved and remains an open
problem: the fact that deformations are generically not near a single rigid motion
does not comply with the model investigated in [22]. Even more severely, the
characterization of the local slope in the limiting two-dimensional setting appears
to be very difficult due to the nonlinear isometry constraint.

The plan of the paper is as follows: in Section 2, we introduce the nonlinear
three-dimensional viscoelastic system and its two-dimensional vK limiting version
in more detail. Then we state our main results. In particular, Proposition 2.1 shows
existence of time-discrete solutions to the three-dimensional problem (1.2). In The-
orem 2.2 we present an existence result for solutions to the vK plate equations (1.3)
in the “time-continuous setting”, which is based on identifying these solutions with
so-called curves of maximal slope [19]. Finally, Theorem 2.3 shows the relationship
between the two systems which relies on an abstract convergence result for curves
of maximal slope and their approximation via the minimizing movement scheme.

Section 3 is devoted to definitions of generalized minimizing movements and
curves of maximal slope. Here, we also recall results about sequences of curves
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of maximal slope and their approximation by minimizing movements. Section 4 is
devoted to properties of the elastic energies and the dissipation distances. In par-
ticular, we show that the dissipation distances give rise to complete metric spaces,
and derive some generalized convexity properties in the limiting two-dimensional
setting, as well as a representation of the local slope. Section 5 discusses the rela-
tion between the three- and two-dimensional setting, compactness properties, and
�-convergence results. Moreover, here we prove the fundamental lower semicon-
tinuity properties for local slopes. Finally, proofs of our main results can be found
in Section 6.

2. The Model and Main Results

2.1. Notation

In what follows, we use standard notation for Lebesgue spaces, L p(�), which
are measurable maps on � ⊂ R

d , d = 2, 3, integrable with the p-th power (if 1 �
p < +∞) or essentially bounded (if p = +∞). Sobolev spaces, that is, W k,p(�)

denote the linear spaces of maps which, together with their weak derivatives up
to the order k ∈ N, belong to L p(�). Furthermore, W k,p

0 (�) contains maps from
W k,p(�) having zero boundary conditions (in the sense of traces). To emphasize
the target space Rk , k = 1, 2, 3, we write L p(�;Rk). If k = 1, we write L p(�) as
usual. We refer to [2] for more details on Sobolev spaces and their duals. We also
denote the components of vector functions y by y1, y2, and y3, and so on.

If A ∈ R
d×d×d×d and e ∈ R

d×d then Ae ∈ R
d×d is such that for i, j ∈

{1, . . . , d} we define (Ae)i j := Ai jklekl where we use Einstein’s summation con-
vention. An analogous convention is used in similar occasions, in the sequel. By
Id ⊂ R

3×3 we denote the identity matrix.We often drop dx at the end of integrals if
the integration variable is clear from the context. Finally, at many spots, we closely
follow notation introduced in [3] and [24] to ease readability of our work.

2.2. The setting

We first introduce a three-dimensional setting following the setup in [24]. We
consider a right-handed orthonormal system {e1, e2, e3} and S ⊂ R

2 open, bounded
with Lipschitz boundary, in the span of e1 and e2. Let h > 0 small. We consider
deformations w : S × (− h

2 , h
2 ) → R

3. It is convenient to work in a fixed domain
� = S × I with I := (− 1

2 ,
1
2 ) and to rescale deformations according to y(x) =

w(x ′, hx3) such that y : � → R
3, where we use the abbreviation x ′ = (x1, x2).

We also introduce the notation ∇′y = y,1 ⊗ e1 + y,2 ⊗ e2 for the in-plane gradient,
and the scaled gradient

∇h y :=
(
∇′y,

1

h
y,3

)
= ∇w. (2.1)

Moreover, we define the scaled second gradient by

(∇2
h y)i jk := h−δ3 j −δ3k (∇2y)i jk = (∇2w)i jk = ∂2jkwi for i, j, k ∈ {1, 2, 3},

(2.2)
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where δ3 j , δ3k denotes the Kronecker delta.
Stored elastic energy density and body forces:We assume that W : R3×3 →

[0,∞] is a single well, frame-indifferent stored energy density with the usual as-
sumptions in nonlinear elasticity. We suppose that there exists c > 0 such that

(i) W continuous and C3 in a neighborhood of SO(3),

(i i) frame indifference: W (QF) = W (F) for all F ∈ R
3×3, Q ∈ SO(3),

(i i i) W (F) � c dist2(F, SO(3)), W (F) = 0 iff F ∈ SO(3),
(2.3)

where SO(3) = {Q ∈ R
3×3 : Q�Q = Id, det Q = 1}. Moreover, for p > 3, let

P : R3×3×3 → [0,∞] be a higher order perturbation satisfying

(i) frame indifference: P(Q Z) = P(Z) for all Z ∈ R
3×3×3, Q ∈ SO(3),

(i i) P is convex and C1,

(i i i) growth condition: for all Z ∈ R
3×3×3 we have

c1|Z |p � P(Z) � c2|Z |p, |∂Z P(Z)| � c2|Z |p−1

(2.4)

for 0 < c1 < c2. Finally, f ∈ L∞(�) denotes a volume normal force, that is, a
force oriented in e3 direction. Note that more general forces could in principle be
included, for example, boundary forces (see [28]). This is neglected here for the
sake of simplicity rather than generality.

Dissipation potential and viscous stress: We now introduce a dissipation
potential. We follow here the discussion in [33, Section 2.2] and [22, Section
2]. Consider a time dependent deformation y : [0, T ] × � → R

3. Viscosity is
not only related to the strain rate ∂t∇h y(t, x) but also to the strain ∇h y(t, x).
It can be expressed in terms of a dissipation potential R(∇h y, ∂t∇h y), where
R : R

3×3 × R
3×3 → [0,∞). An admissible potential has to satisfy frame in-

difference in the sense (see [4,33]) that

R(F, Ḟ) = R(QF, Q(Ḟ + AF)) ∀Q ∈ SO(3), A ∈ R
3×3
skew (2.5)

for all F ∈ GL+(3) and Ḟ ∈ R
3×3, where GL+(3) = {F ∈ R

3×3 : det F > 0}
and R

3×3
skew = {A ∈ R

3×3 : A = −A�}.
From the point of modeling, it is more convenient to assume the existence of a

(smooth) global distance D : GL+(3)×GL+(3) → [0,∞) satisfying D(F, F) =
0 for all F ∈ GL+(3). From this, an associated dissipation potential R can be
calculated by

R(F, Ḟ) := lim
ε→0

1

2ε2
D2(F + ε Ḟ, F) = 1

4
∂2

F2
1

D2(F, F)[Ḟ, Ḟ] (2.6)

for F ∈ GL+(3), Ḟ ∈ R
3×3. Here, ∂2

F2
1

D2(F1, F2) denotes the Hessian of D2

in direction of F1 at (F1, F2), which is a fourth order tensor. For some c > 0 we
suppose that D satisfies

(i) D(F1, F2) > 0 if F�
1 F1 �= F�

2 F2,
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(i i) D(F1, F2) = D(F2, F1), (2.7)

(i i i) D(F1, F3) � D(F1, F2) + D(F2, F3),

(iv) D(·, ·) is C3 in a neighborhood of SO(3) × SO(3),

(v) Separate frame indifference: D(Q1F1, Q2F2) = D(F1, F2)

∀Q1, Q2 ∈ SO(3), ∀F1, F2 ∈ GL+(3),

(vi) D(F, Id) � c dist(F, SO(3))∀F ∈ R
3×3 in a neighborhood of SO(3).

Note that conditions (i),(iii) state that D is a true distancewhen restricted to symmet-
ric matrices with nonnegative determinants. We cannot expect more due to the sep-
arate frame indifference (v).We also point out that (v) implies (2.5) as shown in [33,
Lemma 2.1]. Note that in our model we do not require any conditions of polycon-
vexity [6] neither forW nor for D. One possible example of D satisfying (2.7)might
be D(F1, F2) = |F�

1 F1 − F�
2 F2|. This leads to R(F, Ḟ) = |F� Ḟ + Ḟ�F |2/2

which is a standard choice. For further examples we refer to [33, Section 2.3].
Equations of viscoelasticity in three dimensions: Following the study in

[28], we define clamped boundary conditions as follows. We consider functions
û ∈ W 2,∞(S;R2) and v̂ ∈ W 3,∞(S) which represent in-plane and out-of-plane
boundary conditions, respectively. We introduce the set of admissible configura-
tions by

Sh =
{

y ∈ W 2,p(�;R3) : y(x ′, x3) =
(

x ′
hx3

)
+

(
h2û(x ′)
hv̂(x ′)

)
−x3

(
h2(∇′v̂(x ′))�

0

)

for x ′ ∈ ∂S, x3 ∈ I
}
,

(2.8)

where I = (− 1
2 ,

1
2 ). Following [22] we formulate the equations of viscoelasticity

for a nonsimple material involving the perturbation P (cf. (2.4)). We introduce
a differential operator associated to P . To this end, we recall the notation of the
scaled gradients in (2.1)–(2.2). For i, j ∈ {1, . . . , 3}, we denote by (∂Z P(∇2

h y))i j∗
the vector-valued function ((∂Z P(∇2

h y))i jk)k=1,2,3. We also introduce the scaled
(distributional) divergence divh g for a function g ∈ L1(�;R3) by divh g = ∂1g1 +
∂2g2 + 1

h ∂3g3. We define
(Lh

P (∇2
h y)

)
i j = −divh(∂Z P(∇2

h y))i j∗, i, j ∈ {1, . . . , 3} (2.9)

for y ∈ Sh . Let β1, β2 > 0. The equations of nonlinear viscoelasticity can be
written as⎧⎪⎪⎨
⎪⎪⎩

−divh

(
∂F W (∇h y) + hβ1Lh

P (∇2
h y) + ∂Ḟ R(∇h y, ∂t∇h y)

)
= hβ2 f e3 in [0,∞) × �

y(0, ·) = yh
0 in �

y(t, ·) ∈ Sh for t ∈ [0,∞)

(2.10)

for some yh
0 ∈ Sh , where ∂F W (∇h y) +hβ1Lh

P (∇2
h y) denotes the first Piola-

Kirchhoff stress tensor and ∂Ḟ R(∇h y, ∂t∇h y) the viscous stress with R as intro-
duced in (2.6).As no surface forces are applied,we implicitly assume zeroNeumann
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boundary conditions for the stress and the hyperstress on S × {−1/2, 1/2}, that is,
on the top and the bottom of the cylinder�, see for example [26] for a specific form
of such conditions. As (2.8) prescribes only the values of the function but not of the
derivative, on the lateral boundary there arise additional Neumann conditions from
the second deformation gradient. (We again refer to [26] for details.) As we will
see below, however, they do not affect the effective two-dimensional plate model.
Suitable scalings hβ1 and hβ2 related to Lh

P and the normal force f , respectively,
will be discussed below. Note that ε = hβ1 in (1.2).

Time-discrete solutions to (2.10): The first auxiliary goal of this paper is to
show existence of time-discrete solutions to (2.10) for small h > 0. For this, we
introduce a functional I β1,β2

h : W 2,p(�;R3) → R describing the elastic energy of
the body by

I β1,β2
h (y) =

∫

�

W (∇h y(x)) dx + hβ1

∫

�

P(∇2
h y(x)) dx − hβ2

∫

�

f (x)y3(x) dx

(2.11)

for a deformation y : W 2,p(�;R3) → R
3. We note that the energy takes into

account the different scalings of the terms in (2.10).
We use an approximation scheme solving suitable time-incremental minimiza-

tion problems: consider a fixed time step τ > 0 and suppose that an initial datum
yh
0 ∈ Sh is given. Set Y 0

h,τ = yh
0 . Whenever Y 0

h,τ , . . . , Y n−1
h,τ are known, Y n

h,τ is
defined as (if existent)

Y n
h,τ=argminy∈Sh


h(τ, Y n−1
h,τ ; y), 
h(τ, y0; y1) : =I β1,β2

h (y1)+ 1

2τ
D2(y0, y1),

(2.12)

whereD denotes the global dissipation distance between two deformations, defined
by

D(y0, y1) :=
( ∫

�

D2(∇h y0,∇h y1)
)1/2

.

Suppose that, for a choice of τ , a sequence (Y n
h,τ )n∈N solving (2.12) exists. We

define the piecewise constant interpolation by

Ỹ h,τ (0, ·) = Y 0
h,τ , Ỹ h,τ (t, ·) = Y n

h,τ for t ∈ ((n − 1)τ, nτ ], n � 1. (2.13)

In what follows, Ỹ h,τ will be called a time-discrete solution. We often drop the
x-dependence and write Ỹ h,τ (t) for a time-discrete solution at time t . Note that the
existence of such solutions is usually guaranteed by the direct method of the calcu-
lus of variations under suitable compactness, coercivity, and lower semicontinuity
assumptions, see Proposition 2.1 and its proof. We point out that, in the setting of
general (but not thin) bodies with suitable boundary conditions imposed on the en-
tire ∂�, it has been shown in [22, Theorem 2.1] that time-discrete solutions indeed
converge to weak solutions to the system (2.10) as τ → 0. In the present con-
text, time-discrete solutions will be the starting point to pass to a two-dimensional,
time-continuous framework.
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Scaling anddisplacement fields:Due to the scaling of the boundary conditions
in (2.8), the energy of time-discrete solutions Ỹ h,τ is expected to be small in terms
of h. More specifically, in our setting it will turn out that the energy is of order
h4 which corresponds to the so-called von Kármán regime. (For an exhaustive
treatment of different scaling regimes we refer the reader to [24].) As y3 scales like
h, see (2.8), a suitable choice for the scaling of the forces in (2.11) is therefore h3,
that is, we set β2 = 3. Moreover, we choose β1 = 4 − pα for some 0 < α < 1.
On the one hand, this will imply that ‖∇2

h Ỹ h,τ‖L p(�) is small, more precisely, of
order hα , cf. (2.4)(iii). On the other hand, α < 1 will ensure that the higher order
perturbation will vanish in the effective two-dimensional limiting model.

Based on this discussion, we introduce the rescaled nonlinear energy φh :
W 2,p(�;R3) → [0,∞] by

φh(y) = h−4 I 4−pα,3
h (y) = 1

h4

∫

�

W (∇h y(x)) dx

+ 1

hαp

∫

�

P(∇2
h y(x)) dx − 1

h

∫

�

f (x)y3(x) dx (2.14)

for y ∈ Sh . Similarly, for y0, y1 ∈ Sh , the rescaled global dissipation distance is
given by

Dh(y0, y1) = h−2D(y0, y1) = h−2
( ∫

�

D2(∇h y0,∇h y1)
)1/2

. (2.15)

Following the discussion in [24], for y ∈ Sh we introduce the corresponding aver-
aged, scaled in-plane and out-of-plane displacements which measure the deviation
from the mapping (x ′, 0):

u(x ′) := 1

h2

∫

I

( (
yh
1

yh
2

)
(x ′, x3) −

(
x1
x2

))
dx3, v(x ′) := 1

h

∫

I
yh
3 (x ′, x3) dx3,

(2.16)

where again I = (− 1
2 ,

1
2 ). In a similar fashion, given a time-discrete solution

Ỹ h,τ , we introduce averaged functions Ũ h,τ and Ṽ h,τ dependent on (t, x ′). Via the
minimizing movement scheme, we will later see that along a sequence (Ỹ h,τ (t))h,τ

we get Ũ h,τ (t) ⇀ u(t) weakly in W 1,2(S;R2) and Ṽ h,τ (t) → v(t) strongly in
W 1,2(S) with v(t) ∈ W 2,2(S) for each t � 0, when h, τ → 0. The main goal of
our work is to understand which equations are solved by (u(t), v(t)).

Quadratic forms: To formulate the effective two-dimensional problem for
the scaled in-plane and out-of-plane displacements, we need to consider various
quadratic forms. First, we define Q3

W : R3×3 → R by Q3
W (F) = ∂2

F2W (Id)[F, F].
One can show that it depends only on the symmetric part 1

2 (F� + F) and that it
is positive definite on R

3×3
sym = {A ∈ R

3×3 : A = A�}, cf. Lemma 4.1. We also

introduce Q2
W : R2×2 → R by

Q2
W (G) = min

a∈R3
Q3

W (G∗ + a ⊗ e3 + e3 ⊗ a) (2.17)
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for G ∈ R
2×2, where the entries of G∗ ∈ R

3×3 are given by G∗
i j = Gi j for

i, j ∈ {1, 2} and zero otherwise. Note that (2.17) corresponds to a minimization
over stretches in the e3 direction. We will assume that the minimum in (2.17) is
attained for a = 0. Similarly, we define

Q3
D(F)=1

2
∂2

F2
1

D2(Id, Id)[F, F], Q2
D(G)= min

a∈R3
Q3

D(G∗+a ⊗ e3+e3 ⊗ a).

(2.18)

( Notice that Q3
D(F) = 2R(Id, F) with R from (2.6).) We again assume that the

minimum is attained for a = 0.
The assumption that a = 0 is a minimum in (2.17)–(2.18) corresponds to a

model with zero Poisson’s ratio in the e3 direction. This assumption is not needed
in the purely static analysis [24,28]. In our setting, it is only needed in the proof
of lower semicontinuity of slopes, see Theorem 5.10. Dropping this assumption
would lead to a considerably more involved limiting description which we do not
want to pursue here. We refer to Remark 5.11 for some details in that direction.

We also introduce corresponding symmetric fourth order tensors Cd
W and C

d
D ,

d = 2, 3, satisfying

Q3
W (F) = C

3
W [F, F] ∀F ∈ R

3×3, Q2
W (G) = C

2
W [G, G] ∀G ∈ R

2×2,

(2.19)

and likewise for Cd
D , d = 2, 3.

Equations of viscoelasticity in two dimensions: We now present the effective
two-dimensional equations. By recalling definition (2.16) and the boundary con-
ditions in the three-dimensional setting (2.8), we first introduce the relevant space
by

S0 = {(u, v) ∈ W 1,2(S;R2) × W 2,2(S) : u = û, v = v̂, ∇′v = ∇′v̂ on ∂S}.
(2.20)

The clamped boundary conditions correspond to the ones considered in [28]. We
emphasize that Neumann conditions in (2.10) on the lateral boundary arising from
the second deformation gradient do not affect the plate equations (2.21) below since
our scaling makes the second gradient vanish as the thickness of the domain tends
to zero.

Given (u0, v0) ∈ S0, we consider the equations⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

div2
(
C
2
W

(
e(u) + 1

2∇′v ⊗ ∇′v
) + C

2
D

(
e(∂t u) + ∇′∂tv � ∇′v

)) = 0,

−div2
((

C
2
W

(
e(u) + 1

2∇′v ⊗ ∇′v
) + C

2
D

(
e(∂t u) + ∇′∂tv � ∇′v

))∇′v
)

+ 1
12 div2 div2

(
C
2
W (∇′)2v + C

2
D(∇′)2∂tv

)
= f in [0,∞) × S

u(0, ·) = u0, v(0, ·) = v0 in S
(u(t, ·), v(t, ·)) ∈ S0 for t ∈ [0,∞),

(2.21)

where C
2
W and C

2
D are defined in (2.19), and � denotes the symmetrized tensor

product. Note that the frame indifference of the energy and the dissipation (see
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(2.3)(ii) and (2.7)(v), respectively) imply that the contributions only depend on
the symmetric part of the strain e(u) := 1

2 (∇′u + (∇′u)�) and the strain rate
e(∂t u) := 1

2 (∂t∇′u + ∂t (∇′u)�). Here, div2 denotes the distributional divergence
in dimension two.

We also say that (u, v) ∈ W 1,2([0,∞);S0) is a weak solution of (2.21) if
u(0, ·) = u0, v(0, ·) = v0 and for a.e. t � 0 we have

∫

S

(
C
2
W

(
e(u) + 1

2∇′v ⊗ ∇′v
) + C

2
D

(
e(∂t u) + ∇′∂tv � ∇′v

)) : ∇′ϕu = 0,

(2.22a)∫

S

(
C
2
W

(
e(u) + 1

2∇′v ⊗ ∇′v
) + C

2
D

(
e(∂t u) + ∇′∂tv � ∇′v

)) : (∇′v � ∇′ϕv

)

+ 1

12

∫

S

(
C
2
W (∇′)2v + C

2
D(∇′)2∂tv

)
: (∇′)2ϕv =

∫

S
f ϕv (2.22b)

for all ϕu ∈ W 1,2
0 (S;R2) and ϕv ∈ W 2,2

0 (S). Note that (2.22a) corresponds to two
scalar equations and (2.22b) corresponds to one scalar equation, respectively. Our
goal will be to show that time-discrete solutions to (2.10), as introduced in (2.13),
converge to weak solutions to (2.21) in a suitable sense.

We also mention that the equations are related to the von Kármán functional

φ0(u, v) :=
∫

S

1

2
Q2

W

(
e(u) + 1

2
∇′v ⊗ ∇′v

)
+ 1

24
Q2

W ((∇′)2v) −
∫

S
f v (2.23)

for (u, v) ∈ S0; actually, we will also see that φ0 can be related to φh (see (2.14)) in
the sense of �-convergence, cf. Section 5.2 below. A similar relation holds forDh ,
introduced in (2.15), and the global dissipation distance in the two-dimensional
setting, defined by

D0((u0, v0), (u1, v1))

:=
( ∫

S
Q2

D

(
e(u1) − e(u0) + 1

2
∇′v1 ⊗ ∇′v1 − 1

2
∇′v0 ⊗ ∇′v0

)

+ 1

12
Q2

D

(
(∇′)2v1 − (∇′)2v0

))1/2
(2.24)

for (u0, v0), (u1, v1) ∈ S0.

2.3. Main results

Define the sublevel sets S M
h := {y ∈ Sh : φh(y) � M}. Our general strategy

will be to show that the spaces (S M
h ,Dh) and (S0,D0) are complete metric spaces

(see Lemma 4.5 and Lemma 4.6 below) and to follow the methodology developed
in [3].

To show the existence of solutions to the equations, we will apply the theory
of [3] about curves of maximal slope. By using the property that in Hilbert spaces
curves ofmaximal slope canbe related to gradient flows,we thenfindweak solutions
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to (2.21). To understand the relation of solutions in the three-dimensional and two-
dimensional setting, we will employ an abstract convergence result for curves of
maximal slope and their approximation via the minimizing movement scheme, see
[36,41]. The relevant results about curves of maximal slope are recalled in Section
3.

Our first main result addresses the existence of time-discrete solutions to the
three-dimensional problem.

Proposition 2.1. (Time-discrete solutions in the three-dimensional setting)Let M >

0 andS M
h = {y ∈ Sh : φh(y) � M}. Let β1 = 4−αp and β2 = 3. Let yh

0 ∈ S M
h .

Then, for h > 0 sufficiently small only depending on M, the sequence of minimiza-
tion problems in (2.12) has a solution, and gives rise to a time-discrete solution
Ỹ h,τ with Ỹ h,τ (0) = yh

0 .

Note that the existence of weak (time-continuous) solutions to (2.10) has been
addressed in [22] for bulk materials. However, due to the thinness of the domain
representing the body and the imposed boundary conditions, the results obtained
there are not applicable. This is due to the fact that specific constants depend on
the domain and blow up for vanishing thickness. Therefore, here we only prove the
existence of time-discrete solutions.

For the main definitions and notation for curves of maximal slope and strong
upper gradients we refer to Section 3.1. In particular, we write |∂φ0|D0 for the
(local) slopes, see Definition 3.1. For the two-dimensional problem we obtain the
following results:

Theorem 2.2. (Solutions in the two-dimensional setting) The limiting two-dimen-
sional problem has the following properties:

(i) (Curves of maximal slope) For all (u0, v0) ∈ S0 there exists a curve of
maximal slope (u, v) : [0,∞) → S0 for φ0 with respect to the strong upper
gradient |∂φ0|D0 satisfying (u, v)(0) = (u0, v0).

(ii) (Relation to PDE) For all (u0, v0) ∈ S0, each curve of maximal slope
(u, v) : [0,∞) → S0 with (u, v)(0) = (u0, v0) is a weak solution to the partial
differential equations (2.21) in the sense of (2.22).

We mention that in [23, Theorem 4.1] we provide a slightly different proof of
Theorem 2.2(i), without using the fact that the two-dimensional model is the limit
of the time-discrete three-dimensionalmodel. However, the proof still heavily relies
on the properties of φ0, D0, and |∂φ0|D0 derived in the present paper.

Finally, we study the relation of time-discrete solutions (2.13) and weak solu-
tions to the equations (2.21). To this end, we need to specify the topology of the
convergence. Given yh ∈ Sh and (u, v) ∈ S0, we say yh πσ→ (u, v) as h → 0 if the
corresponding averaged and scaled displacements fields defined in (2.16), denoted
by uh and vh , satisfy uh ⇀ u weakly in W 1,2(S;R2) and vh → v strongly in
W 1,2(S). (The symbol πσ is used because of the abstract convergence result, see
Section 3.2.)

Theorem 2.3. (Relation between three-dimensional and two-dimensional systems)
Let β1 = 4 − pα and β2 = 3. Let (u0, v0) ∈ S0 be an initial datum.
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(i) Then, for the family of sequences of initial data we have

B(u0, v0) = {
(yh

0 )h : yh
0 ∈ Sh, yh

0
πσ→ (u0, v0), φh(yh

0 ) → φ0((u0, v0))
} �= ∅.

(2.25)

(ii) We consider a sequence (yh
0 )h ∈ B(u0, v0), a null sequence (τh)h, and a

sequence of time-discrete solutions Ỹ h,τh as in (2.13) with Ỹ h,τh (0) = yh
0 .

Then, there exists a curve of maximal slope (u, v) : [0,∞) → S0 for φ0 with
respect to |∂φ0|D0 satisfying u(0) = u0 andv(0) = v0 such that up to a subsequence
(not relabeled) it holds that

Ỹ h,τh (t)
πσ→ (u(t), v(t)), φh(Ỹ h,τh (t))

→ φ0(u(t), v(t)) for all t ∈ [0,∞) as h → 0.

We point out that (2.25) corresponds to the existence of recovery sequences
for the static problem. We note that the existence of the time-discrete solutions
Ỹ h,τh in (ii) is guaranteed by Proposition 2.1. Item (ii) shows the convergence
of time-discrete solutions to (2.10) to (time-continuous) weak solutions to (2.21).
Moreover, we also have convergence of the energies. From now on we set f ≡ 0
for convenience. The general case indeed follows with minor modifications, which
are standard.

3. Preliminaries: Curves of Maximal Slope

In this section we recall the relevant definitions about curves of maximal slope
and present a convergence result of time-discrete solutions to curves of maximal
slope.

3.1. Definitions

We consider a complete metric space (S ,D). We say a curve y : (a, b) → S
is absolutely continuous with respect to D if there exists m ∈ L1(a, b) such that

D(y(s), y(t)) �
∫ t

s
m(r) dr for all a � s � t � b.

The smallest function m with this property, denoted by |y′|D, is called metric
derivative of y and satisfies for a.e. t ∈ (a, b) (see [3, Theorem 1.1.2] for the
existence proof)

|y′|D(t) := lim
s→t

D(y(s), y(t))

|s − t | .

We define the notion of a curve of maximal slope. We only give the basic definition
here and refer to [3, Section 1.2, 1.3] for motivations and more details. By h+ :=
max(h, 0) we denote the positive part of a function h.
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Definition 3.1. (Upper gradients, slopes, curves of maximal slope) We consider a
complete metric space (S ,D) with a functional φ : S → (−∞,+∞].

(i) A function g : S → [0,∞] is called a strong upper gradient for φ if for
every absolutely continuous curve y : (a, b) → S the function g ◦ y is Borel and

|φ(y(t)) − φ(y(s))| �
∫ t

s
g(y(r))|y′|D(r) dr for all a < s � t < b.

(ii) For each y ∈ S the local slope of φ at y is defined by

|∂φ|D(y) := lim sup
z→y

(φ(y) − φ(z))+

D(y, z)
.

(iii) An absolutely continuous curve y : (a, b) → S is called a curve of
maximal slope for φ with respect to the strong upper gradient g if for a.e. t ∈ (a, b)

d

dt
φ(y(t)) � −1

2
|y′|2D(t) − 1

2
g2(y(t)).

3.2. Curves of maximal slope as limits of time-discrete solutions

We consider a sequence of completemetric spaces (Sk,Dk)k , as well as a limit-
ing completemetric space (S ,D).Moreover, let (φk)k be a sequence of functionals
with φk : Sk → [0,∞] and φ : S → [0,∞].

We introduce time-discrete solutions for the energy φk and the metric Dk by
solving suitable time-incrementalminimizationproblems: consider afixed time step
τ > 0 and suppose that an initial datum Y 0

k,τ is given. Whenever Y 0
k,τ , . . . , Y n−1

k,τ

are known, Y n
k,τ is defined as (if existent)

Y n
k,τ = argminv∈Sk


k(τ, Y n−1
k,τ ; v), 
k(τ, u; v) := 1

2τ
Dk(v, u)2 + φk(v).

(3.1)

We suppose that for a choice of τ a sequence (Y n
k,τ )n∈N solving (3.1) exists. Then

we define the piecewise constant interpolation by

Ỹ k,τ (0) = Y 0
k,τ , Ỹ k,τ (t) = Y n

k,τ for t ∈ ((n − 1)τ, nτ ], n � 1. (3.2)

We call Ỹ k,τ a time-discrete solution. Note that the existence of such solutions is
usually guaranteed by the direct method of the calculus of variations under suitable
compactness, coercivity, and lower semicontinuity assumptions.

Our goal is to study the limit of time-discrete solutions as k → ∞. To this
end, we need to introduce a suitable topology for the convergence. First, although
D naturally induces a topology on the limiting space S , it is often convenient
to consider a weaker Hausdorff topology σ on S to have more flexibility in the
derivation of compactness properties (see [3, Remark 2.0.5]). We assume that for
each k ∈ N there exists a map πk : Sk → S . Given a sequence (zk)k , zk ∈ Sk ,
and z ∈ S , we say

zk
πσ→ z if πk(zk)

σ→ z. (3.3)
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We suppose that the topology σ satisfies

zk
πσ→ z, z̄k

πσ→ z̄ ⇒ lim inf
k→∞ Dk(zk, z̄k) � D(z, z̄). (3.4)

Moreover, assume that there exists a σ -sequentially compact set KN ⊂ S such
that for all k ∈ N

{πk(z) : z ∈ Sk, φk(z) � N } ⊂ KN . (3.5)

Specifically, for a sequence (zk)k with φk(zk) � N , we find a subsequence (not

relabeled) and z ∈ S such that πk(zk)
σ→ z. We suppose lower semicontinuity

of the energies and the slopes in the following sense: for all z ∈ S and (zk)k ,
zk ∈ Sk , we have

zk
πσ→ z ⇒ lim inf

k→∞ |∂φk |Dk (zk) � |∂φ|D(z), lim inf
k→∞ φk(zk) � φ(z).

(3.6)

We now formulate the main convergence result of time-discrete solutions to
curves of maximal slope, proved in [36, Section 2].

Theorem 3.2. Suppose that (3.4)–(3.6) hold. Moreover, assume that |∂φ|D is a
strong upper gradient for φ. Consider a null sequence (τk)k . Let (Y 0

k,τk
)k with

Y 0
k,τk

∈ Sk and z̄0 ∈ S be initial data satisfying

(i) supk D
(
πk

(
Y 0

k,τk

)
, z̄0

)
< +∞,

(i i) Y 0
k,τk

πσ→ z̄0, φk(Y
0
k,τk

) → φ(z̄0). (3.7)

Then for each sequence of discrete solutions (Ỹ k,τk )k starting from (Y 0
k,τk

)k there
exists a limiting function z : [0,+∞) → S such that up to a subsequence (not
relabeled)

Ỹ k,τk (t)
πσ→ z(t), φk(Ỹ τk (t)) → φ(z(t)) ∀t � 0

as k → ∞, and z is a curve of maximal slope for φ with respect to |∂φ|D. In
particular, z satisfies the energy identity

1

2

∫ T

0
|z′|2D(t) dt + 1

2

∫ T

0
|∂φ|2D(z(t)) dt + φ(z(T )) = φ(z̄0) ∀T > 0. (3.8)

The statement is a combination of convergence results for curves of maximal
slope [22,41] with their approximation by time-discrete solutions via the minimiz-
ing movement scheme. We refer to [22, Theorem 3.6] for an abstract convergence
result for curves of maximal slope in a setting where conditions (3.4)–(3.6) hold.
We also mention the version in the seminal work [41] where condition (3.4) is
replaced by a lower bound condition on the metric derivatives along the sequence.

For the proof of Theorem 3.2 we refer to [36, Section 2]. We also mention [22,
Theorem 3.7] for a formulation of the result which is a bit closer to the statement
given here. Strictly speaking, in [36], only the case of a single metric space is
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considered. The generalization to a sequence of spaces, however, is straightforward,
cf. [41, equation (2.7)]. Note that the nonnegativity of the energies φk can be
generalized to a suitable coerciveness condition; see [3, (2.1.2b)] or [36, (2.5)].
This is not included here for the sake of simplicity.

Let us alsomention the recently obtained variant [14]where it is not necessary to
require that |∂φ|D is a strong upper gradient, cf. [3, Definition 1.2.1 and Definition
1.2.2] for the definition of strong and weak upper gradients. This comes at the
expense of the fact that the lower semicontinuity along the sequence (φk)k (see (3.6))
has to be replaced by a continuity condition along (φk)k for sequences (πk(zk))k

converging with respect to the metric D.

4. Properties of Energies and Dissipation Distances

In this section we prove basic properties of the energies and dissipation dis-
tances, and we establish properties for the local slope in the two-dimensional set-
ting. Let h > 0 and 0 < α < 1. We recall the definition of the nonlinear energy
and the dissipation distance in (2.14) and (2.15), respectively. We also recall (2.8)
and the notation for the sublevel setsS M

h = {y ∈ Sh : φh(y) � M}. In the whole
section, C � 1 and 0 < c � 1 indicate generic constants, which may vary from
line to line and depend on M , S, the exponent p > 3 (see (2.4)), α, on the constants
in (2.3), (2.4), (2.7), and on the boundary data û and v̂. However, all constants are
always independent of the small parameter h and the deformations y.

4.1. Basic properties

We start with some properties about the Hessian of W and D2. By ∂2D2 we
denote the Hessian and by ∂2

F2
1

D2, ∂2
F2
2

D2 the Hessian in direction of the first or

second entry of D2, respectively. Moreover, we define sym(F) = 1
2 (F + F�) for

F ∈ R
d×d , d = 2, 3. Recall the definitions of the quadratic forms in (2.17)–(2.18).

By Id ⊂ R
3×3 we again denote the identity matrix.

Lemma 4.1. (Properties of Hessian) (i) ∂2
F2
1

D2(Y, Y ) = ∂2
F2
2

D2(Y, Y ) for all Y ∈
R
3×3 in a neighborhood of SO(3) such that ∂2D2(Y, Y ) exists.

(ii) There exists a constant c > 0 such that Qd
W (F) = Qd

W (sym(F)) �
c|sym(F)|2 and Qd

D(F) = Qd
D(sym(F)) � c|sym(F)|2 for all F ∈ R

d×d ,
d = 2, 3.

(iii) There exists C > 0 such that for all F0, F1 ∈ R
3×3 in a neighborhood

of SO(3) there holds |W (F1) − W (F0) − 1
2 (Q3

W (F1 − Id) − Q3
W (F0 − Id))| �∑3

k=1 C |F0 − Id|3−k |F1 − F0|k .

Proof. For the proof of (i) and (ii) we refer to [22, Lemma 4.1]. To see (iii), we
perform a Taylor expansion. First, we find

W (F1) = W (F0) + DW (F0) : (F1 − F0)
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+ 1
2 D2W (F0)[F1 − F0, F1 − F0] + O(|F1 − F0|3).

We observe that DW (F0) = DW (Id) + D2W (Id)(F0 − Id) +O(|F0 − Id|2) and
DW (Id) = 0 by (2.3)(iii). Moreover, |D2W (F0) − D2W (Id)| � C |F0 − Id| by
the regularity of W . Thus, we get

W (F1) = W (F0) + D2W (Id)[F0 − Id, F1 − F0] + 1
2 D2W (Id)[F1 − F0, F1 − F0]

+ O(|F0 − Id||F1 − F0|2) + O(|F0 − Id|2|F1 − F0|) + O(|F1 − F0|3). (4.1)

By recalling that Q3
W (F) = D2W (Id)[F, F] for F ∈ R

3×3 and the fact that
D2W (Id)[·, ·] is symmetric in the two entries, an elementary computation yields

Q3
W (F1 − Id) − Q3

W (F0 − Id) = 2D2W (Id)

[F0 − Id, F1 − F0] + D2W (Id)[F1 − F0, F1 − F0]. (4.2)

The result follows by combination of (4.1) and (4.2). ��
The following geometric rigidity result will be a key ingredient for our analysis:

Lemma 4.2. (Rigidity in thin domains) For h sufficiently small, for all y ∈ S M
h

there exists a mapping R(y) ∈ W 1,2(S; SO(3)) satisfying

(i) ‖∇h y − R(y)‖2L2(�)
� Ch4,

(i i) ‖∇h y − Id‖2L2(�)
� Ch2,

(i i i) ‖∇′ R(y)‖2L2(S)
� Ch2

(iv) ‖R(y) − Id‖Lq (S) � Cq h,

(v) ‖∇h y − Id‖L∞(�) � Chα,

(vi) ‖R(y) − Id‖L∞(S) � Chα, (4.3)

where Cq depends also on q ∈ [1,∞). (In (i), R(y) is extended to�by R(y)(x ′, x3) =
R(y)(x ′).)

Proof. Property (i) is based on geometric rigidity [23] and is proved in [24,
Theorem 6, Remark 5], where we use that ‖ dist(∇h y, SO(3))‖2

L2(�)
� C Mh4 by

(2.3)(iii), (2.14), and the fact that y ∈ S M
h . Also (ii)-(iv) are proved there with

a rotation Q̄ in place of Id. The fact that we may choose Q̄ = Id is due to the
boundary conditions, which break the rotational invariance, see [28, Lemma 13].

We now show (v). By the definition of φh and (2.4)(iii) we get ‖∇2
h y‖L p(�) �

Chα for all y ∈ S M
h , where the constant depends on M . In particular, by (2.1)–(2.2)

this implies

‖∇ y,3‖L p(�) � ‖∇h y,3‖L p(�) = h‖∇h h−1y,3‖L p(�) � h‖∇2
h y‖L p(�) � Ch1+α.

As p > 3, Poincaré’s inequality yields some F ∈ R
3×3 such that

‖∇′y − (Fe1, Fe2)‖L∞(�) � C‖∇2y‖L p(�) � C‖∇2
h y‖L p(�) � Chα,
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‖y,3 − hFe3‖L∞(�) � C‖∇ y,3‖L p(�) � Ch1+α

for a constant additionally depending on� and p. This implies ‖∇h y− F‖L∞(�) �
Chα . Along with (ii), the triangle inequality, and α < 1 we obtain |F −Id| � Chα .
This concludes the proof of (v).

Finally, we show (vi). A careful inspection of the proof of [24, Theorem 6]
shows that R(y)(x ′) may be defined as the nearest-point projection onto SO(3) of

∫

I

∫

x ′+h(−1,1)2

1

h2ψ
( x ′ − z′

h

)
∇h y(z′, z3) dz′ dz3,

where I = (−1/2, 1/2) and ψ ∈ C∞
c ((−1, 1)2) denotes a standard mollifier, that

is, ψ � 0 and
∫
(−1,1)2 ψ = 1. Then (vi) follows from (v). ��

By Lemma 4.2 we get that ∇h y is approximated by the SO(3)-valued function
R(y). As the energy is invariant under rotations, the energy of y is essentially
controlled by the distance of R(y)�∇h y from Id. To this end, we introduce the
quantity

Gh(y) := R(y)�∇h y − Id
h2 . (4.4)

In what follows we set for shorthand HY := 1
2∂

2
F2
1

D2(Y, Y ) = 1
2∂

2
F2
2

D2(Y, Y )

for Y ∈ R
3×3 in a neighborhood of SO(3). Given a deformation y ∈ S M

h , we
also introduce the mapping H∇h y : � → R

3×3×3×3 by H∇h y(x) = H∇h y(x) for
x ∈ �. Note that this is well defined for h sufficiently small by (4.3)(v). Recall
the definition of Dh and D0 in (2.15) and (2.24), respectively, and the definition of
Q3

W , Q3
D in (2.17)–(2.18).

Lemma 4.3. (Dissipation and energy) Let h sufficiently small. Then, for all
y, y0, y1 ∈ S M

h and all open subsets U ⊂ � we have

(i)
∣∣∣
∫

U
D2(∇h y0,∇h y1) −

∫

U
Q3

D(∇h y1 − ∇h y0)
∣∣∣ � Chα‖∇h y1 − ∇h y0‖2L2(U )

,

(i i)
∣∣∣Dh(y0, y1)

2 −
∫

�

Q3
D

(
Gh(y0) − Gh(y1)

)∣∣∣ � Chα‖Gh(y0) − Gh(y1)‖2L2(�)
� Chα,

(i i i) |�(y)| � Chα, where �(y) := 1

h4

∫

�

W (∇h y) −
∫

�

1

2
Q3

W (Gh(y)),

(iv) |�(y0) − �(y1)| � Chα‖Gh(y0) − Gh(y1)‖L2(�) � Chα.

Proof. As a preparation, we observe that by the uniform bound on ∇h y0, ∇h y1
(see (4.3)(v)) and a Taylor expansion at (∇h y0,∇h y0)we obtain for all open subsets
U ⊂ �

∣∣∣
∫

U
D2(∇h y0,∇h y1) −

∫

U
H∇h y0 [∇h(y1 − y0),∇h(y1 − y0)]

∣∣∣
� C‖∇h(y1 − y0)‖3L3(U )

. (4.5)
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We recall (4.4) and define G(yi ) := h2Gh(yi ) = R(yi )
�∇h yi − Id, i = 0, 1, for

convenience. Using the separate frame indifference (2.7)(v) we have
∫

�

D2(∇h y0,∇h y1) =
∫

�

D2(R(y0)
�∇h y0, R(y1)

�∇h y1
)
.

Thus, by h4Dh(y0, y1)2 = ∫
�

D2(∇h y0,∇h y1) and again by Taylor expansion we
also get

∣∣∣h4Dh(y0, y1)
2 −

∫

�

HR(y0)�∇h y0

[G(y1) − G(y0), G(y1) − G(y0)]
∣∣∣ � C‖G(y1) − G(y0)‖3L3(�)

. (4.6)

We now show (i). By the regularity of D and (4.3)(v) we get ‖H∇h y0 −C
3
D‖∞ �

Chα , where the fourth order tensor C3
D associated to Q3

D is defined in (2.19).
Therefore, we obtain

∣∣∣
∫

U
H∇h y0 [∇h(y1 − y0),∇h(y1 − y0)] −

∫

U
Q3

D(∇h y1 − ∇h y0)
∣∣∣

� Chα‖∇h y1 − ∇h y0‖2L2(U )

for all open U ⊂ �. By using (4.5) and again (4.3)(v) we get (i).
To see (ii), we observe ‖HR(y0)�∇h y0 −C

3
D‖∞ � C‖∇h y0 − R(y0)‖∞ � Chα

by the regularity of D and (4.3)(v),(vi). Thus, we get
∣∣∣
∫

�

HR(y0)�∇h y0 [G(y1) − G(y0), G(y1) − G(y0)] −
∫

�

Q3
D

(
G(y1) − G(y0)

)∣∣∣
� Chα‖G(y1) − G(y0)‖2L2(�)

. (4.7)

In a similar fashion, (4.3)(v),(vi) also imply ‖G(yi )‖∞ � Chα for i = 0, 1 and
thus

‖G(y1) − G(y0)‖3L3(�)
� Chα‖G(y1) − G(y0)‖2L2(�)

.

This together with (4.6)–(4.7) (divided by h4), andGh(yi ) = h−2G(yi ) for i = 0, 1
yields
∣∣∣Dh(y0, y1)

2 −
∫

�

Q3
D

(
Gh(y0) − Gh(y1)

)∣∣∣ � Chα‖Gh(y0) − Gh(y1)‖2L2(�)
.

This shows the first inequality of (ii). To see the second inequality, we use (4.3)(i)
and (4.4).

We now show (iii) and (iv). We use the frame indifference of W and Lemma 4.1
(iii) (with Fi = R(yi )

�∇h yi = Id + G(yi ) for i = 0, 1) to obtain

|�(y1) − �(y0)| � Ch−4
∑3

k=1∫

�

|R(y0)
�∇h y0 − Id|3−k |R(y1)

�∇h y1 − R(y0)
�∇h y0|k
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= Ch−4
∑3

k=1

∫

�

|G(y0)|3−k |G(y1) − G(y0)|k

� Ch−4
∫

�

(|G(y1)| + |G(y0)|)2|G(y1) − G(y0)|,

where �(y0) and �(y1) are defined in the statement of the lemma. The fact that
‖G(yi )‖∞ � Chα for i = 0, 1 (see (4.3)(v),(vi)) and Hölder’s inequality yield

|�(y1)−�(y0)| � Chα−4(‖G(y0)‖L2(�)+‖G(y1)‖L2(�)

) ‖G(y1)−G(y0)‖L2(�).

Using Gh(yi ) = h−2G(yi ) for i = 0, 1 and (4.3)(i) we obtain the first inequality of
(iv). The second inequality follows again by (4.3)(i). Finally, to see (iii), we apply
(iv) for y0 = y and y1 = id, where we use �(y1) = 0. ��

4.2. Metric spaces and their properties

In this section we prove that (S M
h ,Dh) and (S0,D0) are complete metric

spaces. We start with the three-dimensional setting. Recall the definition of φh and
Dh in (2.14)–(2.15). As a preparation, we address the positivity of Dh .

Lemma 4.4. (Positivity ofDh) Let M > 0 and let h sufficiently small. Let y0, y1 ∈
S M

h with Dh(y0, y1) = 0. Then y0 = y1.

Proof. It is convenient to formulate the problem for the original (not rescaled)
functions w0 and w1 defined on �h = S × (− h

2 , h
2 ). To explain the main idea,

we first assume that �h is the union of pairwise disjoint cubes of sidelength h up
to a set of negligible measure. Denote the family of cubes by Q. By Q1 ⊂ Q we
denote the cubes whose boundaries share at least one face with ∂S × (− h

2 , h
2 ). Let

Q2 ⊂ Q \ Q1 be the cubes whose boundaries share at least one face with a cube
in Q1. In a similar fashion, we define Qi , i � 2, and find Q = ⋃I

i=1Qi for some
I ∈ N.

We now first show that w0 = w1 on each Q ∈ Q1. To this end, fix Q ∈ Q1.
From Lemma 4.3(i) (in terms of w0, w1 instead of y0, y1) we get

∣∣∣
∫

Q
D2(∇w0,∇w1) −

∫

Q
Q3

D(∇w1 − ∇w0))

∣∣∣ � Chα‖∇w1 − ∇w0‖2L2(Q)
.

(4.8)

Since w1 = w0 on ∂S × (− h
2 , h

2 ), we get that w1 = w0 on at least one face of ∂ Q.
Then Korn’s inequality (see, for example, [24, Proposition 1]) implies

‖∇w1 − ∇w0‖2L2(Q)
� C‖sym(∇w1 − ∇w0)‖2L2(Q)

.

Together with Lemma 4.1(ii) this shows

‖∇w1 − ∇w0‖2L2(Q)
� C

∫

Q
Q3

D(∇w1 − ∇w0). (4.9)
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For h sufficiently small, (4.8)–(4.9) along with
∫

Q D2(∇w0,∇w1) = 0 show
∇w1 = ∇w0 almost everywhere on Q. Since w1 = w0 on at least one face of
∂ Q, this also gives w1 = w0 almost everywhere on Q, as desired.

We now proceed iteratively to show that w1 = w0 on each Q ∈ Q: suppose
that the property has already been shown for all Q ∈ ⋃ j

i=1Qi . Then w1 = w0 on
each Q ∈ Q j+1 follows from the above arguments noting that w1 = w0 on at least

one face of ∂ Q since w1 = w0 on all squares Q ∈ ⋃ j
i=1Qi .

This shows w1 = w0 on �h in the case that �h is the union of pairwise disjoint
cubes of sidelength h up to a set of negligible measure. In the general case, we
may cover �h by cubes of sidelength h, again denoted by Q, such that for each
Q ∈ Q the set Q ∩ �h is bilipschitzly equivalent to a cube of sidelength h with a
controlled Lipschitz constant. We note that the constant in Korn’s inequality can be
chosen uniformly for these sets. We may again decomposeQ into pairwise disjoint
families (Qi )i and show iteratively that w1 coincides with w0 on all cubes. ��
Lemma 4.5. (Properties of (S M

h ,Dh) and φh) Let M > 0. For h > 0 sufficiently
small we have

(i) (S M
h ,Dh) is a complete metric space.

(ii) Compactness: If (yn)n ⊂ S M
h , then (yn)n admits a subsequence converging

weakly in W 2,p(�;R3) and strongly in W 1,∞(�;R3).
(iii) Topologies: The topology induced by Dh coincides with the weak W 2,p(�;R3)

topology.
(iv) Lower semicontinuity: Dh(yn, y) → 0 ⇒ lim infn→∞ φh(yn) � φh(y).

Proof. We start with (ii). We recall (2.4)(iii) and (2.14), and find ‖∇2
h y‖p

L p(�) �
C Mh pα for all y ∈ S M

h . This together with (4.3)(v) and the boundary conditions
(2.8) shows supy∈S M

h
‖y‖W 2,p(�) < ∞. Since p > 3, (ii) follows from a standard

compactness argument.
We now show (iii). (a) We first suppose that yn ⇀ y weakly in W 2,p(�;R3).

As p > 3, this implies yn → y strongly in W 1,∞(�;R3) and thus Dh(yn, y) → 0
by dominated convergence. (b) On the other hand, assume that Dh(yn, y) → 0.
Item (ii) yields that a subsequence (not relabeled) of (yn)n converges weakly in
W 2,p(�;R3) to some ỹ. By (a) we find Dh(yn, ỹ) → 0. The triangle inequality,
see (2.7)(iii), then shows Dh(y, ỹ) � limn→∞(Dh(y, yn) + Dh(yn, ỹ)) = 0. This
yields y = ỹ by Lemma 4.4, and therefore yn ⇀ y weakly in W 2,p(�;R3). As
the limit is independent of the subsequence, the convergence actually holds for the
whole sequence.

The proof of (iv) follows again by the dominated convergence theorem and the
convexity of P , see (2.4)(ii).

Finally, we show (i). Apart from the positivity, all properties of a metric follow
directly from (2.7) and (2.15). The positivity has has been addressed in Lemma
4.4. It therefore remains to show that (S M

h ,Dh) is complete. Let (yk)k ⊂ S M
h be

a Cauchy sequence with respect to Dh . By (ii) and (iii) we find y ∈ W 2,p(�;R3)

and a subsequence (not relabeled) such that limk→∞ Dh(yk, y) = 0. By (iv) and
the trace theorem we get y ∈ S M

h . The fact that (yk)k is a Cauchy sequence
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now implies that the whole sequence yk converges to y with respect to Dh . This
concludes the proof. ��

Similar properties can be derived in the two-dimensional setting. Recall the
definition of φ0 andD0 in (2.23) and (2.24), respectively. For convenience, we will
use the notations

e(u) = sym(∇′u), B(v1, v2) = 1

2
sym(∇′v1 ⊗ ∇′v2). (4.10)

Lemma 4.6. (Properties of (S0,D0) and φ0) We have:

(i) (S0,D0) is a complete metric space.
(ii) Compactness: If (un, vn)n ⊂ S0 is a sequence with supn φ0(un, vn) < +∞,

then (un, vn)n is bounded in W 1,2(S;R2) × W 2,2(S).
(iii) Topologies: The metrics D0 and d((u, v), (u′, v′)) := ‖u − u′‖W 1,2(S) + ‖v −

v′‖W 2,2(S) are equivalent. In particular, ‖v−v′‖W 2,2(S) � CD0((u, v), (u′, v′))
for C = C(S) > 0.

(iv) Continuity: D0((un, vn), (u, v)) → 0 ⇒ limn→∞ φ0(un, vn) = φ0(u, v).

Proof. We first prove (ii). By Lemma 4.1(ii) and the triangle inequality we find

‖e(u)‖2L2(S)
� C

∫

S
Q2

W

(
e(u) + B(v, v)

) + C‖B(v, v)‖2L2(S)

for a universal constantC > 0. This, togetherwithKorn’s and Poincaré’s inequality,
and the fact that u = û on ∂S, gives

‖u‖2W 1,2(S)
� C‖u − û‖2W 1,2(S)

+ C‖û‖2W 1,2(S)
� C‖e(u − û)‖2L2(S)

+ C‖û‖2W 1,2(S)

� C‖û‖2W 1,2(S)
+ C‖B(v, v)‖2L2(S)

+ C
∫

S
Q2

W

(
e(u) + B(v, v)

)
. (4.11)

Now consider (u, v) ∈ S0 with φ0(u, v) � M for M > 0. Then by Lemma 4.1(ii)
and (2.23) we find ‖(∇′)2v‖L2(S) � C , where the constant depends on M . Since
v = v̂ and ∇′v = ∇′v̂ on ∂S, by an argumentation similar to (4.11) we also get

‖v‖W 2,2(S) � ‖v − v̂‖W 2,2(S) + ‖v̂‖W 2,2(S) � C‖(∇′)2(v − v̂)‖L2(S) + ‖v̂‖W 2,2(S) � C,

(4.12)

where the constant additionally depends on ‖v̂‖W 2,2(S). Then φ0(u, v) � M to-
gether with (4.11) and the embedding W 2,2 ↪→ W 1,4 (in dimension two) yields
‖u‖W 1,2(S) � C , where the constant also depends on ‖û‖W 1,2(S). This shows prop-
erty (ii).

We now address (iii). As a preparation, consider (u0, v0), (u1, v1) ∈ S0. Ar-
guing similarly as before, using Lemma 4.1(ii) and Poincaré’s inequality, we find
that

‖v0 − v1‖2W 2,2(S)
� C

∫

S
Q2

D

(
(∇′)2v0 − (∇′)2v1

)
. (4.13)
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Here, we used that v0 and v1 as well as their first derivatives coincide on ∂S.
Repeating the argumentation leading to (4.11) we find that

‖u0 − u1‖2W 1,2(S)
� C‖e(u0) − e(u1)‖2L2(S)

� C
∫

S

(|B(v0, v0) − B(v1, v1)|2 + Q2
D

(
e(u0 − u1)

+ B(v0, v0) − B(v1, v1)
))

. (4.14)

Here, in the first step, we used Korn’s and Poincaré’s inequality. In the second step,
we applied Lemma 4.1(ii) and the triangle inequality.

We now suppose that D0((un, vn), (u, v)) → 0 (see (2.24)). Then vn → v

strongly in W 2,2(S) by (4.13). This also implies vn → v in W 1,4(S) and thus,
in view of (4.14), we find that un → u strongly in W 1,2(S;R2). Therefore, the
sequence converges with respect to the metric d defined in the statement of (iii).
Conversely, given a sequence (un, vn)n with un → u strongly in W 1,2(S;R2)

and vn → v in W 2,2(S), we also get vn → v in W 1,4(S). We observe that D0
is continuous with respect to this convergence, that is, D0((un, vn), (u, v)) → 0.
This yields the equivalence of the metrics, and (4.13) shows the second part of (iii).

The proof of (iv) is similar, noting also that φ0 is continuous with respect to the
topology induced by D0, see (2.23).

We finally prove (i). The positivity and the completeness follow from (iii).
Thus, the only thing left to show is the triangle inequality. This can be derived by
an elementary computation, using that D2

0 is the sum of two quadratic forms. We
omit the details. ��

Remark 4.7. For later purposes, we remark that the proof of (ii) can be generalized:
a similar argument shows that for given (ũ, ṽ) ∈ S0 and v ∈ W 2,2(S) we get

∫

S
|e(ũ) + sym(∇′ṽ ⊗ ∇′v)|2 +

∫

S
|(∇′)2ṽ|2 + ‖v‖W 2,2(S) � M

⇒ ‖ũ‖W 1,2(S) + ‖ṽ‖W 2,2(S) � C,

where C depends on M , û and v̂. This follows by repeating the argument in (4.11)–
(4.12) andusing‖B(ṽ, v)‖L2(S) � C‖ṽ‖W 1,4(S)‖v‖W 1,4(S) �C‖ṽ‖W 2,2(S)‖v‖W 2,2(S).

4.3. Generalized geodesics and properties of slopes in the two-dimensional setting

In this section, we first derive convexity properties for the energy and the dis-
sipation distance in the two-dimensional setting along generalized geodesics. (We
refer to [33, Section 3.2, Section 3.4] for a discussion about generalized geodesics
in a related problem.) Afterwards, we derive fundamental properties for the local
slope which will be instrumental to use the theory in [3]. For M > 0, we define the
sublevel setsS M

0 = {(u, v) ∈ S0 : φ0(u, v) � M}.
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Lemma 4.8. (Convexity and generalized geodesics in the two-dimensional setting)
Let M > 0. Then there exist smooth functions 
1,
2

M : [0,∞) → [0,∞) satisfy-
ing limt→0 
1(t)/t = 1 and limt→0 
2

M (t)/t = 0 such that for all (u0, v0) ∈ S M
0

and all (u1, v1) ∈ S0 we have

(i) D0
(
(u0, v0), (us, vs)

)
� s
1(D0

(
(u0, v0), (u1, v1)

))
,

(i i) φ0(us, vs) � (1 − s)φ0(u0, v0)+sφ0(u1, v1)+s
2
M

(D0
(
(u0, v0), (u1, v1)

))
,

where us := (1 − s)u0 + su1 and vs := (1 − s)v0 + sv1, s ∈ [0, 1].
Proof. For convenience, we first introduce some abbreviations and provide some
preliminary estimates. We let D = D0((u0, v0), (u1, v1)). We use the notation de-
fined in (4.10) and also set Bdiff = B(v0−v1, v0−v1). Particularly, byLemma4.6(iii)
and a Sobolev embedding we observe that

‖Bdiff‖L2(S) � C‖∇′v0 − ∇′v1‖2L4(S)
� C‖v0 − v1‖2W 2,2(S)

� C D2. (4.15)

For brevity, we also introduce

Gs
0 = e(us) + B(vs, vs) (4.16)

for s ∈ [0, 1]. (The notation G0 is borrowed from [24], see also Lemma 5.3 below.)
With the definition of D0 in (2.24) and Lemma 4.1(ii) we get

‖G1
0 − G0

0‖2L2(S)
� C

∫

S
Q2

D(G1
0 − G0

0) � C D2. (4.17)

Similarly, we observe by (2.23) (with f ≡ 0), Lemma 4.1(ii), and the fact that
(u0, v0) ∈ S M

0 , that

‖G0
0‖2L2(S)

� C
∫

S
Q2

W (G0
0) � Cφ0(u0, v0) � C M. (4.18)

We now start with the proof of (i). First, we observe

1

12

∫

S
Q2

D((∇′)2vs − (∇′)2v0) = s2
1

12

∫

S
Q2

D((∇′)2v1 − (∇′)2v0).

We will show that there exists C > 0 independent of s such that
∫

S
Q2

D(Gs
0 − G0

0) � s2
∫

S
Q2

D(G1
0 − G0

0) + Cs2D3 + Cs2D4 (4.19)

for s ∈ [0, 1]. Then recalling the definition of D0 in (2.24), (i) follows for the
function 
1(t) = √

t2 + Ct3 + Ct4. To show (4.19), recalling (4.10), we obtain
by an elementary expansion

B(vs, vs) − B(v0, v0) = s
(
B(v1, v1) − B(v0, v0)

) − s(1 − s)(
B(v0, v0) + B(v1, v1) − 2B(v0, v1)

)

= s(B(v1, v1) − B(v0, v0)) − s(1 − s)B(v0 − v1, v0 − v1)

= s(B(v1, v1) − B(v0, v0)) − s(1 − s)Bdiff ,
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where the last equality follows from the definition of Bdiff . By recalling (4.16) this
implies

Gs
0 − G0

0 = s
(
G1

0 − G0
0 − (1 − s)Bdiff

)
. (4.20)

Recalling alsoC2
D in (2.19), an expansion and the Cauchy-Schwartz inequality then

yield
∫

S
Q2

D(Gs
0 − G0

0) = s2
∫

S
Q2

D(G1
0 − G0

0) + s2(1 − s)2
∫

S
Q2

D(Bdiff)

− 2s2(1 − s)
∫

S
C
2
D[G1

0 − G0
0, Bdiff ]

� s2
∫

S
Q2

D(G1
0 − G0

0) + Cs2‖Bdiff‖2L2(S)

+ Cs2‖G1
0 − G0

0‖L2(S)‖Bdiff‖L2(S).

By using (4.15) and (4.17) we now see that (4.19) holds. This concludes the proof
of (i).

Recall the definition of φ0 in (2.23). We show (ii) for the function 
2
M (t) =

C
√

Mt2+Ct3+Ct4 for someC > 0.Due to convexity of s �→ ∫
S

1
24 Q3

W ((∇′)2vs),
it suffices to show

1

2

∫

S
Q2

W (Gs
0) dx ′ � 1 − s

2

∫

S
Q2

W (G0
0)

+ s

2

∫

S
Q2

W (G1
0) + C

√
Ms D2 + Cs D3 + Cs2D4. (4.21)

In view of (2.19) and (4.20), an elementary expansion yields

Q2
W (Gs

0)

= Q2
W (G0

0 + Gs
0 − G0

0) = Q2
W

(
(1 − s)G0

0 + sG1
0 − s(1 − s)Bdiff

)

= (1 − s)Q2
W (G0

0) + s Q2
W (G1

0) − (1 − s)s Q2
W (G0

0 − G1
0)

− 2s(1 − s)2C2
W [G0

0, Bdiff ] − 2s2(1 − s)C2
W [G1

0, Bdiff ]
+ s2(1 − s)2Q2

W (Bdiff).

Then taking the integral we obtain
∫

S
Q2

W (Gs
0) � (1 − s)

∫

S
Q2

W (G0
0) + s

∫

S
Q2

W (G1
0)

+ Cs
(‖G0

0‖L2(S) + ‖G1
0‖L2(S)

)‖Bdiff‖L2(S) + Cs2‖Bdiff‖2L2(S)
.

By using ‖G1
0‖L2(S) � ‖G0

0‖L2(S) +‖G1
0 − G0

0‖L2(S), (4.15), and (4.17)–(4.18) we
get (4.21). This concludes the proof of (ii). ��

Now we derive representations and properties of the local slope corresponding
to φ0. Recall the notation S M

0 = {(u, v) ∈ S0 : φ0(u, v) � M}.
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Lemma 4.9. (Local slope in the two-dimensional setting) Let M > 0. The local
slope for the energy φ0 admits the representation

|∂φ0|D0(u, v) = sup
(u′,v′)∈S0

(u′,v′) �=(u,v)

(
φ0(u, v) − φ0(u′, v′) − 
2

M

(D0((u, v), (u′, v′))
))+


1
(D0((u, v), (u′, v′))

)

for all (u, v) ∈ S M
0 , where 
1 and 
2

M are the functions from Lemma 4.8. The
slope is a strong upper gradient for φ0.

Proof. We follow the lines of the proofs of Theorem 2.4.9 and Corollary 2.4.10
in [3]. Let M > 0 and (u, v) ∈ S M

0 . Let
1,
2
M be the functions fromLemma 4.8,

and recall that limt→0 
1(t)/t = 1 and limt→0 
2
M (t)/t = 0. We recall the defi-

nition of the local slope in Definition 3.1 and obtain

|∂φ0|D0(u, v) = lim sup
(u′,v′)→(u,v)

(φ0(u, v) − φ0(u′, v′))+

D0((u, v), (u′, v′))

= lim sup
(u′,v′)→(u,v)

(
φ0(u, v) − φ0(u′, v′) − 
2

M

(D0((u, v), (u′, v′))
))+


1
(D0((u, v), (u′, v′))

)

� sup
(u′,v′) �=(u,v)

(
φ0(u, v) − φ0(u′, v′) − 
2

M

(D0((u, v), (u′, v′))
))+


1
(D0((u, v), (u′, v′))

) ,

where the supremum is taken over functions in S0. In the second equality we
used that (u′, v′) → (u, v) means D0((u, v), (u′, v′)) → 0, and the fact that
limt→0 
1(t)/t = 1 and limt→0 
2

M (t)/t = 0.
To see the other inequality, we fix (u′, v′) �= (u, v). It is not restrictive to

suppose that

φ0(u, v) − φ0(u
′, v′) − 
2

M

(D0((u, v), (u′, v′))
)

> 0.

Define us = (1− s)u + su′ and vs = (1− s)v + sv′ for s ∈ [0, 1]. By Lemma 4.8
with (u0, v0) = (u, v) and (u1, v1) = (u′, v′) we get

φ0(u, v) − φ0(us, vs)

D0((u0, v0), (us, vs))
�

sφ0(u, v) − sφ0(u′, v′) − s
2
M

(D0((u, v), (u′, v′))
)

s
1
(D0((u, v), (u′, v′))

) .

Note (us, vs) → (u, s) as s → 0 with respect to the topology induced by D0, see
Lemma 4.6(iii). Therefore,

|∂φ|D0(u, v) �
φ0(u, v) − φ0(u′, v′) − 
2

M

(D0((u, v), (u′, v′))
)


1
(D0((u, v), (u′, v′))

) .

The claim now follows by taking the supremum with respect to (u′, v′).
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It remains to show that |∂φ0|D0 is a strong upper gradient. Let us first recall
from [3, Lemma 1.2.5] that in the complete metric space (S0,D0), the global slope

Gφ0(u, v) := sup
(u′,v′)∈S0

(u′,v′) �=(u,v)

(φ0(u, v) − φ0(u′, v′))+

D0((u, v), (u′, v′))
(4.22)

is a strongupper gradient forφ0 sinceφ0 isD0-lower semicontinuous (seeLemma4.6
(iv)). Moreover, [3, Lemma 1.2.5] also states that |∂φ0|D0 is a weak upper gradient
for φ0 in the sense of [3, Definition 1.2.2]. We do not repeat the definition of weak
upper gradients, but only mention that weak upper gradients are also strong upper
gradients if for each absolutely continuous curve z : (a, b) → S0 with respect
to D0 satisfying |∂φ0|D0(z)|z′|D0 ∈ L1(a, b), the function φ0 ◦ z is absolutely
continuous.

To check that φ0 ◦ z is absolutely continuous, we first extend the curve z con-
tinuously to [a, b] and introduce the compact metric spaceS ′ = z([a, b])with the
metric induced byD0. Choose M > 0 such thatS ′ ⊂ S M

0 , which is possible due
to (2.23), (2.24), and the fact that diam(S ′) := sups,t∈[a,b] D0(z(s), z(t)) < +∞.
Let G′

φ0
be the global slope as introduced in (4.22) with respect to S ′ (instead of

S0). The representation of the local slope implies

G′
φ0

(u, v) = sup
(u′,v′)∈S ′

(u′,v′) �=(u,v)

(φ0(u, v) − φ0(u′, v′))+

D0((u, v), (u′, v′))
� C1|∂φ0|D0(u, v) + C2

for all (u, v) ∈ S ′ ⊂ S M
0 , where

C1 := sup
t∈[0,diam(S ′)]


1(t)

t
< +∞,

C2 := sup
t∈[0,diam(S ′)]


2
M (t)

t
< +∞.

In particular, since |∂φ0|D0(z)|z′|D0 ∈ L1(a, b), it followsG′
φ0

(z)|z′|D0 ∈ L1(a, b).
As discussed above, G′

φ0
is a strong upper gradient. Thus, we indeed get that φ0 ◦ z

is absolutely continuous, see Definition 3.1. ��

5. Relation Between Three-Dimensional and Two-Dimensional Setting

In this section we consider sequences (yh)h with yh ∈ S M
h = {y ∈ Sh :

φh(y) � M}. In Section 5.1 we derive compactness properties and identify suitable
limiting objects in terms of scaled in-plane and out-of-plane displacement fields.
Afterwards, in Section 5.2 we derive a �-convergence result and prove lower semi-
continuity for the local slopes along the passage from the three-dimensional to the
two-dimensional setting. As in Section 4, C > 0 indicates a generic constant which
is independent of h, but may depend on M , S, p > 3, α ∈ (0, 1), on the constants
in (2.3), (2.4), (2.7), and the boundary data û and v̂.
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5.1. Compactness and identification of limiting strain

Given yh ∈ S M
h , we define the averaged, scaled in-plane and out-of-plane

displacement fields by

uh(x ′) := 1

h2

∫

I

((
yh
1

yh
2

)
(x ′, x3) −

(
x1
x2

) )
dx3, vh(x ′) := 1

h

∫

I
yh
3 (x ′, x3) dx3,

(5.1)

where I = (− 1
2 ,

1
2 ). By recalling the boundary conditions (2.8) and (2.20) we

observe (uh, vh) ∈ S0.
In view of the rigidity estimate in Lemma 4.2, a deformation yh ∈ S M

h is
close to the affine map (x ′, x3) �→ (x ′, hx3) and thus the displacements defined in
(5.1) are suitably controlled. More specifically, we have the following compactness
result.

Lemma 5.1. (Compactness for displacements) Consider a sequence (yh)h with
yh ∈ S M

h for all h. Then up to passing to a subsequence (not relabeled) we find
(u, v) ∈ S0 such that

uh ⇀ u weakly in W 1,2(S;R2),

vh → v strongly in W 1,2(S). (5.2)

For the proof we refer to [24, Lemma 1] and [28, Lemma 13].

Remark 5.2. (Ansatz for recovery sequences) Note that the convergence results in
Lemma 5.1 are compatible with the ansatz

yh(x ′, x3) =
(

x ′
hx3

)
+

(
h2u(x ′)
hv(x ′)

)
− h2x3

(
(∇′v(x ′))�

0

)
+ h3x3dh(x ′), (5.3)

for (u, v) ∈ S0 and dh ∈ W 2,∞
0 (S;R3), which additionally satisfy the regularity

‖u‖W 2,∞(S) + ‖v‖W 3,∞(S) + √
h‖dh‖W 2,∞(S) � C ′. (5.4)

We observe that the boundary conditions (2.8) are satisfied, that is, yh ∈ Sh . For
later purposes, we note that the scaled gradient is given by

∇h yh = Id +
(

h2∇′u −h(∇′v)�
h∇′v 0

)
− h2x3

(
(∇′)2v 0

0 0

)

+ h2dh ⊗ e3 + h3x3(∇′dh | 0). (5.5)

We also note that the (scaled) second gradient has the form

(∇′)2yh =
(

h2(∇′)2u − h2x3(∇′)3v
h(∇′)2v

)
+ h3x3(∇′)2dh,

1

h
∇′yh

,3

=
(−h(∇′)2v

0

)
+ h2∇′dh
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and 1
h2

yh
,33 = 0. By (5.4) this implies ‖(∇′)2yh‖∞ � Ch, ‖∇′( 1h yh

,3)‖∞ � Ch

and yh
,33 = 0 for a constant C depending on C ′. Consequently, by using α < 1 and

(2.4)(iii) we compute

lim sup
h→∞

1

hαp

∫

�

P(∇2
h yh)

� lim sup
h→∞

C

hαp

∫

�

(∣∣∣(∇′)2yh
∣∣∣

p +
∣∣∣∇′(1

h
yh
,3

)∣∣∣
p +

∣∣∣ 1
h2 yh

,33

∣∣∣
p)

� lim
h→0

Ch p(1−α) = 0. (5.6)

Later in Theorem5.6 andTheorem5.10wewill use this ansatz to construct recovery
sequences for the energy and the dissipations. We remark that, on the one hand,
our ansatz is slightly simpler than the one in [24, (119)] since we consider a model
with zero Poisson’s ratio in e3 direction, see Remark 5.7 and Remark 5.11 for
more details. On the other hand, some additional effort arises from the fact that our
three-dimensional model contains second gradient terms.

In (4.4)wehave already introduced the quantityGh(yh) = h−2(R(yh)�∇h yh−
Id) which essentially controls the energy of yh . By (4.3)(i) we get that Gh(yh)

converges weakly in L2 (up to a subsequence) to some G. The next result shows
that the symmetric part of the in-plane components of G can be identified in terms
of the in-plane displacement u and the out-of-plane displacement v.

Lemma 5.3. (Identification of scaled limiting strain) Consider the setting of
Lemma 5.1. Let R(yh) : S → SO(3) be the corresponding mappings from Lemma
4.2. Then

1

h
(R(yh) − Id) → A(v) := e3 ⊗ ∇′v − ∇′v ⊗ e3 in Lq(S;R3×3), 1 � q < ∞.

(5.7)

Moreover, we find G ∈ L2(�;R3×3) such that

Gh(yh) = R(yh)�∇h yh − Id
h2 ⇀ G weakly in L2(�;R3×3).

The 2 × 2 submatrix G ′′ given by G ′′
i j = Gi j for i, j ∈ {1, 2} satisfies

G ′′(x ′, x3) = G0(x ′) + x3G1(x ′)

with

sym(G0) = e(u) + 1

2
∇′v ⊗ ∇′v and G1 = −(∇′)2v.

Here, we again use the notation e(u) = sym(∇′u), see (4.10). For the proof
we refer to [24, Lemma 1, Lemma 2] (see also [28, Lemma 16]) from which we
also adopted the notation for ease of readability. Note that, in fact, an inspection
of the proof shows that the mappings R(yh) introduced there can be chosen as the
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ones from Lemma 4.2. In particular, the result shows that the relevant components
of G are affine in the thickness variable x3. In the following, we will also use the
notation

G(u, v)(x ′, x3) = sym(G0)(x ′) + x3G1(x ′) = e(u) + 1

2
∇′v ⊗ ∇′v − x3(∇′)2v.

(5.8)

Note that G(u, v) ∈ L2(�;R2×2
sym ).

Remark 5.4. Using (5.8) and the fact that Q2
W only depends on the symmetric part

of matrices (see Lemma 4.1(ii)), the energy φ0(u, v) defined in (2.23) (with f ≡ 0)
can be written as

φ0(u, v) =
∫

S

(1
2

Q2
W (G0) + 1

24
Q2

W (G1)
)

=
∫

S

∫ 1/2

−1/2

1

2
Q2

W (G0(x ′) + x3G1(x ′)) dx3 dx ′ =
∫

�

1

2
Q2

W (G(u, v)).

(5.9)

In view of the definition of D0 in (2.24), a similar computation yields
∫

�

Q2
D

(
G(u1, v1) − G(u2, v2)

) = D0
(
(u1, v1), (u2, v2)

)2
. (5.10)

In what follows we will mainly use the representation in terms of an integral over�
as it is convenient for many proofs. Only at the very end we will pass to an integral
over S as indicated in (5.9)–(5.10).

The next lemma, pertaining to strong convergence of strain differences, will be
instrumental in the proof of the lower semicontinuity of the local slopes. We in-
troduce the notation W 2,p

0,∂S(�;R3) = {y ∈ W 2,p(�;R3) : y(x ′, x3) = 0 for x ′ ∈
∂S, x3 ∈ I }, where I = (− 1

2 ,
1
2 ). We also define skew(F) = 1

2 (F − F�) for
F ∈ R

3×3.

Lemma 5.5. (Strong convergence of strain differences) Let M > 0. Let (yh)h be
a sequence with yh ∈ S M

h and let (zh
s )s,h ⊂ W 2,p

0,∂S(�;R3), h > 0, s ∈ (0, 1), be
functions such that

(i) ‖∇hzh
s ‖L∞(�) + ‖∇2

h zh
s ‖L∞(�) � Msh.

(i i) ‖sym(∇hzh
s )‖L2(�) � Msh2

(i i i)
∣∣skew(∇hzh

s )(x ′, x3) −
∫

I
skew(∇hzh

s )(x ′, x3) dx3
∣∣

� Msh5/2 for a.e. x ∈ �,

(iv) there exist Es, Fs ∈ L2(�;R3×3) for s ∈ (0, 1),

and η(h) → 0 as h → 0 such that
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‖h−2sym(∇hzh
s ) − Es‖L2(�) + ‖h−1skew(∇hzh

s ) − Fs‖L2(�) � sη(h).

(5.11)

Then the following holds for a subsequence of (yh)h (not relabeled):
(a) For all h sufficiently small, wh

s := yh + zh
s lies in S M ′

h for some M ′ =
M ′(M) > 0.

(b) Let (Gh(yh))h, (Gh(wh
s ))h be the sequences in Lemma 5.3 and let G y, Gs

w

be their limits. Then there exists C = C(M) > 0 and ρ(h) with ρ(h) → 0 as
h → 0 such that

(i)
∥∥(

Gh(yh) − Gh(wh
s )

) − (
G y − Gs

w

)∥∥
L2(�)

� sρ(h),

(i i) ‖Gh(yh) − Gh(wh
s )‖L2(�) � Cs.

(c) Let (u, v) and (ūs, v̄s) be limits corresponding to yh and wh
s , respectively,

as given in Lemma 5.1. Then sym(Gs
w − G y) e3 = Es e3 − 1

2 (|∇′v|2 − |∇′v̄s |2)e3
almost everywhere in �.

Wenote thatweak convergence of the strain differences is already guaranteed by
Lemma 5.3. The important point here is that we actually obtain strong convergence
with linear control in terms of s, see (b). Moreover, (c) provides a characterization
of the out-of-plane components of the limiting strain difference. Later in the proof
of Theorem 5.10 we will use this lemma to construct competitor sequences for the
local slope in the three-dimensional setting.

Proof. Let R(yh) be the SO(3)-valued mappings given by Lemma 4.2. For
brevity, we introduce notations for the symmetric and skew-symmetric part of
∇hzh

s by

E(zh
s ) = sym(∇hzh

s ), F(zh
s ) = skew(∇hzh

s ), F(zh
s ) =

∫

I
F(zh

s ) dx3.

The crucial point is to find a suitable SO(3)-valued mapping R(wh
s ) associated to

wh
s = yh + zh

s satisfying the properties stated in Lemma 4.2 (Step 1). Once R(wh
s )

has been defined, we can prove properties (a)-(c) (Step 2).
Step 1: Definition of R(wh

s ). We first define

R̃ = R(yh)
(
Id + F(zh

s ) − 1
2 F(zh

s )�F(zh
s )

)

on S. By (4.3)(iii) and (5.11)(i) we can check that R̃ is in a small tubular neighbor-
hood of SO(3) and satisfies ‖∇′ R̃‖2

L2(S)
� Ch2. We let R(wh

s ) ∈ W 1,2(S; SO(3))

be the map obtained from R̃ by nearest-point projection on SO(3), see [24, Remark
5] for a similar argument. By (5.11)(i) and F(zh

s )(x ′) ∈ R
3×3
skew for all x ′ ∈ S, it is

elementary to check that

∥∥R(wh
s ) − R(yh)

(
Id + F(zh

s ) − 1
2 F(zh

s )�F(zh
s )

)∥∥
L∞(S)

� C‖F(zh
s )‖3L∞(S) � Csh3.
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Indeed, this follows from the fact that |((Id+ A− 1
2 A� A)�(Id+ A− 1

2 A� A))1/2−
Id| � C |A|3 for all A ∈ R

3×3
skew. Along with (5.11)(iii) we thus get

∥∥R(wh
s ) − R(yh)

(
Id + F(zh

s ) − 1
2 F(zh

s )�F(zh
s )

)∥∥
L∞(�)

� Csh5/2. (5.12)

We now check that R(wh
s ) satisfies the properties stated in Lemma 4.2, see (4.3).

First, ‖∇′ R̃‖2
L2(S)

� Ch2 implies ‖∇′ R(wh
s )‖2

L2(S)
� Ch2. Moreover, (5.11)(i),

(5.12), and the fact that R(yh) satisfies (4.3)(iv) shows ‖R(wh
s ) − Id‖Lq (S) � Cq h

forq ∈ [1,∞). In a similar fashion, (4.3)(vi) andα < 1 yield ‖R(wh
s )−Id‖L∞(S) �

Chα . It thus remains to check (4.3)(i), that is, that

‖R(wh
s )�∇hwh

s − Id‖2L2(�)
� Ch4 (5.13)

holds. For notational convenience, we denote by ωh
i ∈ L2(�;R3×3), i ∈ N,

(generic) matrix valued functions whose L2-norm is controlled in terms of a con-
stant independent of h and s. By (4.3)(v) (applied for yh), (5.11)(i), and (5.12) we
find

R(wh
s )�∇hwh

s = (
Id + F(zh

s ) − 1
2 F(zh

s )�F(zh
s )

)�
R(yh)�(∇h yh + ∇h zh

s ) + sh5/2ωh
1 .

(5.14)

We now consider the asymptotic expansion of R(yh)�(∇h yh + ∇hzh
s ) in terms of

h: in view of (5.11)(ii), ∇hzh
s = E(zh

s ) + F(zh
s ), and ‖R(yh) − Id‖L∞(�) � Chα

(see (4.3)(vi)) we find

R(yh)�(∇h yh + ∇hzh
s ) = R(yh)�(∇h yh + F(zh

s )) + E(zh
s ) + h2+αsωh

2 .

In a similar fashion, by using (4.3)(i),(iv) (for yh) and (5.11)(i),(ii), we compute

R(yh)�(∇h yh + ∇hzh
s ) = Id + R(yh)�F(zh

s ) + h2ωh
3 = Id + F(zh

s ) + h2ωh
4

as well as

R(yh)�(∇h yh + ∇hzh
s ) = Id + hωh

5 .

By inserting these three estimates in (5.14) and using (5.11)(i) we find

R(wh
s )�∇hwh

s = R(yh)�(∇h yh + F(zh
s )) + E(zh

s ) + F(zh
s )� + F(zh

s )�F(zh
s )

− 1
2 F(zh

s )�F(zh
s ) + s(h5/2 + h2+α) ωh

6

= R(yh)�∇h yh + (R(yh) − Id)�F(zh
s )

+ E(zh
s ) + 1

2 F(zh
s )�F(zh

s ) + sωh
6o(h

2), (5.15)

where in the last step we used F(zh
s )� + F(zh

s ) = 0. We now check that (5.13)
holds. Indeed, it suffices to use (5.15), (5.11)(i),(ii),ωh

6 ∈ L2(�;R3×3), and the fact
that (4.3)(i),(iv) holds for yh . In conclusion, this implies that the mapping R(wh

s )

satisfies the properties stated in Lemma 4.2.
Step 2: Proof of the statement. We are now in a position to prove the statement.
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(a) By (4.3)(v) and (5.11)(i),∇hwh
s is in a neighborhood of Id. Thus, by (2.3)(iii)

there holds
∫
�

W (∇hwh
s ) � C

∫
�
dist2(∇hwh

s , SO(3)), and then by (5.13) we get∫
�

W (∇hwh
s ) � M ′h4 for some M ′ sufficiently large (depending on M). More-

over, from (2.4)(iii) and the triangle inequality we get P(∇2
hwh

s ) � C P(∇2
h yh) +

C P(∇2
h zh

s ). Therefore, by possibly passing to a larger M ′, we obtain h−αp
∫
�

P(∇2
h

wh
s ) � M ′ by (2.4)(iii), (5.11)(i), α < 1, and the fact that yh ∈ S M

h . Summarizing,

since zh
s ∈ W 2,p

0,∂S(�;R3) and thus wh
s also satisfies the boundary conditions (2.8),

we have shown that wh
s ∈ S M ′

h for some M ′ = M ′(M) > 0 independent of h. In
particular, this implies that the statement of Lemma 4.2 holds for wh

s with R(wh
s )

as defined in Step 1.
(b) By (u, v) we denote the limit corresponding to yh as given in Lemma 5.1.

Recalling the definition Gh(yh) = h−2(R(yh)�∇h yh − Id) we find by (5.7),
(5.11)(iv), and (5.15) that
∥∥(

Gh(wh
s ) − Gh(yh)

) − (
A(v)�Fs + Es + 1

2 (Fs)�Fs)∥∥
L2(�)

� sρ(h), (5.16)

where ρ(h) → 0 as ρ → 0. By Gs
w and G y we denote the weak L2-limits of

Gh(wh
s ) and Gh(yh), respectively, which exist by Lemma 5.3. Then (5.16) implies

Gs
w − G y = A(v)�Fs + Es + 1

2 (Fs)�Fs, (5.17)

and the first part of (b) holds. The second part of (b) is a consequence of (4.3)(iv)
(for yh), (5.11)(i),(ii), (5.15), and the fact that ωh

6 ∈ L2(�;R3×3).
(c) By (ūs, v̄s)we denote the limit corresponding towh

s as given in Lemma 5.1.
By (5.7) (for wh

s and yh , respectively), (5.11)(i),(iv), and (5.12) we observe that
pointwise almost everywhere in � it holds that

A(v̄s) = lim
h→0

1

h
(R(wh

s ) − Id) = lim
h→0(1

h
(R(yh) − Id)(Id + F(zh

s )) + 1

h
F(zh

s )
)

= A(v) + Fs .

Then by (5.17) and an expansion we get

sym(Gs
w − G y) = Es + sym(A(v)�Fs) + 1

2 (Fs)�Fs

= Es + 1
2 (A(v̄s))

� A(v̄s) − 1
2 (A(v))� A(v)

= Es − 1
2 (A(v̄s))

2 + 1
2 (A(v))2,

where in the last step we used that A(v) ∈ R
3×3
skew pointwise almost everywhere in

� and thus A(v)� A(v) = −(A(v))2. Therefore, recalling the definition of A(v) in
(5.7) we obtain

sym(Gs
w − G y) e3 = Es e3 + 1

2 (A(v))2 e3 − 1
2 (A(v̄s))

2 e3

= Es e3 − 1
2 (|∇′v|2 − |∇′v̄s |2)e3.

This concludes the proof. ��
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5.2. �-convergence and lower semicontinuity of slopes

In this section we establish a �-convergence result for the energies which
is essentially proved in [24,28]. However, some adaptions are necessary due to
the second order perturbation P in the energy. For an exhaustive treatment of �-
convergence we refer the reader to [18]. Afterwards, we prove lower semicontinuity
for the dissipation distances and the local slopes which is fundamental to use the
theory in [36,41] (see also Section 3.2, in particular (3.4) and (3.6)).

We first fix a topology for the convergence of the scaled in-plane and out-of-
plane displacements induced by the compactness result in Section 5.1, see (5.2).We
define mappings πh : Sh → S0 by πh(yh) = (uh, vh) for each yh ∈ Sh , where
uh and vh are the scaled in-plane and out-of-plane displacements corresponding to
yh (see (5.1)). We say that

πh(yh) = (uh, vh)
σ→ (u, v) if uh ⇀ u in W 1,2(S;R2) and vh → v in W 1,2(S).

(5.18)

We also say that yh πσ→ (u, v) if πh(yh)
σ→ (u, v), cf. (3.3). Recall the definitions

(2.14) and (2.23).

Theorem 5.6. (�-convergence) Suppose that W and P satisfy the assumptions (2.3)
and (2.4). Then φh converges to φ0 in the sense of �-convergence. More precisely,
(i) (Lower bound) For all (u, v) ∈ S0 and all sequences (yh)h such that yh πσ→
(u, v) we find

lim inf
h→0

φh(yh) � φ0(u, v).

(ii) (Optimality of lower bound) For all (u, v) ∈ S0 there exists a sequence (yh)h,
yh ∈ Sh for all h, such that yh πσ→ (u, v) and

lim
h→0

φh(yh) = φ0(u, v).

Proof. (i) The result is essentially proved in [28]. We give here the main steps
for convenience of the reader. By the representation (5.9) and the fact that P is
nonnegative, for the lower bound it suffices to prove

lim inf
h→0

h−4
∫

�

W (∇h yh) �
∫

�

1

2
Q2

W (G(u, v)) (5.19)

for all sequences (yh)h with yh πσ→ (u, v). We may suppose that lim infh→0 φh(yh)

is finite as otherwise there is nothing to prove. Thus, we can assume that yh ∈ S M
h

for M > 0 large enough. By Lemma 4.3(iii) we find

lim inf
h→0

h−4
∫

�

W (∇h yh) = lim inf
h→0

∫

�

1

2
Q3

W

(
Gh(yh)

)
.

Moreover, Lemma 5.1 and Lemma 5.3 imply that, possibly passing to a subse-
quence (not relabeled), Gh(yh) ⇀ G in L2(�;R3×3), where the 2 × 2 subma-
trix G ′′ satisfies sym(G ′′) = G(u, v), see (5.8). This along with the lower semi-
continuity in L2 (note that Q3

W is a positive semidefinite quadratic form) yields
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lim infh→0 h−4
∫
�

W (∇h yh) �
∫
�

1
2 Q3

W (G). The fact that sym(G ′′) = G(u, v)

and (2.17) give the desired lower bound (5.19).
(ii) By a general approximation argument in the theory of �-convergence it

suffices to establish the optimality of the lower bound only for sufficiently smooth
mappings, precisely for u ∈ W 2,∞(S;R2) and v ∈ W 3,∞(S) with

u = û, v = v̂, ∇′v = ∇′v̂ on ∂S. (5.20)

Indeed, a general (u, v) can be approximated strongly in W 1,2(S;R2)×W 2,2(S) by
such functions, see Lemma 5.8 below.Note that the limiting energyφ0 is continuous
with respect to this topology, see Lemma 4.6(iii),(iv).

Let us now construct recovery sequences for u ∈ W 2,∞(S;R2) and v ∈
W 3,∞(S) satisfying (5.20). Define d = − 1

2 |∇′v|2e3 ∈ W 2,∞(S;R3) and let

(dh)h ⊂ W 2,∞
0 (S;R3) with dh → d = − 1

2 |∇′v|2e3 in L2(S;R3) and
suph

√
h‖dh‖W 2,∞(S) < ∞. We take the ansatz for yh as given in Remark 5.2.

In Remark 5.2 we have already discussed that this ansatz is compatible with the
convergence yh πσ→ (u, v). By the representation of the scaled gradient in (5.5), an
elementary computation yields for the nonlinear strain

(∇h yh)�∇h yh = Id + 2h2(e(u) − x3(∇′)2v
) + h2(∇′v ⊗ ∇′v + |∇′v|2e3 ⊗ e3

)

+ 2h2sym(dh ⊗ e3) + O(h5/2),

where we used suph

√
h‖dh‖W 2,∞(S)0 < ∞. Since it holds that dh → d =

− 1
2 |∇′v|2e3 in L2(S;R3) and suph

√
h‖dh‖L∞(�) < ∞, we get

(∇h yh)�∇h yh = Id + 2h2(e(u) + 1
2∇′v ⊗ ∇′v − x3(∇′)2v

) + h2ωh

for functionsωh : � → R
3×3 with ‖ωh‖L2(�) → 0 and suph

√
h‖ωh‖L∞(�) < ∞.

Therefore,

(∇h yh)�∇h yh = Id + 2h2G(u, v)∗ + h2ωh,

whereG(u, v)∗ ∈ L2(�;R3×3)denotes themappingwith (G(u, v)∗)i j=(G(u, v))i j

for 1 � i, j � 2 and zero otherwise, see (5.8). Taking the square root, using the
frame indifference of W , (2.3)(i), and a Taylor expansion, we derive (cf. also [28,
Proposition 19])

1

h4

∫

�

W (∇h yh) = 1

h4

∫

�

W
((

(∇h yh)�∇h yh)1/2) →
∫

�

1

2
Q3

W (G(u, v)∗)

as h → 0. Definition (2.17) (and the assumption that the minimum is attained for
a = 0) yield Q3

W (G(u, v)∗) = Q2
W (G(u, v)). Then (5.9) implies 1

h4
∫
�

W (∇h yh)

→ φ0(u, v). Theproof is nowconcludedbyobserving limh→0 h−αp
∫
�

P(∇2
h yh) =

0; see (5.6). ��
Remark 5.7. We remark that the assumption on Q2

W is actually not needed at the
expense of a more involved recovery sequence, see [24, equation (119)]. However,
the assumption will be instrumental for the lower semicontinuity of slopes, see
Theorem 5.10 and Remark 5.11.
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In the previous proof we have used the following density result:

Lemma 5.8. (Density of smooth functions with same boundary conditions) For
each (u, v) ∈ S0 we find sequences (uh)h ⊂ W 2,∞(S;R2) and (vh)h ⊂ W 3,∞(S)

such that

(i) uh = û, vh = v̂, ∇′vh = ∇′v̂ on ∂S,

(i i) uh → u in W 1,2(S;R2), vh → v in W 2,2(S).

Proof. The proof is standard:we approximate u−û and v−v̂ by smooth functions
with compact support in S and add û ∈ W 2,∞(S;R2), v̂ ∈ W 3,∞(S), respectively.

��

We now proceed with the lower semicontinuity of the dissipation distances.
Recall the definitions in (2.15) and (2.24).

Theorem 5.9. (Lower semicontinuity of dissipation distances) Suppose that D sat-
isfies the assumptions (2.7). Let M > 0. Then for sequences (yh

1 )h and (yh
2 )h,

yh
1 , yh

2 ∈ S M
h , with yh

1
πσ→ (u1, v1) and yh

2
πσ→ (u2, v2) we have

lim inf
h→0

Dh(yh
1 , yh

2 ) � D0
(
(u1, v1), (u2, v2)

)
.

Proof. The argument is similar to the one in (5.19), see the proof of Theo-
rem 5.6(i), with the difference that we employ Lemma 4.3(ii) in place of Lemma 4.3
(iii) and (5.10) in place of (5.9). ��

We close this section with the fundamental property that the local slopes are
lower semicontinuous along the passage from the three-dimensional to the two-
dimensional setting. As emphasized before, this is crucial for the application of the
theory in [36,41], see (3.6). Recall the definition of Q2

W , Q2
D in (2.17)–(2.18). The

fact that the minimum is attained for a = 0 implies

Q3
W (F) = Q2

W (F ′′) + Q3
W (F − F∗),

Q3
D(F) = Q2

D(F ′′) + Q3
D(F − F∗) (5.21)

for all F ∈ R
3×3, where F ′′ denotes the 2 × 2 matrix with entries F ′′

i j = Fi j

for 1 � i, j � 2, and F∗ denotes the 3 × 3 matrix with entries F∗
i j = Fi j for

1 � i, j � 2, and zero otherwise.

Theorem 5.10. (Lower semicontinuity of slopes) For each sequence (yh)h with

yh ∈ S M
h such that yh πσ→ (u, v) we have

lim inf
n→∞ |∂φh |Dh (yh) � |∂φ0|D0(u, v).
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Proof. We divide the proof into several steps. We first define approximations
of (u, v) which allow us to work with more regular functions (Step 1). We then
construct competitor sequences (wh

s )h,s for the local slope in the three-dimensional
setting satisfyingwh

s → yh as s → 0 (Step 2). Afterwards, we identify the limiting
strain of the sequences (wh

s )h (Step 3), and we prove the lower semicontinuity (Step
4). Some technical estimates are contained in Steps 5–7.

Step 1: Approximation. By Lemma 5.8, for ε > 0 we fix uε ∈ W 2,∞(S;R2)

and vε ∈ W 3,∞(S) with (uε, vε) ∈ S0 and

‖uε − u‖W 1,2(S) + ‖vε − v‖W 2,2(S) � ε. (5.22)

This approximation will be necessary to construct sufficiently regular competitor
sequences for the local slope of the three-dimensional setting.

We further fix ũ ∈ W 2,∞(S;R2) and ṽ ∈ W 3,∞(S) with (ũ, ṽ) ∈ S0, and
satisfying ũ �= u, uε, ṽ �= v, vε. The pair (ũ, ṽ) will represent the competitor in
the local slope of the two-dimensional setting, see Lemma 4.9. Below in (5.36), we
will see that by approximation it is enough to work with functions of this regularity.
The convex combinations

(ũs, ṽs) := (1 − s)(uε, vε) + s(ũ, ṽ), s ∈ [0, 1] (5.23)

will be the starting point for the construction of competitor sequences (wh
s )h,s for the

three-dimensional setting. In the following, C̃, Cε denote generic constant which
may vary from line to line, where C̃ may depend on ũ, u, ṽ, v, and Cε additionally
on ε.

Step 2: Construction of competitor sequences (wh
s )h,s . We choose recovery

sequences yh
ε , ỹh

s related to (uε, vε) and (ũs, ṽs), exactly as in the proof of Theorem

5.6(ii): define dε = − 1
2 |∇′vε|2e3, d̃s = − 1

2 |∇′ṽs |2e3 and let (dh
ε )h, (d̃

h
s )h ⊂

W 2,∞
0 (S;R3) be sequences with dh

ε → dε and d̃
h
s → d̃s in L2(S;R3). In view of

(5.23), this can be done in such a way that it holds that

‖d̃
h
s − dh

ε ‖L2(S) � sρ(h),
√

h‖d̃
h
s − dh

ε ‖W 2,∞(S) � Cεs, (5.24)

where ρ(h) depends on vε, ṽ, and satisfies ρ(h) → 0 as h → 0.
We take the ansatz for yh

ε , ỹh
s as given in Remark 5.2 and observe that yh

ε , ỹh
s

satisfy the boundary conditions, that is, zh
s := ỹh

s − yh
ε ∈ W 2,p

0,∂S(�;R3). For h > 0
small and s ∈ [0, 1], we define

wh
s := yh + zh

s = yh − yh
ε + ỹh

s . (5.25)

By (5.24), (5.5)–(5.6) (with ũs, uε and ṽs, vε in place of u and v, respectively) and
the fact that (ũs − uε, ṽs − vε) = s(ũ − uε, ṽ − vε) we see that

(i)‖∇hzh
s ‖L∞(�) + ‖∇2

h zh
s ‖L∞(�) � Cεsh, ‖sym(∇hzh

s )‖L2(�) � Cεsh2,

(i i)
∣∣skew(∇hzh

s )(x ′, x3) −
∫

I
skew(∇hzh

s )(x ′, x3) dx3
∣∣

� Cεsh5/2 for a.e. x ∈ �. (5.26)
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This shows that the assumptions (5.11)(i)–(iii) are satisfied for (zh
s )s,h (for a constant

M = M(Cε)). From (5.5) and (5.24) we also get that (5.11)(iv) holds for suitable

Es and Fs . In particular, by the definition of d̃
h
s and dh

ε we observe that

Es e3 = lim
h→0

1

h2 sym(∇hzh
s ) e3

= lim
h→0

sym
(
(d̃

h
s − dh

ε ) ⊗ e3
)

e3 = 1

2
(|∇′vε|2 − |∇′ṽs |2) e3. (5.27)

Then Lemma 5.5(a) implies wh
s ∈ S M ′

h for a constant M ′ > 0 sufficiently large

depending on ε, but independent of s, h. Thus, by (5.3), (5.25), d̃
h
s → dh

ε in
L2(S;R3) as s → 0 (see (5.24)), and a compactness argument (see Lemma 4.5(ii)),
one can check that

wh
s ⇀ yh in W 2,p(�;R3) as s → 0. (5.28)

Step 3: Identification of limiting strains. Since the ansatz for (yh
ε )h and (ỹh

s )h is
compatible with the convergence results in Lemma 5.1, the convergence in (5.18)
holds, that is, the scaled displacement fields corresponding to (yh

ε )h and (ỹh
s )h

converge to (uε, vε) and (ũs, ṽs), respectively. Thus, in view of (5.25), the scaled
displacement fields corresponding to wh

s converge to (u − uε + ũs, v − vε + ṽs).
In what follows, it will be convenient to work with the convex combination defined
by

(ûε
s , v̂

ε
s ) := (u, v) + s(ũ − uε, ṽ − vε), s ∈ [0, 1]. (5.29)

In fact, by (5.23), we see that the scaled displacement fields corresponding to wh
s

converge to (ûε
s , v̂

ε
s ).

The limits of the mappings Gh(yh) and Gh(wh
s ) given by Lemma 5.3 are de-

noted by G y and Gs
w, i.e, we have (up to a subsequence)

Gh(yh) ⇀ G y, Gh(wh
s ) ⇀ Gs

w weakly in L2(�;R3×3), (5.30)

where the 2 × 2 submatrices G ′′
y and (Gs

w)′′ satisfy

sym(G ′′
y) = G(u, v) sym((Gs

w)′′) = G(ûε
s , v̂

ε
s ), (5.31)

respectively. (Recall notation (5.8).) Above we have checked that the assumptions
(5.11) hold for (zh

s )s,h . We can therefore apply Lemma 5.5(b) and obtain

(i) ‖(Gh(yh) − Gh(wh
s )) − (

G y − Gs
w

)‖L2(�) � sρε(h),

(i i) ‖Gh(yh) − Gh(wh
s )‖L2(�) � Cεs, (5.32)

where ρε(h) depends on ε and satisfies ρε(h) → 0 as h → 0. Moreover, in view
of (5.23) and (5.29), an elementary but tedious computation leads to

|∇′vε|2 − |∇′ṽs |2 − |∇′v|2 + |∇′v̂ε
s |2 = 2s〈∇′vε − ∇′v,∇′vε − ∇′ṽ〉.
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Then (5.27) and Lemma 5.5(c) yield sym(G y − Gs
w) e3 = s〈∇′vε − ∇′v,∇′vε −

∇′ṽ〉 e3. Thus, by (5.22) and Hölder’s inequality we get

‖sym(G y − Gs
w) e3‖L2(�) � s‖∇′ṽ − ∇′vε‖L4(�)‖∇′vε − ∇′v‖L4(�) � C̃sε.

(5.33)

Likewise, by (5.8), (5.29), and (5.31) one can check by an elementary expansion
that

sym(G y − Gs
w) = sg1 + s2g2 for g1, g2 ∈ L2(S;R3×3

sym ), (5.34)

where g1, g2 depend on u, ũ, uε, v, ṽ, vε.
Step 4: Lower semicontinuity of slopes. We will show that there exist a contin-

uous function ηε : [0,∞) → [0,∞) with ηε(0) = 0 and a constant C̃ depending
on u, v, ũ, ṽ such that for all s ∈ [0, 1] it holds that

(i) Dh(yh, wh
s ) � D0

(
(u, v), (ûε

s , v̂
ε
s )

) + sηε(h) + C̃sε,

(i i) h−4
∫

�

(
W (∇h yh) − W (∇hwh

s )
)

� φ0(u, v) − φ0(û
ε
s , v̂

ε
s ) − sηε(h) − C̃sε,

(i i i) h−pα

∫

�

(
P(∇2

h yh) − P(∇2
hwh

s )
)

� −sηε(h). (5.35)

We defer the proof of (5.35) to Steps 5–7 below and now prove the lower semicon-
tinuity. Recall the definition of φh in (2.14). By combining the three estimates in
(5.35), we obtain for all s ∈ [0, 1] that

(φh(yh) − φh(wh
s ))+

Dh(yh, wh
s )

�
(
φ0(u, v) − φ0(û

ε
s , v̂

ε
s ) − 2sηε(h) − sC̃ε

)+

D0((u, v), (ûε
s , v̂

ε
s )) + sηε(h) + sC̃ε

.

Recall that yh ∈ S M
h and Theorem 5.6(i) imply φ0(u, v) � M . By applying

Lemma 4.8 with (u0, v0) = (u, v) and (u1, v1) = (ûε
1, v̂

ε
1) we get

(φh(yh) − φh(wh
s ))+

Dh(yh, wh
s )

�
s
(
φ0(u, v) − φ0(û

ε
1, v̂

ε
1) − 
2

M

(D0((u, v), (ûε
1, v̂

ε
1))

) − 2ηε(h) − C̃ε
)+

s
1
(D0((u, v), (ûε

1, v̂
ε
1))

) + sηε(h) + sC̃ε
,

where 
1 and 
2
M are the functions introduced in Lemma 4.8. Thus, in view of

(5.28), Lemma 4.5(iii), and Definition 3.1, we find, by letting s → 0, that

|∂φh |Dh (yh) �
(
φ0(u, v) − φ0(û

ε
1, v̂

ε
1) − 
2

M

(D0((u, v), (ûε
1, v̂

ε
1))

) − 2ηε(h) − C̃ε
)+


1
(D0((u, v), (ûε

1, v̂
ε
1))

) + ηε(h) + C̃ε
.

Letting h → 0 we then derive

lim inf
h→0

|∂φh |Dh (yh) �
(
φ0(u, v) − φ0((û

ε
1, v̂

ε
1)) − 
2

M

(D0((u, v), (ûε
1, v̂

ε
1))

) − C̃ε
)+


1
(D0((u, v), (ûε

1, v̂
ε
1))

) + C̃ε
.
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We observe that ûε
1 → ũ in W 1,2(S;R2) and v̂

ε
1 → ṽ in W 2,2(S;R2) as ε → 0, see

(5.22) and (5.29). Thus, letting ε → 0, using Lemma 4.6(iii),(iv), and then taking
the supremum with respect to (ũ, ṽ) we get

lim inf
h→0

|∂φh |Dh (yh) � sup
{
(
φ0(u, v) − φ0(ũ, ṽ) − 
2

M

(D0((u, v), (ũ, ṽ))
))+


1
(D0((u, v), (ũ, ṽ))

) :

(ũ, ṽ) ∈ S̄
reg
0 \ {(u, v)}

}
, (5.36)

where S̄ reg
0 ⊂ S0 denotes the subset consisting of functions u, v with regularity

W 2,∞ and W 3,∞, respectively. Since each (ũ, ṽ) ∈ S0 can be approximated in
W 1,2(S;R2) × W 2,2(S) by a sequence of functions in S̄

reg
0 (see Lemma 5.8) and

the right hand side is continuous with respect to that convergence (see Lemma 4.6),
the previous inequality also holds forS0 instead of S̄

reg
0 . The representation given

in Lemma 4.9 then implies

lim inf
h→0

|∂φh |Dh (yh) � |∂φ0|D0(u, v).

To conclude the proof, it therefore remains to show (5.35).
Step 5: Proof of (5.35)(i). By using Lemma 4.3(ii) and (5.32) we get

Dh(yh, wh
s )2 �

∫

�

Q3
D

(
Gh(yh) − Gh(wh

s )) + Chα‖Gh(yh) − Gh(wh
s )‖2L2(�)

�
∫

�

Q3
D(G y − Gs

w) + s2
(
Cεhα + C(ρε(h))2

)

=
∫

�

Q3
D(sym(G y − Gs

w)) + s2
(
Cεhα + C(ρε(h))2

)
.

Here, the last step follows from the fact that Q3
D(F) = Q3

D(sym(F)) for F ∈ R
3×3,

see Lemma 4.1(ii). Then, using (5.21) and (5.31) we find

Dh(yh, wh
s )2 �

∫

�

Q2
D

(
G(u, v) − G(ûε

s , v̂
ε
s )

)

+ C
∫

�

|sym(G y − Gs
w) e3|2 + s2

(
Cεhα + C(ρε(h))2

)
.

By (5.10) and (5.33) we conclude

Dh(yh, wh
s )2 � D0

(
(u, v), (ûε

s , v̂
ε
s )

)2 + (C̃sε)2 + s2
(
Cεhα + C(ρε(h))2

)
.

This yields (5.35)(i).
Step 6: Proof of (5.35)(ii). First, by Lemma 4.3(iv) and (5.32)(ii) we get

2

h4

∫

�

(
W (yh) − W (wh

s )
)

�
∫

�

(
Q3

W (Gh(yh)) − Q3
W (Gh(wh

s ))
)

− Chα‖Gh(yh) − Gh(wh
s )‖L2(�)
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�
∫

�

(
Q3

W (Gh(yh)) − Q3
W (Gh(wh

s ))
)

− Cεhαs.

(5.37)

Recall the definition of CW in (2.19). An expansion and (5.32)(i) yield
∫

�

(
Q3

W (Gh(yh)) − Q3
W (Gh(wh

s ))
)

= −
∫

�

(
Q3

W

(
Gh(wh

s ) − Gh(yh)
) + 2C3

W [Gh(yh), Gh(wh
s ) − Gh(yh)]

)

� −
∫

�

(
Q3

W (Gs
w − G y) + 2C3

W [Gh(yh), Gs
w − G y]

)
− Csρε(h). (5.38)

Inequalities (5.37)–(5.38), the weak convergence Gh(yh) ⇀ G y in L2(�;R3×3)

(see (5.30)) and (5.34) yield

2

h4

∫

�

(
W (yh) − W (wh

s )
)

� −
∫

�

(
Q3

W (Gs
w − G y) + 2C3

W [G y, Gs
w − G y]

)
− sρ̃ε(h)

for some ρ̃ε(h), still satisfying ρ̃ε(h) → 0 as h → 0. Using the fact that Q3
W (F) =

Q3
W (sym(F)) (see Lemma 4.1(ii)), (5.21), (5.31), and (5.33) we conclude

1

h4

∫

�

(
W (yh) − W (wh

s )
)

�
∫

�

1

2

(
Q3

W (G y) − Q3
W (Gs

w))
)

− sρ̃ε(h)

�
∫

�

1

2

(
Q2

W (G(u, v)) − Q2
W (G(ûε

s , v̂
ε
s )))

)
− sρ̃ε(h) − C̃sε

= φ0(u, v) − φ0(û
ε
s , v̂

ε
s ) − sρ̃ε(h) − C̃sε,

where the last step follows from (5.9).
Step 7: Proof of (5.35)(iii). By convexity of P and the definition wh

s = yh −
yh
ε + ỹh

s , see (5.25), we find

h−pα

∫

�

(
P(∇2

h yh) − P(∇2
hwh

s )
)

� h−pα

∫

�

∂Z P(∇2
hwh

s ) : (∇2
h yh

ε − ∇2
h ỹh

s ).

(5.39)

By Hölder’s inequality and (2.4)(iii) we get
∫

�

|∂Z P(∇2
hwh

s ) : (∇2
h yh

ε − ∇2
h ỹh

s )|
� ‖∂Z P(∇2

hwh
s )‖L p/(p−1)(�)‖∇2

h ỹh
s − ∇2

h yh
ε ‖L p(�)

� C
( ∫

�

P(∇2
hwh

s )
) p−1

p ‖∇2
h ỹh

s − ∇2
h yh

ε ‖L p(�).
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Using φh(wh
s ) � M ′, since wh

s ∈ S M ′
h (see Lemma 5.5(a)) and (5.26)(i), we then

derive
∫

�

|∂Z P(∇2
hwh

s ) : (∇2
h yh

ε − ∇2
h ỹh

s )| � Csh
( ∫

�

P(∇2
hwh)

) p−1
p

� Cεsh(hαp)
p−1

p � Cεshhα(p−1),

where Cε depends also on M ′. By (5.39) and 1 + α(p − 1) − αp > 0, we finally
get that (5.35)(iii) holds. ��
Remark 5.11. The previous proof is the only point where we need the assumption
that the minimum in (2.17)–(2.18) is attained for a = 0 which corresponds to
a model with zero Poisson’s ratio in e3 direction. Although this is a restrictive
assumption, it is a good approximation for cellular materials such as cork. We also
note that similar assumptions already appeared in the literature, see [9]. In fact, the
sequence (wh

s )h has to be constructed in such a way that it is a recovery sequence
(up to an ε-error) for both (5.35)(i) and (5.35)(ii). Without this assumption, a sound
two-dimensional model would necessarily have to depend on Q3

W and Q3
D (instead

of Q2
W and Q2

D) and extra variables in addition to u and v would be required to
capture the extension or contraction of the vertical fibers along the evolution. (Still,
we are not sure whether our analysis can be adapted to this case or not.)

6. Proof of the Main Results

In this section we give the proofs of Proposition 2.1-Theorem 2.3.

6.1. Existence of time-discrete solutions in three dimensions and passage from
three dimensions to two dimensions

In this short subsection we prove Proposition 2.1 and Theorem 2.3.

Proof of Proposition 2.1. Let yh
0 ∈ S M

h = {y ∈ Sh : φh(y) � M} for some

M > 0. We recall that for the choices β1 = 4 − αp and β2 = 3 we have I β1,β2
h =

h4φh , see (2.14). Moreover, there holds Dh = h−2D by (2.15).
It is clear that the minimization problem (2.12) on Sh can be restricted to

the set S M
h . Then the existence of solutions to the incremental problem (2.12)

follows from the direct method of the calculus of variations: Lemma 4.5(ii),(iii)
yield compactness with respect to the topology induced by Dh and Lemma 4.5(iv)
implies lower semicontinuity. ��

We now proceed with the proof of Theorem 2.3. We formulate our problem
in the setting of Section 3.2. We consider the complete metric spaces (S M

h ,Dh)

and the limiting space (S0,D0) together with the functionals φh and φ0. Let σ

be the topology on S0 introduced in (5.18). Recall the definition of the mappings
πh : S M

h → S0 defined by πh(yh) = (uh, vh) for each yh ∈ Sh and the

convergence yh πσ→ (u, v), see below (5.18) and see also (3.3).
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Proof of Theorem 2.3. We consider an initial datum (u0, v0) ∈ S0. We first see
that the family of sequences of initial data B(u0, v0) defined in (2.25) is nonempty.
This follows from Theorem 5.6(ii). We check that all assumptions of Theorem 3.2
are satisfied. First, (3.4) holds by Theorem 5.9 and (3.5) follows from Lemma 5.1.
Also (3.6) is satisfiedby the�-liminf inequality (Theorem5.6(i)) andTheorem5.10.
Finally, the local slope |∂φ0|D0 is a strong upper gradient for φ0 by Lemma 4.9.

Now we consider a sequence (yh
0 )h ∈ B(u0, v0) and a null sequence (τh)h .

The definition of B(u0, v0) (see (2.25)) implies (3.7)(ii) with z̄0 = (u0, v0). In
particular, as πh(yh

0 )
πσ→ (u0, v0), we get that the sequence (πh(yh

0 ))h is bounded
in W 1,2(S;R2) × W 2,2(S). In view of Lemma 4.6(iii), this yields (3.7)(i).

Let Ỹ h,τh be a sequence of time-discrete solutions as in (2.13) with Ỹ h,τh (0) =
yh
0 . Then the scalings I 4−αp,3

h = h4φh and D = h2Dh (see (2.14) and (2.15))
imply that Ỹ h,τh is also a time-discrete solution as in (3.1)–(3.2). The statement
of Theorem 2.3 now follows from the abstract convergence result formulated in
Theorem 3.2. ��

6.2. Fine representation of the slope and solutions to the equations in two
dimensions

This subsection is devoted to the proof of Theorem 2.2. We first note that
Theorem2.2(i) follows directly fromTheorem2.3. Therefore, we only need to show
Theorem 2.2(ii). To this end, we derive a fine representation for the local slope in
the two-dimensional setting which will allow us to relate curves of maximal slope
to solutions to the equations (2.21).

For the following proofs we introduce the abbreviation

H(u, v|ṽ) = sym(∇′u) + sym(∇′v ⊗ ∇′ṽ) − x3(∇′)2v ∈ L2(�;R2×2
sym ) (6.1)

for (u, v) ∈ S0 and ṽ ∈ W 2,2(S). This definition captures the linear part of the
difference of two strains. More precisely, with G(u, v) and G(ū, v̄) as defined in
(5.8), we have by an elementary computation

G(u, v) − G(ū, v̄) = H(u − ū, v − v̄|v) − 1

2
(∇′v − ∇′v̄) ⊗ (∇′v − ∇′v̄).

(6.2)

Recall that C2
D defined in (2.19) is a fourth order symmetric tensor inducing the

quadratic formG �→ Q2
D(G)which is positive definite onR2×2

sym (cf. Lemma4.1(ii)).

Moreover, it maps R2×2 to R
2×2
sym , denoted by G �→ C

2
DG in the following. More

precisely, the mapping G �→ C
2
DG from R

2×2
sym to R

2×2
sym is bijective. By

√
C
2
D we

denote its (unique) root and by
√
C
2
D

−1
the inverse of

√
C
2
D , both mappings defined

on R
2×2
sym . The same properties also hold with C

2
W in place of C2

D .
We now prove the following fine representation for the local slope.
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Lemma 6.1. (Slope in the two-dimensional setting) There exists a differential op-
erator L : S0 → L2(�;R2×2

sym ) satisfying

∫

�

L(u, v) : H(ϕu, ϕv|v) = 0 for all (u, v) ∈ S0 and

(ϕu, ϕv) ∈ W 1,2
0 (S;R2) × W 2,2

0 (S) (6.3)

such that the local slope at (u, v) ∈ S0 can be represented by

|∂φ0|D0(u, v) =
∥∥∥
√
C
2
D

−1(
C
2
W G(u, v) + L(u, v)

)∥∥∥
L2(�)

.

Proof. To simplify the notation, we will write (ū, v̄) → (u, v) instead of
D0((ū, v̄), (u, v)) → 0. Recall the definition of the energy φ0 and the dissipa-
tion D0 in (2.23) and (2.24), as well as their representations in (5.9)–(5.10). By
Definition 3.1(ii) we have

|∂φ0|D0(u, v) = lim sup
(ū,v̄)→(u,v)

(φ0(u, v) − φ0(ū, v̄))+

D0
(
(u, v), (ū, v̄)

)

= lim sup
(ū,v̄)→(u,v)

( ∫
�

1
2

(
Q2

W

(
G(u, v)

) − Q2
W

(
G(ū, v̄)

)))+
( ∫

�
Q2

D

(
G(u, v) − G(ū, v̄)

))1/2

= lim sup
(ū,v̄)→(u,v)

( ∫
�
C
2
W [G(u, v), G(u, v) − G(ū, v̄)] − 1

2 Q2
W

(
G(u, v) − G(ū, v̄)

))+
( ∫

�
Q2

D

(
G(u, v) − G(ū, v̄)

))1/2 .

This leads to

|∂φ0|D0(u, v) = lim sup
(ū,v̄)→(u,v)

( ∫
�
C
2
W [G(u, v), G(u, v) − G(ū, v̄)])+

( ∫
�

Q2
D

(
G(u, v) − G(ū, v̄)

))1/2 .

Indeed, to see this,we use that (ū, v̄) → (u, v) impliesG(ū, v̄) → G(u, v) strongly
in L2(S;R2×2) by Lemma 4.6(iii) and (5.8). Thus, we get

∫

�

Q2
W

(
G(u, v) − G(ū, v̄)

)( ∫

�

Q2
D

(
G(u, v) − G(ū, v̄)

))−1/2 → 0.

Lemma 4.6(iii) and a Sobolev embedding also give

‖∇′(v0 − v1) ⊗ ∇′(v0 − v1)‖L2(S) � C‖v0 − v1‖2W 1,4(S)

� C‖v0 − v1‖2W 2,2(S)
� CD0

(
(u, v), (ū, v̄)

)2
.

This, together with (5.10), (6.1)–(6.2), and the Cauchy-Schwartz inequality, shows
that

|∂φ0|D0(u, v) = lim sup
(ū,v̄)→(u,v)

( ∫
�
C
2
W [G(u, v), H(u − ū, v − v̄|v)])+

( ∫
�

Q2
D(H(u − ū, v − v̄|v))

)1/2 .
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We introduce the space of test functions T = W 1,2
0 (S;R2) × W 2,2

0 (S). Due to the
linearity of H(·, · |v) we find

|∂φ0|D0(u, v) = sup
(u′,v′)∈T

∫
�
C
2
W [G(u, v), H(u′, v′|v)]

( ∫
�

Q2
D(H(u′, v′|v))

)1/2

= sup
(u′,v′)∈T

∫
�
C
2
W [G(u, v), H(u′, v′|v)]

‖
√
C
2
D H(u′, v′|v)‖L2(�)

, (6.4)

where in the second step we used the properties of C2
D . We now consider the

minimization problem

min
(u′,v′)∈T

F(u′, v′),

where

F(u′, v′) := 1

2

∫

�

∣∣∣
√
C
2
D H(u′, v′|v)

∣∣∣
2 −

∫

�

CW [G(u, v), H(u′, v′|v)].

We note that the existence of a solution can be guaranteed by the direct method
of the calculus of variations; to show coercivity, suppose that F(u′, v′) � C .
We note that ‖H(u′, v′|v)‖2

L2(�)
� C by Lemma 4.1(ii) with C depending on

G(u, v). A standard argument involving Poincaré’s inequality and the boundary
values yields ‖u′‖W 1,2(S) + ‖v′‖W 2,2(S) � C , where C additionally depends on û,
v̂, and ‖v‖W 2,2(S). We refer to Remark 4.7 for details. Moreover, the functional
is lower semicontinuous as it is convex in H(u′, v′|v) and H(u′, v′|v) is linear in
(u′, v′).

We denote a solution by (u∗, v∗) ∈ T and we observe that (u∗, v∗) satisfies
∫

�

√
C
2
D H(u∗, v∗|v) :

√
C
2
D H(ϕu, ϕv|v) −

∫

�

C
2
W [G(u, v), H(ϕu, ϕv|v)] = 0

for all (ϕu, ϕv) ∈ T . This equation can also be formulated as
∫

�

L(u, v) : H(ϕu, ϕv|v) = 0 (6.5)

for all (ϕu, ϕv) ∈ T , where we define the operator

L(u, v) := C
2
D H(u∗, v∗|v) − C

2
W G(u, v).

By the definition (6.1) and the regularity of the functions, we find L(u, v) ∈
L2(�;R2×2

sym ). By (6.4), (6.5), and the definition of L we then get

|∂φ0|D0 (u, v) �
∫
�

(
C
2
W G(u, v) + L(u, v)

) : H(u∗, v∗|v)

‖
√
C
2
D H(u∗, v∗|v)‖L2(�)

,

=
∫
�

√
C
2
D

−1(
C
2
W G(u, v) + L(u, v)

) :
√
C
2
D H(u∗, v∗|v)

‖
√
C
2
D H(u∗, v∗|v)‖L2(�)
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=
∥∥∥
√
C
2
D H(u∗, v∗|v)

∥∥∥
L2(�)

=
∥∥∥
√
C
2
D

−1(
C
2
W G(u, v)+L(u, v)

)∥∥∥
L2(�)

.

On the other hand, by a similar argument, in view of (6.4) and (6.5), we find

|∂φ0|D0(u, v) = sup
(u′,v′)∈T

∫
�

(
C
2
W G(u, v) + L(u, v)

) : H(u′, v′|v)

‖
√
C
2
D H(u′, v′|v)‖L2(�)

�
∥∥∥
√
C
2
D

−1(
C
2
W G(u, v) + L(u, v)

)∥∥∥
L2(�)

,

where in the inequality we again distributed
√
C
2
D suitably to the two terms and

used the Cauchy-Schwartz inequality. This concludes the proof. ��
Following ideas in [3, Section 1.4], we now finally relate curves of maximal

slope to solutions to the equations (2.21).

Proof of Theorem 2.2(ii). Since (u(t), v(t)) is a curve of maximal slope, we get
that φ0(u(t), v(t)) is decreasing in time, see (3.8). This together with Lemma 4.6(ii)
gives

(u, v) ∈ L∞([0,∞); W 1,2(S;R2) × W 2,2(S)).

Moreover, since |(u, v)′|D0 ∈ L2([0,∞)) by (3.8) and D0 is equivalent to the
strong topology on W 1,2(S;R2) × W 2,2(S) (see Lemma 4.6(iii)), we observe that
u and v are absolutely continuous curves in the Hilbert spaces W 1,2(S;R2) and
W 2,2(S;R), respectively. By using [3, Remark 1.1.3] we observe that u and v are
differentiable for a.e. t with ∂t u(t) ∈ W 1,2(S;R2) and ∂tv(t) ∈ W 2,2(S) for a.e. t .
More precisely, we have

(u, v) ∈ W 1,2([0,∞); W 1,2(S;R2) × W 2,2(S)) (6.6)

and for all 0 � s < t , and almost everywhere in S it holds that

∇′u(t) − ∇′u(s) =
∫ t

s
∂t∇′u(r) dr,

∇′v(t) − ∇′v(s) =
∫ t

s
∂t∇′v(r) dr, (∇′)2v(t) − (∇′)2v(s) =

∫ t

s
∂t (∇′)2v(r) dr.

(6.7)

As a preparation for the representation of the metric derivative, we now consider
the difference G(u(s), v(s)) − G(u(t), v(t). For a.e. t and a.e. x ∈ �, we obtain
by (6.2) and the linearity of H(·, · | v(t)) that

lim
s→t

G(u(t), v(t)) − G(u(s), v(s))

t − s

= lim
s→t

H
(u(t) − u(s)

t − s
,
v(t) − v(s)

t − s

∣∣∣ v(t)
)

− lim
s→t

(∇′v(t) − ∇′v(s)) ⊗ ∇′v(t) − ∇′v(s)

2(t − s)
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= H
(
∂t u(t), ∂tv(t) | v(t)

)
. (6.8)

Similarly, by (6.2), taking the integral over �, using (6.7), Poincaré’s inequality,
and Hölder’s inequality, we get, for all 0 � s < t ,

∥∥∥(
G(u(t),v(t)) − G(u(s), v(s))

) −
∫ t

s
H(∂t u(r), ∂tv(r) | v(t)) dr

∥∥∥
2

L2(�)

�
∫

�

|∇′v(t) − ∇′v(s)|4 � C
( ∫

�

|(∇′)2(v(t) − v(s))|2
)2

= C
( ∫

�

∣∣∣
∫ t

s
(∇′)2∂tv(r, x) dr

∣∣∣
2
dx

)2

� C
(
|t − s|

∫

�

∫ t

s
|(∇′)2∂tv(r, x)|2 dr dx

)2

= C |t − s|2
( ∫ t

s
‖(∇′)2∂tv(r)‖2L2(�)

dr
)2

. (6.9)

We now estimate the metric derivative |(u, v)′|D0 . By (5.10), (6.8), and Fatou’s
lemma, we get, for a.e. t ,

|(u, v)′|D0(t) = lim
s→t

(
D0

(
(u(t), v(t)), (u(s), v(s))

)2
|t − s|2

)1/2

�
( ∫

�

lim inf
s→t

Q2
D

( G(u(t), v(t)) − G(u(s), v(s))

|t − s|
))1/2

=
∥∥∥
√
C
2
D H

(
∂t u(t), ∂tv(t) | v(t)

)∥∥∥
L2(�)

. (6.10)

We now analyze the derivative d
dt φ0(u(t), v(t)) of the absolutely continuous curve

φ0 ◦ (u, v). Note that for a.e. t we have lims→t
∫ t

s
‖(∇′)2∂tv(r)‖2

L2(�)
dr = 0 by (6.6) and, in a similar fashion,

lims→t (s − t)−1‖ ∫ t
s H(∂t u(r), ∂tv(r) | v(t))‖2

L2(�)
dr = 0 by (6.6) and Hölder’s

inequality. Thus, using (5.9) and (6.9), we get, for a.e. t , that
d

dt
φ0(u(t), v(t)) = lim

s→t

φ0(u(t), v(t)) − φ0(u(s), v(s))

t − s

� lim inf
s→t

1

(t − s)

∫

�

C
2
W [G(u(t), v(t)), G(u(t), v(t)) − G(u(s), v(s))]

− lim sup
s→t

1

2(t − s)

∫

�

Q2
W

(
G(u(t), v(t)) − G(u(s), v(s))

)

� lim inf
s→t

1

(t − s)

∫

�

C
2
W [G(u(t), v(t)), G(u(t), v(t)) − G(u(s), v(s))]

=
∫

�

C
2
W [G(u(t), v(t)), H(∂t u(t), ∂tv(t) | v(t))].

By the property of L stated in (6.3) we get
d

dt
φ0(u(t), v(t)) �

∫

�

(
C
2
W G(u(t), v(t)) + L(u(t), v(t))

) : H
(
∂t u(t), ∂tv(t) | v(t)

)

=
∫

�

(√
C
2
D

−1(
C
2
W G(u(t), v(t)) + L(u(t), v(t))

)
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:
√
C
2
D H

(
∂t u(t), ∂tv(t) | v(t)

))
.

We find by Lemma 6.1, (6.10), and Young’s inequality,

d

dt
φ0(u(t), v(t)) � −1

2

(
|∂φ0|2D0

(u(t), v(t)) + |(u, v)′|2D0
(t)

)
� d

dt
φ0(u(t), v(t)),

where the last step is a consequence of the fact that (u(t), v(t)) is a curve ofmaximal
slope with respect to φ0. Consequently, all inequalities employed in the proof are
in fact equalities and we get

√
C
2
D

−1(
C
2
W G(u(t), v(t)) + L(u(t), v(t))

) = −
√
C
2
D H(∂t u(t), ∂tv(t) | v(t))

pointwise a.e. in � for a.e. t . Multiplying the equation with
√
C
2
D from the left and

testing with H(ϕu, ϕv | v(t)) from the right for (ϕu, ϕv) ∈ W 1,2
0 (S;R2)×W 2,2

0 (S),
we obtain

∫

�

(
C
2
W G(u(t), v(t)) + C

2
D H

(
∂t u(t), ∂tv(t) | v(t)

)) : H(ϕu, ϕv | v(t)) = 0,

(6.11)

where we again used property (6.3). In what follows we will again use the repre-
sentation G(u(t), v(t)) = sym(G0)(t) + x3G1(t) with the abbreviations

sym(G0)(t) = e(u(t)) + 1

2
∇′v(t) ⊗ ∇′v(t), G1(t) = −(∇′)2v(t)

introduced in (5.8). Consider also the corresponding time derivatives

∂t G0(t) = e(∂t u(t)) + ∇′∂tv(t) � ∇′v(t), ∂t G1(t) = −(∇′)2∂tv(t),

where for convenience we use the notation � for the symmetrized vector product.
Recall also (6.1) and observe that H(∂t u(t), ∂tv(t) | v(t)) = ∂t G0(t) + x3∂t G1(t).
Evaluating (6.11) for ϕv = 0 leads to the equations

∫

S

(
C
2
W G0(t) + C

2
D∂t G0(t)

) : ∇′ϕu = 0. (6.12)

We observe that (6.12) gives (2.22a). Evaluating (6.11) for ϕu = 0 yields

∫

S

(
C
2
W G0(t) + C

2
D∂t G0(t)

) : (∇′v(t) � ∇′ϕv

)

− 1

12

(
C
2
W G1(t) + C

2
D∂t G1(t)

)
: (∇′)2ϕv = 0.

This gives the second equation (2.22b) and confirms that (u, v) is a weak solution
to (2.21). ��
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