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Abstract. Polymatroids can be considered as “fractional matroids” where
the rank function is not required to be integer valued. Many, but not ev-
ery notion in matroid terminology translates naturally to polymatroids.
Defining cyclic flats of a polymatroid carefully, the characterization by
Bonin and de Mier of the ranked lattice of cyclic flats carries over to
polymatroids. The main tool, which might be of independent interest,
is a convolution-like method which creates a polymatroid from a ranked
lattice and a discrete measure. Examples show the ease of using the con-
volution technique.
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1. Introduction

Cyclic flats of a matroid played an important role in matroid theory. They
form a ranked lattice, i.e., a lattice with a non-negative number assigned to
lattice elements. Bonin and de Mier in [1] gave a characterization of the ranked
lattices arising this way. They quote Sims [11], where the rank function of the
embedding matroid is specified explicitly by some convolution-like formula.

Generalizing cyclic flats to polymatroids is not completely straightfor-
ward, see [5] and [12] where the same definition of polymatroidal cyclic flats
arose as we use in this paper. Our main contribution is a complete characteriza-
tion of the ranked lattice of cyclic flats of a polymatroid together with singleton
ranks. Motivated by Sims’ construction [11], the convolution of a ranked lattice
and a discrete measure (determined by the singleton ranks) is defined. This
definition is an extension of the usual convolution of polymatroids, for details
see [9]. Similarly to the matroid case, this convolution recovers the embedding
polymatroid for the given ranked lattice and measure. We carefully identify the
role of different conditions. Knowing which condition ensures what property
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allows us to use the convolution to create polymatroids with desired proper-
ties. It is illustrated by a simple example. A more substantial application is in
[3].

Traditionally, convolution is symmetric. In the last section we propose
the convolution of two ranked lattices which is symmetric and falls back to the
previous notion when the second lattice is a complete modular polymatroid.
In a special case this convolution gives an interesting polymatroid extension.
It is open under which general and useful conditions will the convolution be a
polymatroid.

2. Preliminaries

2.1. Notation

All sets in this paper are finite. A polymatroid M = (f,M) is a non-negative,
monotone and submodular function f defined on the subsets of M . Here M is
the ground set, and f is the rank function. A polymatroid is integer if the rank
function takes integer values only, and it is a matroid if it is integer, and all
singletons have value either zero or one. For a thorough treatment of matroids
see [10]. Polymatroids were introduced by Edmonds [4], relevant results on
polymatroids can be found, e.g., in [2,7,8].

A polymatroid can be considered as “fractional matroid”. Relaxing a
combinatorial notion to its fractional version allows different techniques to
apply. This not different in case of polymatroids. While tools handling matroids
are mainly combinatorial, polymatroids have a nice geometrical interpretation
allowing geometrical (and continuity) reasoning.

Following the usual practice, ground sets and their subsets are denoted by
capital letters, their elements by lower case letters. The union sign is frequently
omitted as well as the curly brackets around singletons, thus abA denotes the
set {a, b} ∪ A. The set difference has lower priority than union or intersection,
thus aA−b ∩ B denotes ({a} ∪ A)−({b} ∩ B). For a function f defined on
subsets of a set the usual abbreviations are used. For a singleton i ∈ C we
write f(i|C−i) for f(C) − f(C−i).

A (discrete) measure μ on M is an additive function on the subsets of M
with μ(∅) = 0. As M is finite, the measure is determined by its value on the
singletons as

μ(A) =
∑{μ(a) : a ∈ A}.

If M = (f,M) is a polymatroid, then the measure μM, or just μf , is the one
defined by the singleton ranks. Submodularity implies μf (A) ≥ f(A) for all
A ⊆ M .

A collection of subsets is a lattice L if any two elements Z1, Z2 ∈ L have,
in L, a least upper bound – their join –, and a greatest lower bound – their
meet –, using the standard subset relation as the ordering. The notation for
join and meet are Z1 ∨Z2 and Z1 ∧Z2, respectively. We write Z1 < Z2 if Z1 is
strictly below Z2, which is the same as Z1 ⊂ Z2. The lattice elements Z1 and
Z2 are incomparable if they are different and neither Z1 < Z2 nor Z2 < Z1
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holds. As L is finite, it has a smallest element (the meet of all Z ∈ L), denoted
by OL, and a largest element (the join of all Z ∈ L), denoted by IL. The pair
(λ,L) is a ranked lattice if the rank function λ assigns non-negative real values
to lattice elements. λ is pointed if λ(OL) = 0, and monotone if Z1 ≤ Z2 implies
λ(Z1) ≤ λ(Z2).

2.2. Flats, Cyclic Flats

In this section M = (f,M) is a fixed polymatroid. The element a ∈ M is a
loop if it has rank zero: f(a) = 0, in which case f(aA) = f(A) for all A ⊆ M .
The element a ∈ M is a coloop or isthmus if f(a|M−a) = f(a), which means
f(aA) = f(A)+f(a) for every A ⊂ M not containing a. Both loops and coloops
add trivial structural properties only, thus very frequently the polymatroid is,
or can be, assumed to have no loops and no coloops.

The subset F ⊆ M is a flat if proper extensions of F have strictly larger
ranks. The intersection of flats is a flat, and the closure of A ⊆ M , denoted by
clM(A), or simply by cl(A) when M is clear from the context, is the smallest
flat containing A. The ground set M is always a flat. Flats of a polymatroid
form a lattice where the meet is the intersection, and the join is the closure of
the union. The minimal flat is the collection of all loops, which is the empty
set if M has no loops.

The flat C ⊆ M is cyclic if for all i ∈ C either i is a loop, or f(i|C−i) <
f(i), see [5,12]. In particular, the minimal flat (containing only loops) is cyclic.
When M is a matroid, this definition of cyclic flats is equivalent to the original
one, namely that C is the union of circuits (minimal connected sets), see [1,10].

Similar to the matroid case, cyclic flats form a lattice. The proof relies on
the following structural property of cyclic flats, which appeared in [3, Section
3]

Lemma 1. Every flat F contains a unique maximal cyclic flat C ⊆ F ; moreover
for all C ⊆ A ⊆ F we have

f(A) = f(C) + μf (A−C).

Proof. First, we show that F contains a maximal cyclic flat C with the given
property, then we show that the maximal cyclic flat inside F is unique.

Start with F1 = F , and suppose we have defined Fj for some j ≥ 1. If
there is an element xj ∈ Fj such that f(xj) > 0 and f(Fj)−f(Fj−xj) = f(xj),
then let Fj+1 = Fj−xj , otherwise stop. Submodularity gives that for each i < j
f(xiFj) = f(xi) + f(Fj) > f(Fj), thus Fj is a flat (as Fj has smaller rank
than xiFj for every xi ∈ F−Fj), and the last Fj = C is cyclic. As no proper
extension of C inside F is cyclic, it is a maximal cyclic flat in F with the
claimed property.

Second, suppose C ⊆ F1 = F is a maximal cyclic flat. If i ∈ C is not a
loop then f(i|F1−i) ≤ f(i|C−i) < f(i), consequently C is a subset of

F2 = {i ∈ F1 : i is a loop, or f(i|F1−i) < f(i)}.

Define similarly the sets F1 ⊇ F2 ⊇ F3 ⊇ · · · ⊇ C. It is clear that each Fj

is a flat, and when Fj = Fj+1 then it is cyclic. As it contains C, it must
equal C. �
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Corollary 2. The lattice of cyclic flags, together with the rank of each cyclic
flat and the rank of each singleton determine the polymatroid.

Proof. This is so as the rank of A is the minimum of f(C)+μf (A−C) as C runs
over all cyclic flats. Indeed, f(A) ≤ f(C) + f(A−C) ≤ f(C) + μf (A−C) by
submodularity, thus it is enough to show that for some cyclic flat C equality
holds. Let F = cl(A) and C ⊆ F be the maximal cyclic flat in F . Then
f(F ) = f(A) = f(AC), and by Lemma 1,

f(AC) = f(C) + μf (AC−C) = f(C) + μf (A−C),

as required. �

Claim 3. Cyclic flats of a polymatroid form a lattice.

Proof. Let C1 and C2 be cyclic flats. Then C1 ∩ C2 is a flat which contains a
unique maximal cyclic flat by Lemma 1 above. This is the largest cyclic flat
below C1 and C2. The smallest upper bound of C1 and C2 is C = cl(C1 ∪ C2).
Indeed, this is a flat, and we claim that it is also cyclic. If i ∈ C−C1C2 then i
is not a loop (as loops are in C1 ∩C2), f(iC1C2) = f(C), thus f(i|C−i) = 0 <
f(i). If, say, i ∈ C1 and f(i) > 0 then f(i|C−i) ≤ f(i|C1−i) < f(i) proving
that C is cyclic indeed. �

2.3. Convolution

Let (λ,L) be a ranked lattice and μ be a (discrete) measure both defined on
subsets of M . The convolution of the ranked lattice and the measure, denoted
by λ ∗ μ, assigns a non-negative value to each subset of M as follows:

λ ∗ μ : A �→ min {λ(Z) + μ(A−Z) : Z ∈ L}. (1)

In subsequent sections we write r instead of λ∗μ. When L contains all subsets
of M and λ is the rank function of a polymatroid, then (1) is equivalent to the
usual convolution of two polymatroids, see [7,9].

3. Characterizing cyclic flats

3.1. Conditions

Convolution will be used to recover a polymatroid from the lattice of its cyclic
flats. Different conditions on the ranked lattice and the measure ensure dif-
ferent properties of the convolution. Rather than listing them repeatedly, we
specify them here. In what follows, (λ,L) is a ranked lattice and μ is a measure,
both defined on subsets of the same set.
(Z1) λ(OL) = 0, i.e., λ is pointed.
(Z2) for comparable lattice elements Z1 ≤ Z2 ∈ L,

0 ≤ λ(Z2) − λ(Z1) ≤ μ(Z2−Z1).

(Z3) for different comparable lattice elements Z1 < Z2 ∈ L,

0 < λ(Z2) − λ(Z1) < μ(Z2−Z1).
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(Z2*) for any two lattice elements Z1, Z2 ∈ L,

λ(Z1) + λ(Z2) ≥ λ(Z1 ∨ Z2) + λ(Z1 ∧ Z2) + μ(Z1 ∩ Z2−Z1 ∧ Z2).

(Z3) if a ∈ Z ∈ L, then μ(a) ≤ λ(Z).
(Z4) (a) λ(Z) > 0 for Z �= OL; (b) μ(a) > 0 for a /∈ OL.

Condition (Z2) is monotonicity, (Z2)) is strict monotonicity. (Z3) is similar
to submodularity with a correction term depending on the difference between
Z1 ∩ Z2 and Z1 ∧ Z2 (the meet is always a subset of the intersection). Some
remarks are due.

Remark 1. (Z3) trivially holds when Z1 and Z2 are comparable, thus it is
enough to require it to hold for incomparable Z1 and Z2.

Remark 2. (Z1) and (Z4) implies μ(a) = 0 for a ∈ OL as 0 ≤ μ(a) ≤ λ(OL) =
0. (Z5) a) trivially follows from (Z2*).

Remark 3. In conditions (Z2), (Z2*) and (Z3) the subset for which μ is applied
is always disjoint from OL, thus the values μ(a) for a ∈ OL are irrelevant.

Remark 4. Conditions (Z2), (Z2*) and (Z3) are homogeneous in λ. Thus they
hold if and only if they hold for the pointed rank function λ(Z) − λ(OL).

Remark 5. Suppose μ(a) = 0 for a ∈ OL and μ(a) = 1 otherwise, and that
λ is integer valued. Then (Z2*) implies both (Z4) and (Z5). Consequently
“(Z1) and (Z2*) and (Z3) and (Z4) and (Z5)” is equivalent to “(Z1) and (Z2*)
and (Z3)”, which is the same as the list of axioms in [1, Theorem 3.2], as by
Remark 3 in this case the measure μ of a set in the conditions is the same as
its cardinality.

3.2. Cyclic Flats of Polymatroids

For each polymatroid M we define a pair of a ranked lattice and a measure
as follows: the ranked lattice is collection of cyclic flats endowed with the
polymatroid rank, and the measure is μ = μM generated by the rank of
singletons.

Theorem 4. The pair of the ranked lattice (λ,L) and the measure μ is defined
from a polymatroid if and only if they satisfy (Z1), (Z2*), (Z3), (Z4) and (Z5).
This polymatroid is uniquely defined, and is integer if and only if λ and μ are
integer valued.

By Remark 5, the result in [1] characterizing the lattice of cyclic flats of
matroids follows immediately from this theorem. The proof proceeds in two
stages. The easy part is Claim 5, which shows that the lattice and the measure
coming from a polymatroid satisfy the conditions. The converse follows from
the fact that the convolution λ ∗μ recovers a polymatroid which defines λ and
μ. This is proved in Claim 13 using a series of claims and lemmas from Sect. 4
highlighting the role of each condition. The uniqueness follows from Corollary
2: λ and μ together determine the polymatroid rank function.
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Claim 5. Let L be the lattice of cyclic flats of the polymatroid M = (f,M).
Define λ(Z) = f(Z) for Z ∈ L. Properties (Z1), (Z2*), (Z3), (Z4), (Z5) hold
for (λ,L) and μ = μM.

Proof. The minimal cyclic flat OL is the set of loops, i.e., elements with rank
zero. This proves (Z1) and (Z5); (Z4) is a simple consequence of monotonicity.

If Z1 < Z2 then f(Z1) < f(Z2) as Z1 is a flat and Z2 is a proper
extension of Z1. Suppose by contradiction that f(Z2) − f(Z1) ≥ μ(Z2−Z1),
and let a ∈ Z2−Z1. Then f(Z1) + μ(Z2−Z1a) ≥ f(Z2−a) by submodularity,
and

f(a) + f(Z2−a) ≥ f(Z2) ≥ f(Z1) + μ(Z2−Z1) ≥ f(a) + f(Z2−a),

which means f(Z2) = f(Z2−a) + f(a), thus Z2 is not cyclic, proving (Z2*).
Finally, (Z3) follows from Lemma 1, since Z1 ∨ Z2 = cl(Z1 ∪ Z2), the

ranks are equal f(Z1 ∨ Z2) = f(Z1 ∪ Z2). Let F = Z1 ∩ Z2; it is a flat, and
C = Z1 ∧ Z2 is the maximal cyclic flat contained in F . By Lemma 1

f(F ) = f(Z1 ∩ Z2) = f(C) + μf (F−C).

Combining these with the submodularity

f(Z1) + f(Z2) ≥ f(Z1 ∪ Z2) + f(Z1 ∩ Z2)

we get the inequality in (Z3). �

4. Convolution Properties

In this section, (λ,L) is a fixed ranked lattice and μ is a measure, both defined
on subsets of M . In this and subsequent Sections the shorter notation r will
be used for the convolution λ ∗ μ from Sect. 2.3:

r : A �→ min{λ(Z) + μ(A−Z) : Z ∈ L}. (2)

Theorem 6. If (Z3) holds, then (r,M) is a polymatroid.

Proof. First observe that for arbitrary subsets A,B,ZA, ZB of M we have

μ(A−ZA) + μ(B−ZB) ≥
μ(A ∩ B−ZA ∩ ZB) + μ(A ∪ B−ZA ∪ ZB) (3)

Indeed, if i ∈ A ∩ B−ZA ∩ ZB then i is in both A and B and neither in ZA

nor ZB , thus it is in either A−ZA or B−ZB. If i ∈ A ∪ B−ZA ∪ ZB), then i is
in neither ZA nor ZB, thus, again, it is in either A−ZA or B−ZB. Finally, if
i is in both sets on the right hand side of (3), then i is in both A and B, and
not in ZA neither in ZB , thus i is in both sets on the left hand side.

The convolution (r,M) is a polymatroid if r is non-negative, monotone,
and submodular. Non-negativity is clear from the definition (2) as both λ and
μ are non-negative. Let A and B be subsets of M ; r(A) = λ(ZA) + μ(A−ZA)
and r(B) = λ(ZB) + μ(B−ZB). If A ⊆ B then

r(A) ≤ λ(ZB) + μ(A−ZB) ≤ λ(ZB) + μ(B−ZB) = r(B),
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showing monotonicity. The first inequality holds as r(A) is the minimum of
λ(Z) + μ(A−Z) as Z runs over the lattice elements. To check submodularity
we use ZA ∧ZB and ZA ∨ZB to estimate r(A∩B) and r(A∪B), respectively,
as follows:

r(A ∩ B) ≤ λ(ZA ∧ ZB) + μ(A ∩ B−ZA ∧ ZB),

r(A ∪ B) ≤ λ(ZA ∨ ZB) + μ(A ∪ B−ZA ∨ ZB).

Using condition (Z3), the submodularity r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B)
follows if

μ(A−ZA) + μ(B−ZB) + μ(ZA ∩ ZB−ZA ∧ ZB)

≥ μ(A ∩ B−ZA ∧ ZB) + μ(A ∪ B−ZA ∨ ZB).

As

μ(A ∩ B−ZA ∧ ZB) ≤ μ(A ∩ B−ZA ∩ ZB) + μ(ZA ∩ ZB−ZA ∧ ZB)

(the right hand side is a disjoint union), and

μ(A ∪ B−ZA ∨ ZB) ≤ μ(A ∪ B−ZA ∪ ZB)

as ZA ∨ ZB is a subset of ZA ∪ ZB , (3) gives the required inequality. �

Lemma 7. Suppose a /∈ A and A is disjoint from Z ∈ L. If r(aAZ) = λ(Z) +
μ(aA), then r(aAZ) = r(AZ) + μ(a).

Proof. We show that r(AZ) = λ(Z) + μ(A), from here the claim follows. Let
r(AZ) = λ(Z ′) + μ(AZ−Z ′) for some Z ′ ∈ L. By definition, r(aAZ) is the
minimum of λ(Z ′′) + μ(aAZ−Z ′′) as Z ′′ runs over the lattice elements. In
particular,

λ(Z) + μ(aA) = r(aAZ) ≤ λ(Z ′) + μ(aAZ−Z ′).

Similar consideration applied to r(AZ) gives

λ(Z ′) + μ(AZ−Z ′) = r(AZ) ≤ λ(Z) + μ(AZ−Z) = λ(Z) + μ(A) (4)

as AZ−Z = A by assumption. Combining them we get

μ(aA) + μ(AZ−Z ′) ≤ μ(aAZ−Z ′) + μ(A),

which holds only if they are equal. Consequently we have equality in (4) as
was required. �

Lemma 8. (a) (Z1) implies r(a) = 0 for a ∈ OL, and r(a) ≤ μ(a) otherwise.
(b) (Z4) implies r(a) ≥ μ(a) for all a ∈ M . (c) (Z5) implies r(a) > 0 for
a /∈ OL.

Proof. Immediate from the conditions and from the fact that r(a) is the min-
imum of λ(Z) + μ(a−Z) as Z runs over L. �

Lemma 9. (a) Assume (Z2) and (Z3). For every pair of lattice elements
Z,Z ′ ∈ L we have

λ(Z ∨ Z ′) ≤ λ(Z ′) + μ(Z−Z ′).
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(b) Assume (Z2*) and (Z3). For every pair Z,Z ′inL such that Z �≤ Z ′ the
above inequality is strict.

Proof. If Z ≤ Z ′ then Z ∨Z ′ = Z ′, thus the two sides are equal. When Z ′ < Z
then the inequality (strict inequality) follows from condition (Z2) (condition
(Z2*), respectively). Finally, if Z and Z ′ are incomparable, then apply (Z2)
(or (Z2*)) for Z ∧ Z ′ and Z ′, and (Z3) for Z and Z ′ to get

λ(Z) ≤ λ(Z ∧ Z ′) + μ(Z−Z ∧ Z ′),

λ(Z ∧ Z ′) + λ(Z ∨ Z ′) ≤ λ(Z) + λ(Z ′) − μ(Z ∩ Z ′−Z ∧ Z ′).

Their sum is the claimed inequality. When using (Z2*), the first inequality is
strict, thus the sum is strict as well. �

Claim 10. Assume (Z2) and (Z3). r(A) = λ(A) for every A ∈ L.

Proof. Using Z = A in the definition r(A) = min{λ(Z) + μ(A−Z)} gives
r(A) ≤ λ(A). To show the converse, condition (Z2) gives λ(A) ≤ λ(A ∨ Z),
and by Lemma 9 a),

λ(A) ≤ λ(A ∨ Z) ≤ λ(Z) + μ(A−Z)

for every Z ∈ L, thus λ(A) ≤ r(A). �

Recall that property (Z3) implies that the convolution is a polymatroid
(Theorem 6).

Claim 11. Assume (Z1), (Z3) and (Z5). Every cyclic flat of the convolution is
an element of the lattice L.

Proof. (Z3) implies that the convolution (r,M) is a polymatroid. Suppose
F ⊆ M is a flat in it, and r(F ) = λ(Z) + μ(F−Z) for some Z ∈ L. Now

r(FZ) ≥ r(F ) = λ(Z) + μ(F−Z) = λ(Z) + μ(FZ−Z) ≥ r(FZ),

consequently r(F ) = r(FZ). As F is a flat, Z ⊆ F . Suppose F−Z is not
empty, let F−Z = aA with a /∈ A. As r(aAZ) = λ(Z)+μ(aA), Lemma 7 gives
r(F ) − r(F−a) = μ(a). By Lemma 8 (a) and (c) μ(a) ≥ r(a) > 0 (and then
μ(a) and r(a) must be equal), thus F is not cyclic. �

Claim 12. Assume (Z2*), (Z3), (Z4), (Z5) (b). Every Z ∈ L is a cyclic flat in
(r,M).

Proof. By Claim 10, r(Z) = λ(Z) for all lattice elements. First we check that
Z ∈ L is a flat. Let a /∈ Z, we want to show that aZ has larger rank than Z. As
a /∈ OL, condition (Z5) b) says μ(a) > 0. Suppose r(aZ) = λ(Z ′)+μ(aZ−Z ′).
If Z < Z ′ then λ(Z) < λ(Z ′) by (Z2*). If Z = Z ′ then r(aZ) = λ(Z) + μ(a) >
λ(Z). Otherwise Z is not below Z ′, and then Lemma 9 (b) gives

λ(Z) ≤ λ(Z ∨ Z ′) < λ(Z ′) + μ(Z−Z ′) ≤ r(aZ),

as required. To show that Z ∈ L is cyclic, let a ∈ Z and suppose by contra-
diction that r(a) > 0 and r(Z−a) = r(Z) − r(a). Let

r(Z−a) = λ(Z ′) + μ(Z−aZ ′) = λ(Z) − r(a).
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As λ(Z ′) < λ(Z), Z ≤ Z ′ is impossible by (Z2*). Thus Z is not below Z ′, and
Lemma 9 (b) gives

λ(Z) ≤ λ(Z ∨ Z ′) < λ(Z ′) + μ(Z−Z ′)

≤ λ(Z ′) + μ(Z−aZ ′) + μ(a)

= λ(Z) − r(a) + μ(a).

However, this is impossible as by Lemma 8 (b), r(a) ≥ μ(a). �

Putting together all details, the second part of Theorem 4 follows easily.

Claim 13. Suppose the ranked lattice (λ,L) and the measure μ satisfy con-
ditions (Z1), (Z2*), (Z3), (Z4) and (Z5). The convolution λ ∗ μ recovers a
polymatroid M such that (λ,L) is the lattice of cyclic flats of M endowed
with the polymatroid rank, and μ = μM.

Proof. By Theorem 6, the convolution is a polymatroid. μ = μM follows from
Lemma 8 c). By Claims 11 and 12 elements of the lattice L are precisely the
cyclic flats of M. Finally, Claim 10 says that lattice and polymatroid ranks
are equal. �

5. An Example

An illustrative example for using convolution is a proof of Helgason’s theorem
[6] saying that integer polymatroids are factors of matroids. For other examples
see [3]. Let M = (f,M) be an integer polymatroid. For i ∈ M find sets Mi

disjoint from each other such that Mi and M intersect in the singleton {i}
and Mi has exactly max{1, f(i)} elements. The lattice L consists of subsets
Z ⊆ N =

⋃
i Mi which have the property

if Mi ∩ Z �= ∅, then Mi ⊆ Z.

The meet and join are the union and intersection, and OL is the empty set.
Define the rank λ as

λ : Z �→ f(Z ∩ M).

The measure is the expected one: for a ∈ Mi let μ(a) = min{1, f(i)}. It is a
routine to check that conditions (Z1), (Z2), (Z3) and (Z4) hold. Let N = (r,N)
be the convolution of the ranked lattice and the measure. It is clearly integer,
and by Theorem 6 it is a polymatroid. By Lemma 8 r(a) = μ(a), consequently
the rank of singletons is either zero or one, which shows that N is a matroid.
Finally, Claim 10 says r(Z) = λ(Z) for all Z ∈ L, therefore M is a factor of
N as required.

Helgason’s theorem is a special case of a more general statement. In the
construction above each singleton i ∈ M with rank f(i) ≥ 2 is replaced by the
free matroid of rank f(i). Actually any matroid with this rank can be used
which is an immediate consequence of Theorem 14. Let us proceed with some
definitions.
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The convolution of two ranked lattices (λ1,L1) and (λ2,L2) is the func-
tion on subsets of IL1 ∪ IL2 defined as

A �→ minZ1,Z2

{
λ1(Z1) + λ2(Z2) : A ⊆ Z1 ∪ Z2

}

as Z1 runs over elements of L1 and Z2 runs over elements of L2. If L2 is the
complete subset lattice and λ2 is a measure, then this formula is equivalent to
(1) from Sect. 2.3. In the very special case of Theorem 14 below, the convolu-
tion of two ranked lattices defines a polymatroid. To find general and useful
conditions implying the same conclusion would be an interesting problem.

Let P,M be disjoint sets, and let c /∈ M ∪ P . Assume M = (f,Mc) and
N = (g, P ) are polymatroids with f(c) = g(P ). The polymatroid (r,M ∪ P )
infiltrates P under c if for all subsets A ⊆ M and B ⊆ P we have

r(A) = f(A), r(B) = g(B),

r(AP ) = f(Ac), (5)

that is, r extends both f � M and g, and inserts P in place of c.

Theorem 14. For each M = (f,Mc) and N = (g, P ) with f(c) = g(P ) one
can infiltrate P under c.

Proof. Define two ranked lattices on subsets of M ∪ P as follows:

L1 = {Z1 ⊆ MP : Z1 ∩ P = ∅, or Z1 ∩ P = P},

L2 = {Z2 ⊆ MP : Z2 ∩ M = ∅}
with rank functions

λ1(Z1) =

{
f(Z1 ∩ M) if Z1 ∩ P = ∅,

f(c(Z1 ∩ M)) if Z1 ∩ P = P ;

λ2(Z2) = g(Z2 ∩ P ).

Let the convolution of the ranked lattices be (r,MP ). We claim that this is the
required extension. As both λ1 and λ2 are monotone, the minimum is taken
when Z1 and Z2 is the smallest possible. Consequently for every A ⊆ MP ,

r(A) = min
{
f(A ∩ M) + g(A ∩ P ), f(c(A ∩ M))

}
. (6)

Using that f(c) = g(P ), conditions in (5) follow easily. Thus one has to check
only that (r,MP ) is a polymatroid. Non-negativity and monotonicity is clear,
and submodularity can be shown by a case by case checking depending on
which terms in (6) provide the smaller value. �
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