Založeno v roce 2005 s podporou MŠMT ČR (projekt 1M0572)

Publikace

Particle Based Probability Density Fusion with Differential Shannon Entropy Criterion

Typ:
Konferenční příspěvek
Autoři publikace:
Název sborniku:
Proceeding of the 14th International Conference on Information Fusion
Nakladatel:
ISIF
Místo vydání:
Chicago, Illinois, USA
Rok:
2011
Strany:
803-810
ISBN:
978-0-9824438-2-8
Klíčová slova:
Data fusion, nonlinear estimation, particle filters
Adresa (www stránky):
příloha1:
příloha2:
Anotace:
This paper focuses on a decentralised nonlinear estimation problem in a multiple sensor network. The stress is laid on the optimal fusion of probability densities conditioned by different data. The probability density conditioned by the common data is supposed to be unavailable. The optimal fusion is elaborated in the particle ?ltering and differential Shannon entropy framework. The conversion of weighted particles into a continuous probability density function is performed implicitly by the time update. Further, the issue of sampling density proposal is explored. The proposed approach is illustrated in numerical examples.
 
Copyright 2005 DAR XHTML CSS